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Abstract 

The brief article explores the Christoffel symbols starting from its transformation rules and by such an 

exploration  demonstrates the  fact that  only linear transformations are possible. It derives that 

Christoffel symbols behave like rank three  tensors[with one upper index and two lower ones] since the 

term standing in the way of such behavior vanishes. 
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Introduction 

The transformation of the Christoffel symbol is considered first. From there we derive that 

transformation are necessarily linear and that the Chrstoffel symbol should transform like rank three 

tensors with one upper index. 

Derivation 

Transformation of the Christoffel Symbols[1] 

𝜕2𝑥𝑚

𝜕�̅�𝑗𝜕�̅�𝑘
= Γ̅𝑛

𝑗𝑘

𝜕𝑥𝑚

𝜕�̅�𝑛
−

𝜕𝑥𝑝

𝜕�̅�𝑗

𝜕𝑥𝑞

𝜕�̅�𝑘
Γ𝑚

𝑝𝑞   (1) 

[In the last line 𝑛, 𝑝and 𝑞 are dummy indices] 

For 𝑗 ≠ 𝑘  in (1)we have, 

𝜕�̅�𝑗

𝜕𝑥𝑠

𝜕2𝑥𝑚

𝜕�̅�𝑗𝜕�̅�𝑘
=

𝜕�̅�𝑗

𝜕𝑥𝑠
[Γ̅𝑛

𝑗𝑘

𝜕𝑥𝑚

𝜕�̅�𝑛
−

𝜕𝑥𝑝

𝜕�̅�𝑗

𝜕𝑥𝑞

𝜕�̅�𝑘
Γ𝑚

𝑝𝑞] 

[In the summation above a specific value of j could be k] 

[ In the last 𝑗 is a dummy index in the last line asides𝑛, 𝑝and 𝑞] 

⟹
𝜕�̅�𝑗

𝜕𝑥𝑠

𝜕

𝜕�̅�𝑗
(

𝜕𝑥𝑚

𝜕�̅�𝑘
) =

𝜕�̅�𝑗

𝜕𝑥𝑠
[Γ̅𝑛

𝑗𝑘

𝜕𝑥𝑚

𝜕�̅�𝑛
−

𝜕𝑥𝑝

𝜕�̅�𝑗

𝜕𝑥𝑞

𝜕�̅�𝑘
Γ̅𝑚

𝑝𝑞] 

mailto:Palit.anamitra@gmail.com


2 
 

2 
 

⟹
𝜕

𝜕𝑥𝑠
(

𝜕𝑥𝑚

𝜕�̅�𝑘
) =

𝜕�̅�𝑗

𝜕𝑥𝑠
[Γ̅𝑛

𝑗𝑘

𝜕𝑥𝑚

𝜕�̅�𝑛
−

𝜕𝑥𝑝

𝜕�̅�𝑗

𝜕𝑥𝑞

𝜕�̅�𝑘
Γ̅𝑚

𝑝𝑞] 

⟹
𝜕2𝑥𝑚

𝜕𝑥𝑠𝜕�̅�𝑘
=

𝜕�̅�𝑗

𝜕𝑥𝑠
[Γ̅𝑛

𝑗𝑘

𝜕𝑥𝑚

𝜕�̅�𝑛
−

𝜕𝑥𝑝

𝜕�̅�𝑗

𝜕𝑥𝑞

𝜕�̅�𝑘
Γ𝑚

𝑝𝑞]  (2) 

Since the partial differential operator commutes we have, 

⟹
𝜕2𝑥𝑚

𝜕�̅�𝑘𝜕𝑥𝑠
=

𝜕�̅�𝑗

𝜕𝑥𝑠
[Γ̅𝑛

𝑗𝑘

𝜕𝑥𝑚

𝜕�̅�𝑛
−

𝜕𝑥𝑝

𝜕�̅�𝑗

𝜕𝑥𝑞

𝜕�̅�𝑘
Γ𝑚

𝑝𝑞] 

⟹
𝜕

𝜕�̅�𝑘
(

𝜕𝑥𝑚

𝜕𝑥𝑠
) =

𝜕�̅�𝑗

𝜕𝑥𝑠
[Γ̅𝑛

𝑗𝑘

𝜕𝑥𝑚

𝜕�̅�𝑛
−

𝜕𝑥𝑝

𝜕�̅�𝑗

𝜕𝑥𝑞

𝜕�̅�𝑘
Γ𝑚

𝑝𝑞] 

⟹
𝜕𝛿𝑚

𝑠

𝜕�̅�𝑘
=

𝜕�̅�𝑗

𝜕𝑥𝑠
[Γ̅𝑛

𝑗𝑘

𝜕𝑥𝑚

𝜕�̅�𝑛
−

𝜕𝑥𝑝

𝜕�̅�𝑗

𝜕𝑥𝑞

𝜕�̅�𝑘
Γ𝑚

𝑝𝑞] 

⟹ 0 =
𝜕�̅�𝑗

𝜕𝑥𝑠
[Γ̅𝑛

𝑗𝑘

𝜕𝑥𝑚

𝜕�̅�𝑛
−

𝜕𝑥𝑝

𝜕�̅�𝑗

𝜕𝑥𝑞

𝜕�̅�𝑘
Γ𝑚

𝑝𝑞] 

⟹ 0 =
𝑑𝑥𝑠

𝑑𝜏

𝜕�̅�𝑗

𝜕𝑥𝑠
[Γ̅𝑛

𝑗𝑘

𝜕𝑥𝑚

𝜕�̅�𝑛
−

𝜕𝑥𝑝

𝜕�̅�𝑗

𝜕𝑥𝑞

𝜕�̅�𝑘
Γ𝑚

𝑝𝑞] 

⟹ 0 =
𝑑�̅�𝑗

𝑑𝜏
[Γ̅𝑛

𝑗𝑘

𝜕𝑥𝑚

𝜕�̅�𝑛
−

𝜕𝑥𝑝

𝜕�̅�𝑗

𝜕𝑥𝑞

𝜕�̅�𝑘
Γ𝑚

𝑝𝑞] (3) 

In equation (3) [Γ̅𝑛
𝑗𝑘

𝜕𝑥𝑚

𝜕�̅�𝑛 −
𝜕𝑥𝑝

𝜕�̅�𝑗

𝜕𝑥𝑞

𝜕�̅�𝑘 Γ̅𝑚
𝑝𝑞] is a point function while the quadruplet  {

𝑑�̅�𝑗

𝑑𝜏
𝑗 = 1,2,3,4} is a 

path function.We do have an infinitude of 
𝑑�̅�𝑗

𝑑𝜏
for every [Γ̅𝑛

𝑗𝑘
𝜕𝑥𝑚

𝜕�̅�𝑛 −
𝜕𝑥𝑝

𝜕�̅�𝑗

𝜕𝑥𝑞

𝜕�̅�𝑘 Γ̅𝑚
𝑝𝑞].Therefore from 

equation  (3) we infer that for 𝑗 ≠ 𝑘,  

Γ̅𝑛
𝑗𝑘

𝜕𝑥𝑚

𝜕�̅�𝑛
−

𝜕𝑥𝑝

𝜕�̅�𝑗

𝜕𝑥𝑞

𝜕�̅�𝑘
Γ̅𝑚

𝑝𝑞 = 0 (4) 

From (1) and (4),we have,  

𝜕2𝑥𝑚

𝜕�̅�𝑗𝜕�̅�𝑘
= 0 (5) 

Though equation (5) has been derived assuming 𝑗 ≠ 𝑘 at the outset it is valid for both 𝑗 ≠ 𝑘and 𝑗 = 𝑘 

as we shall soon see. 

From 
𝜕

𝜕�̅�𝑗
(

𝜕𝑥𝑚

𝜕�̅�𝑘
) = 0, 

𝜕𝑥𝑚

𝜕�̅�𝑘  is independent of �̅�𝑗≠𝑘.In view of that let us consider  
𝜕𝑥𝑚

𝜕�̅�𝑘 = 𝑓(𝑥𝑘) ≠

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and hence 
𝜕2𝑥𝑚

𝜕�̅�𝑘2 ≠ 0.To analyze the situation we consider the coordinate curves of �̅�𝜇 which 

are parallel to each other.If the �̅�𝑗 curves are orthogonal to these curves then �̅�𝑘will not change along 
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these curves and 
𝜕2𝑥𝑚

𝜕�̅�𝑗𝜕�̅�𝑘 = 0.Now with the same unbarred system[coordinate curves not changing 

there] we replace the orthogonal system of the barred system by a non orthogonal one so that �̅�𝑘varies 

long the �̅�𝑗curves. The new �̅�𝑗  curves are orthogonal with respect to the �̅�𝑘curves. Now 
𝜕2𝑥𝑚

𝜕�̅�𝑗𝜕�̅�𝑘 ≠ 0and 

equation (5) gets disrupted. Therefore 
𝜕𝑥𝑚

𝜕�̅�𝑘 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,independent of �̅�𝑘 asides being independent of 

�̅�𝑗:we do have 
𝜕2𝑥𝑚

𝜕�̅�𝑘2 = 0 that is (5) holds for i=j[asides for 𝑗 ≠ 𝑘] 

Solving equation(5)we  understand 

𝑥𝑚 = 𝐴�̅�𝑗 + 𝐵�̅�𝑘 + 𝐶(𝑖𝑛𝑑𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑓 𝑥𝑗𝑎𝑛𝑑 𝑥𝑘) 

𝑥𝑚 = 𝐴�̅�1 + 𝐵�̅�2 + 𝐶�̅�3 + 𝐷�̅�4 + 𝐾 (6) 

[A ,B and C in (6) are independent of space time coordinates] 

Suppose we took 

𝑥𝑚 = 𝐴(�̅�2, �̅�3, �̅�4)�̅�1 + 𝐵�̅�2 + 𝐶�̅�3 + 𝐷�̅�4 + 𝐾  

then equation (5) is not being satisfied 

Again if we took 

𝑥𝑚 = 𝐴(�̅�4)�̅�1 + 𝐵�̅�2 + 𝐶�̅�3 + 𝐷�̅�4 + 𝐾  

 equation (5) is not being satisfied for k=1,j=4 

 

We do have a linear transformation given by  (6). K becomes zero if one origin maps into the 

other[homogeneous transformations].Therefore we have a linear homogeneous transformation given 

by  

𝑥𝑚 = 𝐴�̅�1 + 𝐵�̅�2 + 𝐶�̅�3 + 𝐷�̅�4 (7)  

 

for which the origins map into one another.Equation (5) holds irrespective of whether 𝑗 and 𝑘 are 

unequal or not.. The space time transformations expressed through (7) should stay unchanged 

irrespective of 𝑗 ≠ 𝑘 or   𝑗 = 𝑘   .Because  of equation (6) or (7) ,the linearity expressed by the, equation 

(5) is valid for 𝑗 = 𝑘 asides for  𝑗 ≠ 𝑘. Considering (1) in the light of equation (5) irrespective of 𝑗 = 𝑘 or  

𝑗 ≠ 𝑘 we conclude that the Christoffel symbols are tenors.  

Our current arguments are based on the fact that th general solution of 
𝜕2𝑓

𝜕𝑥𝜕𝑦
= 0is 𝑓(𝑥, 𝑦) = 𝐴𝑥 +

𝐵𝑦 + 𝐶 ⟹
𝜕2𝑓

𝜕𝑥2 =
𝜕2𝑓

𝜕𝑦2 = 0 
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Alternative Method 

We recall (5) for 𝑗 ≠ 𝑖 

𝜕2𝑥𝑚

𝜕�̅�𝑗𝜕�̅�𝑘
= 0 ⟹

𝜕

𝜕�̅�𝑗
(

𝜕𝑥𝑚

𝜕�̅�𝑘
) = 0 (8) 

𝜕�̅�𝑗

𝜕𝜏

𝜕

𝜕�̅�𝑗
(

𝜕𝑥𝑚

𝜕�̅�𝑘
) = 0 

𝑑

𝑑𝜏
(

𝜕𝑥𝑚

𝜕�̅�𝑘
) = 0  (9) 

As we move along an arbitrary path passing through  fixed point,say P, 
𝜕𝑥𝑚

𝜕�̅�𝑘 = 𝐶[𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑓 𝜏and 

hence independent  of x,yz and t. The constant value of  
𝜕𝑥𝑚

𝜕�̅�𝑘  is equal to that of at P 

For every m and k 

𝑥𝑚 = 𝐶�̅�𝑘 + 𝐷(�̅�𝑖≠𝑘) 

𝑥𝑚 = 𝐶�̅�1 + 𝐶�̅�2 + 𝐶�̅�3 + 𝐶�̅�4 + 𝐾 (10) 

Consequently due to the linearity expressed by equation  (10) , equation (5) is valid for  j=k asides for  

𝑗 ≠ 𝑘 

 

Considering equation (5) in a general manner with (1) irrespective of 𝑗 ≠ 𝑘or 𝑗 = 𝑘 we obtain,                                                                                   

Γ̅𝑛
𝑗𝑘

𝜕𝑥𝑚

𝜕�̅�𝑛
−

𝜕𝑥𝑝

𝜕�̅�𝑗

𝜕𝑥𝑞

𝜕�̅�𝑘
Γ𝑚

𝑝𝑞 = 0 

⟹ Γ̅𝑛
𝑗𝑘

𝜕�̅�𝑠

𝜕𝑥𝑚

𝜕𝑥𝑚

𝜕�̅�𝑛
−

𝜕�̅�𝑠

𝜕𝑥𝑚

𝜕𝑥𝑝

𝜕�̅�𝑗

𝜕𝑥𝑞

𝜕�̅�𝑘
Γ𝑚

𝑝𝑞 = 0 

⟹ Γ̅𝑛
𝑗𝑘𝛿𝑠

𝑛 −
𝜕�̅�𝑠

𝜕𝑥𝑚

𝜕𝑥𝑝

𝜕�̅�𝑗

𝜕𝑥𝑞

𝜕�̅�𝑘
Γ𝑚

𝑝𝑞 = 0 

⟹ Γ̅𝑠
𝑗𝑘 −

𝜕�̅�𝑠

𝜕𝑥𝑚

𝜕𝑥𝑝

𝜕�̅�𝑗

𝜕𝑥𝑞

𝜕�̅�𝑘
Γ𝑚

𝑝𝑞 = 0 (11) 

Thus  for 𝑗 ≠ 𝑘, Γ𝑚
𝑝𝑞 ⟷ Γ̅𝑛

𝑗𝑘transforms as a rank three mixed tensor with one upper index. 

Velocity Transformation 

𝑑�̅�𝜇

𝑑𝜏
=

𝜕𝑥𝜇

𝜕𝑥𝛼

𝑑𝑥𝛼

𝑑𝑥
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𝑑�̅�𝜇

𝑑𝜏
= 𝑀𝜇

𝛼

𝑑𝑥𝛼

𝑑𝑥
 

Since the transformations are linear 𝑀𝜇
𝛼are constants 

Four acceleration [rank one tensor] is given by  

𝑑2𝑥𝛼

𝑑𝜏2
+ Γ𝛼

𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
 

The product of tensors being a tensor Γ𝛼
𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
 is a tensor[rank one contravaiant tensor] 

Four acceleration and Γ𝛼
𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
 being a tensors the quadruplet  {

𝑑2𝑥𝛼

𝑑𝜏2 ; 𝛼 = 1,2,3,4} is unexpectedly  

tensor in curved space time.Incidentally 
𝑑2𝑥𝛼

𝑑𝜏2  is a tensor in flat space time 

Since 
𝑑2𝑥𝛼

𝑑𝜏2  is a tensor 

𝑑2�̅�𝜇

𝑑𝜏2
=

𝜕�̅�𝜇

𝜕𝑥𝛼

𝑑2𝑥𝛼

𝑑𝜏2
 

𝑑2�̅�𝜇

𝑑𝜏2
= 𝑀𝜇

𝛼

𝑑2𝑥𝛼

𝑑𝜏2
 

[For linear transformations 𝑀𝜇
𝛼 are constants] 

 

Impact on the Riemann Tensor 

 The transformation of the Riemann tensor is  considered in the light of equation (5) 

𝜕2𝑥𝑚

𝜕�̅�𝑗𝜕�̅�𝑘
= 0 

Transformation of the Riemann Tensor[2]: 

�̅�𝜇
𝜈𝜌𝜎 =

𝜕�̅�𝜇

𝜕𝑥𝛼

𝜕𝑥𝛽

𝜕�̅�𝜈

𝜕𝑥𝛾

𝜕�̅�𝜌

𝜕𝑥𝛿

𝜕�̅�𝜎
𝑅𝛼

𝛽𝛾𝛿 

𝜕

𝜕�̅�𝜁
�̅�𝜇

𝜈𝜌𝜎
=

𝜕�̅�𝜇

𝜕𝑥𝛼

𝜕2𝑥𝛽

𝜕�̅�𝜁𝜕�̅�𝜈

𝜕𝑥𝛾

𝜕�̅�𝜌

𝜕𝑥𝛿

𝜕�̅�𝜎
𝑅𝛼

𝛽𝛾𝛿 +
𝜕𝑥𝛽

𝜕�̅�𝜈

𝜕

𝜕�̅�𝜁
(

𝜕�̅�𝜇

𝜕𝑥𝛼

𝜕𝑥𝛾

𝜕�̅�𝜌

𝜕𝑥𝛿

𝜕�̅�𝜎
𝑅𝛼

𝛽𝛾𝛿) 

𝜕

𝜕�̅�𝜁
�̅�𝜇

𝜈𝜌𝜎
=

𝜕𝑥𝛽

𝜕�̅�𝜈

𝜕

𝜕�̅�𝜁
(

𝜕�̅�𝜇

𝜕𝑥𝛼

𝜕𝑥𝛾

𝜕�̅�𝜌

𝜕𝑥𝛿

𝜕�̅�𝜎
𝑅𝛼

𝛽𝛾𝛿) 

𝜕

𝜕�̅�𝜁
�̅�𝜇

𝜈𝜌𝜎
=

𝜕𝑥𝛽

𝜕�̅�𝜈
(

𝜕�̅�𝜇

𝜕𝑥𝛼

𝜕2𝑥𝛾

𝜕�̅�𝜁𝜕�̅�𝜌

𝜕𝑥𝛿

𝜕�̅�𝜎
𝑅𝛼

𝛽𝛾𝛿) +
𝜕𝑥𝛽

𝜕�̅�𝜈

𝜕𝑥𝛾

𝜕�̅�𝜌

𝜕

𝜕�̅�𝜁
(

𝜕�̅�𝜇

𝜕𝑥𝛼

𝜕𝑥𝛿

𝜕�̅�𝜎
𝑅𝛼

𝛽𝛾𝛿) 
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𝜕

𝜕�̅�𝜁
�̅�𝜇

𝜈𝜌𝜎
=

𝜕𝑥𝛽

𝜕�̅�𝜈

𝜕𝑥𝛾

𝜕�̅�𝜌

𝜕

𝜕�̅�𝜁
(

𝜕�̅�𝜇

𝜕𝑥𝛼

𝜕𝑥𝛿

𝜕�̅�𝜎
𝑅𝛼

𝛽𝛾𝛿) 

𝜕

𝜕�̅�𝜁
�̅�𝜇

𝜈𝜌𝜎
=

𝜕𝑥𝛽

𝜕�̅�𝜈

𝜕𝑥𝛾

𝜕�̅�𝜌
(

𝜕�̅�𝜇

𝜕𝑥𝛼

𝜕2𝑥𝛿

𝜕�̅�𝜁𝜕�̅�𝜎
𝑅𝛼

𝛽𝛾𝛿) +
𝜕𝑥𝛽

𝜕�̅�𝜈

𝜕𝑥𝛾

𝜕�̅�𝜌

𝜕

𝜕�̅�𝜁

𝜕𝑥𝛿

𝜕�̅�𝜎
(

𝜕�̅�𝜇

𝜕𝑥𝛼
𝑅𝛼

𝛽𝛾𝛿) 

𝜕

𝜕�̅�𝜁
�̅�𝜇

𝜈𝜌𝜎
=

𝜕𝑥𝛽

𝜕�̅�𝜈

𝜕𝑥𝛾

𝜕�̅�𝜌

𝜕𝑥𝛿

𝜕�̅�𝜎

𝜕

𝜕�̅�𝜁
(

𝜕�̅�𝜇

𝜕𝑥𝛼
𝑅𝛼

𝛽𝛾𝛿) 

𝜕

𝜕�̅�𝜁
�̅�𝜇

𝜈𝜌𝜎
=

𝜕𝑥𝛽

𝜕�̅�𝜈

𝜕𝑥𝛾

𝜕�̅�𝜌

𝜕𝑥𝛿

𝜕�̅�𝜎

𝜕�̅�𝜇

𝜕𝑥𝛼

𝜕

𝜕�̅�𝜁
(𝑅𝛼

𝛽𝛾𝛿) +
𝜕𝑥𝛽

𝜕�̅�𝜈

𝜕𝑥𝛾

𝜕�̅�𝜌

𝜕𝑥𝛿

𝜕�̅�𝜎

𝜕2�̅�𝜇

𝜕�̅�𝜁𝜕𝑥𝛼
𝑅𝛼

𝛽𝛾𝛿 

𝜕2�̅�𝜇

𝜕�̅�𝜁𝜕𝑥𝛼
=

𝜕2�̅�𝜇

𝜕𝑥𝛼𝜕�̅�𝜁
=

𝜕

𝜕𝑥𝛼

𝜕�̅�𝜇

𝜕�̅�𝜁
=

𝜕

𝜕𝑥𝛼
𝛿𝜇

𝜁 = 0 

𝜕

𝜕�̅�𝜁
�̅�𝜇

𝜈𝜌𝜎
=

𝜕𝑥𝛽

𝜕�̅�𝜈

𝜕𝑥𝛾

𝜕�̅�𝜌

𝜕𝑥𝛿

𝜕�̅�𝜎

𝜕�̅�𝜇

𝜕𝑥𝛼

𝜕

𝜕�̅�𝜁
(𝑅𝛼

𝛽𝛾𝛿) 

𝜕

𝜕�̅�𝜁
�̅�𝜇

𝜈𝜌𝜎
=

𝜕𝑥𝛽

𝜕�̅�𝜈

𝜕𝑥𝛾

𝜕�̅�𝜌

𝜕𝑥𝛿

𝜕�̅�𝜎

𝜕�̅�𝜇

𝜕𝑥𝛼

𝜕𝑥𝑚

𝜕�̅�𝜁

𝜕

𝜕𝑥𝑚
(𝑅𝛼

𝛽𝛾𝛿) 

Thus the derivative of the Riemann tensor behaves like a tensor. 

General Perspectives 

In general, 

�̅�𝜇 = 𝑀𝜇
𝛼𝐴𝛼  

Suppose we carry out a coordinate transformation ,say from Cartesian to spherical considering the fact 

that tensor transformations may be achieved between arbitrary systems. The transformation elements 

will not be constants contrary to what has been deduced.. A resolution to this contradiction would be to 

consider 𝐴𝛼and consequently �̅�𝜇  as null tensors 

 

�̅�𝜇𝜈 =
𝜕�̅�𝜇

𝜕𝑥𝛼

𝜕�̅�𝜈

𝜕𝑥𝛽
𝑔𝛼𝛽  

We transform between spherical and Cartesian systems. The transformation elements will not be 

constants. As before a resolution would be to consider the metric tensor as the null tensor. With that 

the Riemann tensor becomes the null tensor. 

One should take note of the fat that the transformation elements are independent of the metric.The 

definition 
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�̅�𝜇 =
𝜕�̅�𝜇

𝜕𝑥𝛼
𝐴𝛼 

is independent of the metric coefficients: 𝐴𝛼and �̅�𝜇are the coordinate values and not he physical 

values[3] of the tensor components. Elements of the transformation matrix between two coordinate 

systems remain the same doesn’t matter which manifold we are considering. As for an example the 

equations relating the Cartesian and the spherical systems are identical for the flat space time manifold 

and Schwarzschild geometry[or for any other geometry for that matter]. The transformation elements re 

space time dependent. 

 

Conclusion 

As claimed , considering the transformation of the Christoffel symbol we have derived that 

transformation have to b necessarily linear and that the Christoffel symbol are indeed tensers the 

relevant term preventing such a behavior reducing to zero. 
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