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Abstract

In this present paper we will show you some interesting identity involving combina-
torial symbols and a proof of it as a theorem. The theorem was a discovery from the
times when I was studying Calculus at USAC/CUNOC University in Quetzaltenango,
Guatemala around 2004 year.

Theorem 1. (Danilo Chavez 2004) If n,k ∈ (N ∪ 0), n = 0, k = 0, n = k then(
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Proof. By mathematical induction. If n=0 then k=0(
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If n=1, we have two possibilities: k=0 or k=1
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So, n=0 and n=1 are covered. Supposing n=r we have(
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It must be for n= r+1(
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We are looking for an expression like this(
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Let’s start
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Quod erat demonstrandum.

2


