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Abstract

It is shown how the crucial active diffs symmetry of General Relativ-
ity allows to shift the radial location r = 2GM of the horizon associated
with the Schwarzschild metric to the r = 0+ location of a diffeomorphic
metric. In doing so, one ends up with a spacetime void surrounding the
singularity at r = 0. In order to explore the “interior” region of this
void we introduce complex radial coordinates whose imaginary compo-
nents have a direct link to the inverse Hawking temperature, and which
furnish a path that provides access to interior region. In addition, we
show that the black hole entropy A

4
(in Planck units) is equal to the area

of a rectangular strip in the complex radial-coordinate plane associated
to this above path. The gist of the physical interpretation behind this
construction is that there is an emergence of thermal dimensions which
unfolds as one plunges into the interior void region via the use of complex
coordinates. And whose imaginary components capture the span of the
thermal dimensions. The filling of the void leads to an emergent inter-
nal/thermal dimension via the imaginary part βr of the complex radial
variable r = r + iβr.

Keywords : General Relativity; Black Holes; Strings. PACS : 04.60.-m,
04.65.+e, 11.15.-q, 11.30.Ly

A considerable progress in recent years has been made in understanding the
quantum aspects of black holes and the Hawking evaporation process. This
progress involved the role of islands, replica wormholes, holography, the Page

1



curve, saddle points in the gravitational path integral, fine-grained von Neu-
mann entropy, quantum information, complexity, . . . , see [1] for a recent review
and a vast number of references. One of the main motivations is that black
holes provide a window into the microscopic structure of spacetime in quantum
gravity. Recently, the quantum information contained in Hawking radiation has
been calculated, verifying a key aspect of the consistency of black hole evap-
oration with quantum mechanical unitarity. This calculation relied crucially
on recent progress in understanding the emergence of bulk spacetime from a
boundary holographic description [1].

In this short note we shall take a completely different look based on the
key role of active diffeomorphisms and a complex coordinates/four-temperature
vector connection introduced below. The static spherically symmetric (SSS)
vacuum solution of Einstein’s equations [2] was found by Schwarzschild [3] and
is more widely known in terms of the solution provided by Hilbert [5] as

(ds)2 = (1− 2GM

r
) (dt)2 − (1− 2GM

r
)−1 (dr)2 − r2 (dΩ)2 (1)

where the solid angle infinitesimal element is (dΩ)2 = (dθ)2 + sin2(θ)(dφ)2.
The higher-dimensional extension of the metric can be obtained by simply

replacing (dΩ)2 → (dΩD−2)2 (the D − 2-dim solid angle) and 1 − 2GM
r →

1 − ( rhr )D−3 where rh is the horizon radius expressed in terms of M and the
gravitational coupling GD in D dimensions whose units are (length)D−2.

The solution (1) is defined modulo diffeomorphisms. All diffeomorphic met-
rics to (1) are physically equivalent. There are two types of diffeomorphisms.
The passive ones where the spacetime points remain fixed but there is a
change of coordinates xµ → x′µ = fµ(xν). A typical example are the Kruskal-
Szekers change of coordinates U(r, t), V (r, t) giving a maximal extension of the
Schwarzschild metric into the interior region of the black hole. And the active
diffs where the spacetime points are physically displaced while leaving the coor-
dinates fixed xµ = x′µ. In view of this, let us perform an active diffs where one
activates an actual outwards radial displacement r → ρ(r) ≥ r of the spacetime
points, so the metric (1) becomes

(ds)2 = (1− 2GM

ρ(r)
) (dt)2 − (1− 2GM

ρ(r)
)−1 (dρ)2 − ρ2(r) (dΩ)2. (2)

An inwards radial displacement ρ(r) < r is called in the mathematical literature
a “deformation retract”.

Note that one has not relabeled the radial variable r by giving it another
name and calling it “ρ”, because ρ(r) is itself a function of r. Furthermore, one
has not performed a radial reparametrization r′ = ρ(r) because an active diffs
is not the same as a passive diffs (a coordinate transformation). The metric
(2) assumes the same values as the original metric (1) but at different radial
locations due to the active physical displacements of the spacetime points. The
metric solution (2) does not violate Birkhoff’s theorem because it is obtained
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from the Hilbert-Schwarzschild metric via an active diffs. It is well known that
the extended Schwarzschild metric solution for r < 0 with M > 0, corresponds
to a solution in the region r > 0 with M < 0. Negative masses are associated
with repulsive gravity. For this reason, the domain of values of r will be chosen
to span the whole real axis −∞ ≤ r ≤ ∞.

The temporal component of the metric (2) leads to modifications of the
Newtonian potential at distances of the order of 2GM . One recovers the New-
tonian potential at large distances compared to 2GM because in the regime
when r >> 2GM one has ρ(r) ∼ r such that GM

ρ(r) ∼
GM
r . The graph of the

function ρ(r) is asymptotic to the graph of r.
Due to the spherical symmetry one must have that ρ(r = 0) = 0, since

the location of the physical point-mass must retain the position of being the
geometrical center of spherical symmetry. One cannot have a situation with
ρ(r = 0) = 2GM [4] because this would imply that the center point r = 0 is
displaced to an infinity of points which comprise an spherical shell of radius
R = 2GM . This map ρ(r = 0) = 2GM would be infinite-valued and not
one-to-one. Another reason why ρ(r = 0) = 0 is because a point mass must
have zero area and zero volume simultaneously. In [6] we argued the possibility
for a geometrical entity to have a non-zero area while having a zero volume
simultaneously. This can occur with fractal surfaces which are space-filling. In
this case the area of the fractal surface is infinite but the volume is zero. It is
worth exploring this fractal horizon scenario in a theory of Quantum Gravity.

Let us define the active diffs by the map r → ρ(r) and such that |ρ(r)| ≥ |r|
as follows

ρ(r = 0) = 0; ρ(r) =
r

1 − e−r/2GM
, r > 0; ρ(r) =

r

1 − er/2GM
, r < 0,

(3)
One has ρ(−r) = −ρ(r) and in this way one extends the solutions to the
r < 0 region. A negative r sounds strange but one must not forget that
r =

√
x2 + y2 + z2 and there is always a ± sign in front of every square root.

Since ρ(r) is antisymmetric in r it must vanish at r = 0, which is consistent
with the fact the the center of symmetry ρ(r = 0) = 0 must remain fixed as
stated previously.

From eq-(3) one infers that ρ(r = 0±) = limε→0ρ(r = ±ε) = ±2GM while
ρ(r = 0) = 0 (a point mass must have zero area and zero volume). The metric
(2) has a horizon at ρ = 2GM which corresponds to r = 0+, and there is a
singularity at ρ = 0 which corresponds to r = 0. There is a discontinuity of
ρ(r) at r = 0. Because a point mass is an infinitely compact source there is
nothing wrong with the possibility of having a discontinuity of the metric at the
location of the singularity r = 0. In this extreme case, when the the location of
the horizon merges with the singularity, there is a null-line singularity at r = 0
and a null-surface at r = 0+. This may sound quite paradoxically but it is a
consequence of the metric discontinuity at r = 0, the location of the point mass
(singularity).
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The Kretschmann invariant is K ∼ RµνστR
µνστ ∼ (2GM)2

ρ(r)6 . It diverges at

r = 0 but it is finite at r = 0± due to the discontinuity of the metric at r = 0
resulting from ρ(0) = 0; ρ(0±) = ±2GM . In [6] we argued why this key fact
may have important consequences for the resolution of the fire wall problem and
the complementarity controversy in black holes [7].

In 1975, Stephen Hawking and Jacob Bekenstein showed how the black holes
should slowly radiate away energy, which poses a problem. From the no hair
theorem, one would expect the Hawking radiation to be completely independent
of the material entering the black hole. Nevertheless, if the material entering
the black hole were a pure quantum state, the transformation of that state
into the mixed state of Hawking radiation would destroy information about
the original quantum state. This violates Liouville’s theorem and presents a
physical paradox. Hawking remained convinced that the equations of black
hole thermodynamics together with the no-hair theorem led to the conclusion
that quantum information may be destroyed. This is the so-called Black Hole
Information Paradox.

An heuristic explanation by Hawking and described by Penrose is the fol-
lowing. Virtual particle-antiparticle pairs are constantly being created out of
the vacuum but then annihilated in a very short time. But very near the horizon
of a black hole, it’s possible for one particle to fall in before the annihilation
can happen, in which case the other one escapes as Hawking radiation. For
this, the virtual particles both become real, and energy conservation demands
that the ingoing particles have negative energy. This they can do because the
Killing vector κ becomes spacelike inside the horizon. If κa is spacelike the
conserved energy paκ

a (being assessed from infinity) can be negative, where pa
is the particle’s four momentum.

However the solutions described in this work allow for the horizon to be
displaced arbitraily close to the singularity, and in the limiting case when the
horizon and (null) singularity merge, the interior region disappears and such that
there is no longer room for the ingoing particle to go and acquire a negative
energy. The virtual particles in this case would be annihilated at the (null)
singularity. Thus it is plausible to avoid the Hawking emission process in this
scenario.

The main purpose of this work is two-fold. Firstly, it is to implement an
analytical continuation of the metric (2), and the active diffs ρ(r), via the intro-
duction of complex coordinates, which in turn, lead to complex metrics. The
analytical continuation will allow us to explore the interior void region given
by 0 < ρ < 2GM . In other words, the analytical continuation via complex co-
ordinates and a complex metric, will allow us to study the interior of the black
hole which was inaccessible to an observer equipped only with real coordinates.
Namely, what is a void empty region from the perspective of real coordinates,
it is not void nor empty from the perspective of complex coordinates.

The discontinuity at r = 0 of the map ρ(r) in (3) can be envisioned as a
removal of the point r = 0 (the singularity) from R3, leading to the punctured
space R3−{0}. In the ρ-picture, the map of R3−{0} leads to a region that is not
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simply connected, and given by the exterior of a spherical void surrounding the
singularity at ρ = 0 of radius ρ = 2GM . The removal of a point naturally leads
to a Topology change which has been exploited by some authors by removing
the black hole interior via an Antipodal identification of the points on a sphere
and associated with a RP 3 projective space [8].

Secondly, we will show that by identifying the imaginary components of
the complex coordinates with the inverse (T−1)µ = Tµ

TνT ν
= βµ of the four-

temperature vector Tµ = (T 0, T 1, T 2, T 3), we will obtain in a nice geometrical
manner the expression for the Hawking temperature TH = (8πGM)−1 in units
h̄ = c = kB = 1. In addition, we also find the exact expression for the black
hole entropy in terms of the area of a rectangulat strip in the complex-ρ plane.

We define the complex radial coordinates by

r ≡ r + iβr, ρ(r) = ρ(r + iβr) ≡ γ(r, βr) + iβρ(r, βr) (4)

The imaginary components of the coordinates are postulated to have a one-to-
one correspondence with the inverse of the four-temperature vector components.

As usual we must have that ρ(r = 0 + i0) = 0 + i0 = 0. And for r 6= 0 + i0,
we define the map as

ρ(r + iβr) = ρ(Reiα) =
Reiα

1 − e−Reiα/2GM
, R ≡

√
r2 + β2

r , tan(α) =
βr
r
(5)

one infers that when R = ε, all the points on the infinitesimal circle of radius
ε =

√
r2 + β2

r will be mapped to 2GM in the limit ε→ 0 when the circle shrinks
to zero. Once again, there is a discontinuity at the origin since one must have
ρ(r = 0 + i0) = 0. From the above definition (5) one learns that

ρ(0 + i2πGM) = iπGM, ρ(0 + i4πGM) = i∞ (6)

ρ(0− i2πGM) = − iπGM, ρ(0− i4πGM) = − i∞ (7)

A path along the positive imaginary radial axis from r = i0+ to r = i2πGM
is mapped to a path in the complex-ρ plane starting at ρ = 2GM + i0 and
ending at ρ = 0+iπGM . Furthermore, the latter path in the complex-ρ plane is
precisely the one which has access to the interior void region 0 < Re(ρ) < 2GM .

Continuing upwards along the positive imaginary radial axis from r = i2πGM
to r = i4πGM it leads to a path which is mapped to a path in the complex-ρ
plane starting at ρ = iπGM and ending at i∞. The maps of the path along
the negative imaginary radial axis from r = −i0+ to r = −i4πGM lead to the
complex conjugates (in the complex-ρ plane) of the previous paths.

Consequently, one learns that the map of the finite interval in the imaginary
radial axis ranging from from r = iβr,min = −i4πGM to r = iβr,max = i4πGM
yields a path in the complex-ρ plane which covers all of the imaginary ρ-axis,
so that the span of the values in βρ is ±∞.

Concluding, we then have found that the magnitude of the finite interval
[−i4πGM,+i4πGM ] in the imaginary radial axis is 8πGM , and which is pre-
cisely equal to the inverse Hawking temperaure βH = 1

TH
in h̄ = c = kB = 1
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units. Furthemore, among those paths in the complex-ρ plane is the path
which has access to the interior of the black hole : the interior void region
0 < Re(ρ) < 2GM .

There seems to be a caveat because the inverse Hawking temperature βH is
the length of the circle S1

β obtained from a compactification of the Euclidean
time in Thermal Field Theory and resulting after a Wick rotation, tM = itE ,
from Minkowski time to Euclidean time. Thus βr 6= βt. However, one must not
forget that upon crossing the horizon into the black hole interior the roles of r, t
are exchanged due to a signature flip. Therefore, one can affirm that the finite
interval in the imaginary radial axis is indeed related to the inverse Hawking
temperature βH = βr,max − βr,min = 8πGM .

The black hole entropy also admits a simple geometrical interpretation in
terms of the area of a rectangular strip in the complex-ρ plane. From eqs-(6,7)
we can infer that the points ±iπGM can be chosen to be two of the vertices
(lying in the imaginary ρ-axis) of the rectangular strip, while the other two
remaining vertices are located at 2GM ± iπGM . We explained earlier how the
paths that explore the interior region of the black hole are those taken along
the imaginary radial axis from r = ±i0+ to r = ±i2πGM , and which are then
mapped to the paths in the complex-ρ plane starting at ρ = 2GM + i0 (lying
in the real ρ axis) and ending at ρ = 0 ± iπGM (in the imaginary ρ axis),
respectively.

The infinitesimal region (the infinitesimal circle which shrinks to zero) around
the origin r = 0 + i0 = 0 is mapped to a bifurcation point in the real ρ axis at
ρ = 2GM + i0, when the radius shrinks to zero. One circumnavigates around
the pole at r = 0 + i0, as usual, by means of going around the pole (clock-
wise or counter-clockwise) along the infinitesimal circle. The counter-clockwise
(clockwise) rotation of ±π2 will position us in the positive (negative) imaginary
axis. A rotation of ±π will bring us into the r < 0 region. The bifurcation
point at ρ = 2GM + i0 is also consistent with a bifurcate horizon of the Penrose
diagram of the extended Schwarzschild solution involving the black and white
hole regions connected via a wormhole throat.

The area of the rectangular strip whose 4 vertices are located at ±iπGM
and 2GM ± iπGM is given by

2× πGM × 2GM = 4π(GM)2 =
1

4
4π (2GM)2 =

A

4
(8)

and which is the black hole entropy in Planck units L2
P = 1 associated with the

area of a spherical horizon of radius 2GM . We hope that all these findings in
this work are more than just mere numerical coincidences.

It is our belief that one of the goals of attaining a theory of Quantum Grav-
ity is to implement a space-time-matter unification. Einstein argued that a
spacetime point is devoid of any physical meaning unless a point-mass is at-
tached to it, like it happens with the point-mass located at the origin in the
Hilbert-Schwarzschild solution. In our interpretation, after taking advantage of
the active diffs symmetry of General Relativity which allowed us to shift the
radial location of the horizon all the way towards the singulariry, is that one
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can plunge into the “interior” of the point mass via the introduction of complex
coordinates. In otherwords, as we plunge into this interior the unfolding, the
emergence of the thermal dimensions (via the introduction of complex coordi-
nates) takes place.

The source of the black hole entropy is its mass. In [6] we showed that
the Euclideanized Einstein-Hilbert action associated to a scalar curvature R =
4GMδ(r)

r2 (the delta function singularity is due to the point-mass source) when
the Euclidean thermal interval is chosen to be equal to βH = 8πGM , yields
the black hole entropy. So there is an Euclidean action/Black Hole entropy
correspondence in this case. The Schwarzschild metric leads to a vanishing
Ricci tensor and scalar curvature R = 0, hence in order to arrive at a key delta
function singularity at the origin one has to replace r for |r| in the metric (1).
More precisely, one needs to replace

1− 2GM

r
→ 1− 2GMΘ(r)

r
(9)

in the metric of eq-(1), where Θ(r) is the Heaviside step function, Θ(r) = 1,
for r > 0; Θ(r) = −1, for r < 0; and Θ(r = 0) = 0, the arithmetic mean of
1,−1. Despite that Θ(0) = 0, the straight use of L’Hopital’s rule in eq-(9) at
r = 0 gives δ(r = 0) = ∞, and as expected, the metric is singular at r = 0,

since dΘ(r)
dr = δ(r). It is the derivatives of the step function appearing in eq-

(9) which will generate the δ(r) terms in the curvature. If one wishes to be
fully mathematically rigorous, one needs to recur to the Colombeau’s theory of
distributions instead of the Dirac delta distributions.

The introduction of complex radial coordinates leads to complex metrics of
the form

gµν(r + iβr) = γµν(r, βr) + iβµν(r, βr) (10)

Most recently, Witten [9] has argued that for various reasons, it seems necessary
to include complex saddle points in the “Euclidean” path integral of General
Relativity and which was motivated by recent work of Kontsevich and Segal
on complex metrics in Quantum Field Theory, and earlier work of Louko and
Sorkin on topology change from a real time point of view.

Another way of incorporating complex coordinates and complex metrics is
by exploring the geometry of the cotangent bundle of spacetime (phase space)
within the context of Finsler geometry. The complex coordinates xµ + iβµ

have a correspondence with xµ + ipµ where pµ are the momentum coordinates.
One simply has to impose the following correspondence between the inverse-
temperature and the momentum

βµ ↔ Tµ

TνT ν
↔ pµ

pνpν
=

pµ

p2
(11a)

such that

dβµdβ
µ ↔ dpµdp

µ

p4
, p2 = pνp

ν (11b)
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The line element in the 8D cotangent bundle is

(ds)2 = gµν(x, p) dxµdxν + hab(x, p) (dpa+Naµ(x, p)dxµ) (dpb+Nbν(x, p)dxν)
(12)

where gµν(x, p), hab(x, p) are the base spacetime and internal space metrics,
respectively, with a, b = 0, 1, 2, 3, µ, ν = 0, 1, 2, 3, and Naµ(x, p) is the nonlinear
connection. The number of total components of gµν , h

ab, Naµ is 10 + 10 +
16 = 36 = (8 × 9)/2 which is more than sufficient to accommodate the 10 +
10 components of the complex metric γµν , βµν . The idea is to write down
the vacuum field equations associated with the 8D cotangent bundle metric
(12), to find the spherically symmetric static solutions, and to investigate how
an analytical complex extension of the Schwarzschild metric might fit into the
former cotangent bundle metric solutions. The mere presence of a mass is
already indicating that a phase space picture (the cotangent bundle) should be
more appropriate to embrace than the mere base spacetime picture in the full
quantization process.

To sum up, we have seen how the crucial active diffs symmetry of General
Relativity allowed us to shift the radial location r = 2GM of the horizon in
the metric (1) to the r = 0+ location of the diffeomorphic metric (2). Note
that ρ(r = 0+) = 2GM is the horizon for the metric (2). In doing so, one
ended up with a spacetime void 0 < ρ < 2GM surrounding the singularity at
ρ(r = 0) = 0. In order to explore the “interior” region of this void one is required
to introduced complex radial coordinates, whose imaginary components had a
direct link to the inverse Hawking temperature, and which furnished a path
in the complex ρ plane that provided access to the sought-after interior region
0 < Re(ρ) < 2GM .

In addition, it allowed us to show the the black hole entropy A
4 (in Planck

units) is equal to the area of a rectangular strip in the complex ρ plane asso-
ciated to this above path. The gist of the physical interpretation behind this
construction is that there is an emergence of thermal dimensions which unfolds
as one plunges into the interior void region via the use of complex coordinates.
And whose imaginary components capture the span of the thermal dimensions.
The filling of the void leads to an emergent internal/thermal dimension via the
imaginary part βr of the complex radial variable r = r + iβr.

In this fashion, we hope to attain a merger of microscopic spacetime with
thermodynamics. Quantum Mechanics involves complex numbers. The wave-
function Ψ is complex. Thus, a quantization of gravity may require the intro-
duction of complex coordinates (like in Twistors) and complex metrics. This
was not necessary in the quantization of Yang-Mills and Electrodynamics be-
cause gravity has a very different symmetry group : the infinite dimensional
diffeomorphisms that led to a spacetime void surrounding the singularity and
justified the introduction of complex coordinates and metrics. This is the key
difference.
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