# Proof of a Combinatorial Identity 

Ronald Danilo Chavez Calderon<br>ronalddanilochavez@outlook.com<br>ronalddanilochavez@gmail.com<br>University : USAC/CUNOC<br>Carnet: 200130586<br>Quetzaltenango, Guatemala<br>License: Creative Common 4.0<br>(Attribution 4.0 International (CC BY 4.0))

December 7, 2021


#### Abstract

In this present paper we will show you some interesting identity involving combinatorial symbols and a proof of it as a theorem. The theorem was a discovery from the times when I was studying Calculus at USAC/CUNOC University in Quetzaltenango, Guatemala around 2004 year.


Theorem 1. (Danilo Chavez 2004) If $n, k \in(\mathrm{~N} \cup 0), n \geqq 0, k \geqq 0, n \geqq \mathrm{k}$ then

$$
\binom{k}{k}+\binom{k+1}{k}+\ldots+\binom{n-1}{k}+\binom{n}{k}=\binom{n+1}{k+1}
$$

Proof. By mathematical induction. If $n=0$ then $k=0$

$$
\binom{0}{0}=\frac{0!}{0!0!}=1=\frac{1!}{1!0!}=\binom{1}{1}
$$

If $n=1$, we have two possibilities: $k=0$ or $k=1$

$$
\begin{aligned}
\binom{0}{0}+\binom{1}{0} & =\frac{0!}{0!0!}+\frac{1!}{0!1!}=2=\frac{2!}{1!1!}=\binom{2}{1} \\
\binom{1}{1} & =\frac{1!}{1!0!}=1=\frac{2!}{2!0!}=\binom{2}{2}
\end{aligned}
$$

So, $n=0$ and $n=1$ are covered. Supposing $n=r$ we have

$$
\binom{k}{k}+\binom{k+1}{k}+\ldots+\binom{r-1}{k}+\binom{r}{k}=\binom{r+1}{k+1}
$$

It must be for $n=r+1$

$$
\binom{k}{k}+\binom{k+1}{k}+\ldots+\binom{r-1}{k}+\binom{r}{k}+\binom{r+1}{k}=\binom{r+1}{k+1}+\binom{r+1}{k}
$$

We are looking for an expression like this

$$
\binom{r+1}{k+1}+\binom{r+1}{k}=\binom{r+2}{k+1}
$$

Let's start

$$
\begin{gathered}
\binom{r+1}{k+1}+\binom{r+1}{k}=\frac{(r+1)!}{(k+1)!(r-k)!}+\frac{(r+1)!}{k!(r-k+1)!} \\
=(r+1)!\left(\frac{1}{(k+1)!(r-k)!}+\frac{1}{k!(r-k+1)!}\right) \\
=(r+1)!\left(\frac{k!(r-k+1)!+(k+1)!(r-k)!}{(k+1)!(r-k)!k!(r-k+1)!}\right) \\
=\frac{(r+1)!}{(k+1)!(r-k)!k!(r-k+1)!}(k!(r-k+1)!+(k+1)!(r-k)!) \\
=\frac{(r+1)!k!(r-k)!}{(k+1)!(r-k)!k!(r-k+1)!}((r-k+1)+(k+1)) \\
=\frac{(r+1)!(r+2)}{(k+1)!(r-k+1)!}=\frac{(r+2)!}{(k+1)!(r-k+1)!}=\binom{r+2}{k+1}
\end{gathered}
$$

Quod erat demonstrandum.

