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Abstract

I present an axiomatically constructed model for an underlying description of
particles and their interactions, in particular the fermions and gravitation. Using
set axioms as a guide, qubits are the fundamental building blocks. It is proposed
that the existence of fundamental laws of physics is precluded and only random
events occur at the fundamental level. The uncertainty relations and the complex
state vectors of quantum theory are a consequence of a Gibbs measure on ran-
dom variances. This leads to a simple resolution of the measurement problem in
quantum mechanics. Quarks and Leptons in 3 generations are Fock states of 4d
spaces and their calculated electric charges agree with observations. In addition
spin 2 massless gravitons are a 4d Fock state and is the maximum spin state for
these 4d Fock states. All particles are geometric, and the dynamics of particles and
Space-Time are governed by CAR algebra. One consequence of the model is the
cosmological constant being a result of the modification of momentum in curved
space.
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Introduction
The Standard Model of particle physics and General Relativity are the current theories
matching a wide range of observations. One would like a deeper understanding of these
theories and how they are connected. In the Standard Model of particle physics, (the
latest reviews and experimentally determined parameters can be viewed on the Particle
Data Group website [1]), the particle content, particle properties, and interactions are
assumed, guided by experimental results. The classical theory of gravitation, General
Relativity [2] is yet to be linked to the Standard Model in a non-trivial way.

The discovery of neutrino oscillations [3] and neutrino mass [4], the accelerated ex-
pansion of the universe [5], the flattening of the rotation curves of galaxies [6] and
galaxy cluster stability [7] appear to show that the Standard Model and General Rela-
tivity are incomplete. This has prompted the formulation of a plethora of models/theo-
ries. These include but not limited to GUT models, supersymmetry, dark energy, dark
matter, MOND and modifications to General Relativity. However, the particle physics
Lagrangians and those of gravitational models/theories do not provide a mechanism
of how the system changes. As Richard Feynmann noted in The Messenger Lectures
1964, a particle does not calculate its trajectory in phase space [8].

The measurement problem and the collapse of the wavefunction have also been open
problems since the development of Quantum Mechanics [9]. Some interpretations of
Quantum Mechanics avoid wavefunction collapse but have there own problems.

In the construction of models/theories of particle physics and gravitation, assumptions
about which mathematical structures are to be used are made. For instance, the incorpo-
ration of the Standard Model gauge groups into a larger gauge group, extra dimensions
and supersymmetry. This freedom to choose the mathematical structure is not accessi-
ble by Nature.

Since Axiomatic Set Theory is a foundation of Mathematics, I will use this as a guide
for an axiomatically constucted model of nature at the fundamental level.
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1 Axioms
It is important to be clear about what physical assumptions are being made when for-
mulating models/theories. More importantly, it is the mathematical assumptions which
constrains the physics. Here, I state the axioms and deduce their consequences.
Consider a set S of elements ε which represents the state of a system.

A1: No equations of motion for a fundamental system (1.1)
A2: preclude the creation of same element in sucession (1.2)
A1⇒ no specified relational measure on S (1.3)
A1⇒ no functional relations on ε (1.4)
1.4⇒ ε are linearly independent (1.5)
1.5⇒ ε are random (1.6)
1.5⇒ ε are orthogonal (1.7)
A2⇒ ε acted on by a CAR operator algebra (1.8)
A3: minimum 2d CAR, (1.9)
1.9⇒ ε → εa : a = 1, 2 (1.10)

1.9⇒ basis vectors ea ∈
{
(b1, 0) , (0, b2) : b2

1, b
2
2 = ±1

}
(1.11)

1.11⇒ The 2d spaces Vk have basis vectors eka (1.12)
1.11⇒ signature(Vk) ∈ {(1, 1) , (1,−1) , (−1, 1) , (−1,−1)} (1.13)
1.7⇒ the 2d vector spaces Vk are orthogonal (1.14)

A4: The random elements are εka = E
(
hkaL−1

)
E (xka) (1.15)

where E(hkaL−1), E(xka) are the expectation values of the random elements. The inner
product of the random elements is(

ε ja, εkb

)
=

1
L2

∑
j,k

E(h ja)E(x ja)e jaE(hkb)E(xkb)ekb (1.16)

where e2
ja, e

2
kb = ±1 Norm of the basis elements (1.17)

E(g( ja)(kb)) = E(h ja)E(hkb) expectation for the metric (1.18)

The summation in 1.16 is the expectation of the distance measure for the vector space.
By the axioms above, E(hkaL−1) and E(xka) are independent. Thus εk are qubits which
form the geometry of a space. The space of configurations is acted on by CAR opera-
tors by axiom A3 [10]. I name these qubits εk as geometric qubits.

2 Gibbs Measure and Quantum Wavefunctions
I will show that there is a Gibbs measure which induces the existence of complex
wavefunctions of Quantum Mechanics.

2.1 Uncertainty Relations
Since the random elements are independent, they have the Markov property that the
probability of future states depends only upon the present state; that is, given the
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present, the future does not depend on the past [11][12]. The partition function [13][14]
has the property that the random elements are Markovian. By 1.3, I use the statis-
tical measures, the deviations of the components of the 2d vector spaces σ(εka) =
σ(hkaL−1)σ(xka). Let Z(β) be the partition function with the potential function H given
by

H = σ2(hka)σ2(xka)L−2 (2.1.1)

The partition function for the kth qubit is

Z(β) =
ˆ ∞
−∞

ˆ ∞
−∞

e−βH dσ(hka)dσ(xka) (2.1.2)

The Gibbs probabilty measure [15] Gk is

Gk = P(σ(εka)) = P(σ(hkaL−1)σ(xka)) =
1

Z(β)
e−βσ

2(hka)σ2(xka)L−2
(2.1.3)

Since probability P satisfies the strict inequality 0 6 P 6 1 it follows that

σ(hka)σ(xka) > L
√

ln(Z(β) (2.1.4)

Thus 2.1.4 are the uncertainity relations for hka, xka in curved space.

2.2 Wavefunctions
The uncertainty relations 2.1.4, imply the existence of square integrable complex vec-
tors ψ(hka) and the Fourier transform ψ(xka) [16]

∀eka,∃ψka ∈ C k = 1...4, a = 1, 2 (2.2.1)

The kth qubit state can be written as

|ψk〉 =
√

Gk1|ψk1〉 +
√

Gk2|ψk2〉 (2.2.2)
Gk1 +Gk2 = 1 (2.2.3)

P(|ψ〉 = ψka) = Gka (2.2.4)

The probabilities are inherently determined by the Gibbs measures.
Introduce some notation which will be required in section 3.3:

ε j,0, ψ j,0 ∈ {ψka : e2
ka = +1} j = 1, 2, 3, 4 (2.2.5)

ε0, j, ψ0, j ∈ {ψka : e2
ka = −1} j = 1, 2, 3, 4 (2.2.6)

2.3 Fock space
Since each qubit must be in a non-empty state, it follows that the spaces are all 4d and
are one of R1,3,R3,1,R2,2 spaces. For intance, the 4d spaces R1,3,R3,1 will have states
as show below, where eik are unit basis vectors.

{(ε11e11, 0), (0, ε22e22), (ε31e31, 0), (ε41e41, 0)} ∈ R1,3 (2.3.1)

{(ε11e11, 0), (ε21e21, 0), (ε31e31, 0), (0, ε42e42)} ∈ R3,1 (2.3.2)
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Construct the set of 4d real vector spaces {(Vα, σ(εk))} The Gibbs measures on this set
of deviations induces the complex vector spaces and the corresponding states Fα,ab.

V1,ab = R
1,3 |F1,ab〉 = |

√
G1aG22G31G4b ψ1aψ22ψ31ψ4b〉 (2.3.3)

V2,ab = R
3,1 |F2,ab〉 = |

√
G1aG21G32G4b ψ1aψ21ψ32ψ4b〉 (2.3.4)

V3,ab = R
2,2 |F3,ab〉 = |

√
G1aG21G31G4b ψ1aψ21ψ31ψ4b〉 (2.3.5)

V4,ab = R
2,2 |F4,ab〉 = |

√
G1aG32G22G4b ψ1aψ32ψ22ψ4b〉 (2.3.6)

The Fock space at point X ∈ R4, |F(X)〉 [17] consists of the states Fα,ab, and is

|F(X)〉 =
⊕

α=1...4,a,b=1,2

|Fα,ab〉 (2.3.7)

The sum of the probabilities of the Fock states at X must be equal to 1, results in the
following condition on the Gibbs measures:

G2
1aG2

4b

[
(G22G31)2 + (G21G32)2 + (G21G31)2 + (G32G22)2

]
= 1 (2.3.8)

The Fock space over all points Xi ∈ R
4 is the tensor product

|F〉 =
∞⊗

i=1

|F(Xi)〉 (2.3.9)

Construct the 2 component Fock states:

|F1〉 = |F1,abF2,ab〉, |F2〉 = |F1,abF3,ab〉, |F3〉 = |F2,abF4,ab〉 (2.3.10)

These are for the construction of fermions, section 3.

2.4 Measurement Problem
In the original formulation of Quantum mechanics, the wavefunction collapse is the
discontinuous change in the wavefunction (as a superpostion of eigenfunctions) to an
eigenfunction whose eigenvalue is the observable. This contradicts the unitary evolu-
tion of the wavefunction [9][18]. This is a postulate of the original quantum mechanics
and no universally accepted mechanism has been found to explain how the wavefunc-
tion changes to the eigenfunction following a measurement.

In section 2.1, the Gibbs probabilty measure P(σ(xka)σ(hkaL−1)) was given, which
induces complex wavefunctions ψka, normalised to 1 induces the Born rule [19]. The
expectation values for the random variables hka and xka are calculated using the com-
plex vectors ψka. Let the initial configuration be S i with induced wavefunction ψi and
final configuration S f with induced wavefunction ψ f . Since the configuration space
changes randomly, this can be represented as follows

S i → S f ⇒ ∃(ψi → ψ f ) (2.4.1)

A change in the configuration space resuts in the initial wavefunction being replaced
by the induced wavefunction of the final configuration. Thus no wavefunction collapse
is involved.
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2.5 Momentum
Applying the de-Broglie relation for momentum [20]

ψ(hk xk/L) = ψ(Pk xk/}) (2.5.1)

Pk =
~hk

L
(2.5.2)

Consider a ’local’ unitary transformation of the wavefunctions, so that the transforma-
tion is applied to the same xk, (not ’local’ if transformation is applied at −xk)

ψk(hk xk/L)→ eikk xkψk(hk xk/L) = ψk(hk xk/L + kk xk)
→ ψk((hk/L + kk)xk)

(2.5.3)

The momentum is transformed to

Pk → Pk + ~kk (2.5.4)

Following the ’local’ unitary transformation 2.5.3, the uncertainty relations 2.1.4 be-
come

σ(hka/L + kka)σ(xka) >
√

ln(Z(β) (2.5.5)

Using the property of the variance Var(X + c) = Var(X) where X is a random variable
and c is constant, then in the limit that hka is constant, the uncertainty relation simplifies
to

σ(kka)σ(xka) >
√

ln(Z(β) (2.5.6)

The uncertainity relation [21][22] is the Heisenberg uncertainity relation for the mo-
mentum ~k and position. Since all particle momenta are changed by a positive amount,
I identify the constant L−2 = Λ, the cosmological constant.

3 Fermions

3.1 Chirality
Adapting the defintion of chirality [23]
Chirality is the eigenvalues of the σ5 matrix, where σ5 is given by

σ5 = −σ0σ1σ2σ3, σ
2
i = −I2 (3.1.1)

On R1,3, σ2
0 = I2, σ5 = −I2 (3.1.2)

On R3,1, σ2
0 = −I2, σ5 = −I2 (3.1.3)

Thus, fermions are chiral -1.

3.2 Spin 1/2
The action of the CAR operators on the qubits include transformations isomorphic to
SU(2). The spin s=1/2 is generated by SU(2) acting on the a and/or b components of
the Fock states Fα,ab

S U(2,C) × (Fα,a(b), Fα,(a)b)→ s =
(
±

1
2
,±

1
2

)
(3.2.1)
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3.3 Fermion Wavefunctions
From 2.3.10, the 2 component Fock states have the following complex vector space
structures (

C1,3

C3,1

)
,

(
C1,3

C2,2

)
,

(
C3,1

C2,2

)
(3.3.1)

C2,2 → C3,1,C1,3 (3.3.2)

The Fock states |F2〉, |F3〉 can transform to new states via the transformation 3.3.2
which induces the either of the doublets

|F2〉 → |F′2〉
(
C1,3

C2,2

)
→

(
C1,3

C1,3

)
(3.3.3)

|F3〉 → |F′3〉
(
C3,1

C2,2

)
→

(
C3,1

C3,1

)
(3.3.4)

The special unitary group SU(3) acts on the C3 is the color space and the unitary group
U(1) acts on the C is the electric charge space.

3.4 Electric Charge Quantum Numbers
Using the relation between electric charge and weak-hypercharge [24]

Q = T3 +
1
2

Y (3.4.1)

where Q is the electric charge operator, T3 =
1
2σ3 is the diagonal matrix of S U(2) and

Y is the weak-hypercharge operator. Consider a general unitary transformation that
leaves the modulus of the phase angle θ unchanged for particle in n states:

(nQ − nT3)θ =
1
2

Yθ (3.4.2)

Y = ∓I2 (3.4.3)

T3 =

(
1 0
0 −1

)
(3.4.4)

For the doublets with singlet states n = 1, it follows that the eigenvalues of the charge
operator are (∓1, 0), the electric charges on the chiral leptons.
For the doublets with triplet states n = 3, it follows that the eigenvalues of the charge
operator are (± 2

3 ,∓
1
3 ), electric charges on the chiral quarks.

The Fock states |F1〉, F′2〉, F
′
3〉 when transformed by 3.4.2 are 3 chiral generations of

leptons and quarks.

4 Gravitation and Particles
Consider the states on C1,3 and the transformation to C2,2 as show below.

C1,3 : ψ22 → ψ21 s = 2 (4.1)

C1,3 : ψ31 → ψ32 s = −2 (4.2)
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With the spin 1
2 states aligned, the resulting spin states are s = ±2 thus forming a

graviton spin 2 [25][26]. A different view is that particles such as leptons and quarks
are additional symmetries on the spin 2 gravitational field, i.e. pertubations of the
gravitational field. Matter is thus entangled to gravitational field.

5 Conclusion
A problem with the Standard Model of particle physics is that the reason for the 3
generations of quarks and leptons and their electric charges are left unanswered. Using
qubits, I show that the qubits form spaces of 4d and construct a Fock space of 4d spaces.
The signatures of the spaces are {(1, 3), (3, 1), (2, 2)}. In resolving this question, I have
found that a Gibbs meaure on the space of random variances leads to the existence
of the quantum wavefunction. The Heisenberg uncertainty relations follow from a
’local’ unitary transformation of the wavefunctions. A solution to the wavefunction
collapse was presented. The maximum spin of a Fock state is spin 2, hence a graviton
state. The cosmological constant is a consequence of the momentum in curved space.
Further work is needed on this model, in particular how to derive the Lagrangians of
the Standard Model and Gravitation.
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