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Abstract 

In this article the Riemann tensor has been discussed in two sections. The first section considers 

two formulas to project  results that are inconsistent in their nature. The next section 

considering tensor transformations and the linear homogeneous equations proves that the 

Riemann tensor is the rank four null tensor.  
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Introduction 

In two sections the article brings out the following facts(1) based on General Relativistic 

concepts results indicating at inconsistencies in conventional theories are deduced.(2)The article 

proves, considering tensor transformations and the linear homogeneous equations, that the 

Riemann tensor is the rank four null tensor.  

 

Section I 

First we derive two formulas 

1.  

𝜕(𝐴𝑝𝐵𝑝)

𝜕𝑥𝛼
= 𝐴𝑝

𝜕𝐵𝑝

𝜕𝑥𝛼
+ 𝐵𝑝

𝜕𝐴𝑝

𝜕𝑥𝛼
 

We consider the standard formula[1]  

∇𝛼𝐴𝑝 =
𝜕𝐴𝑝

𝜕𝑥𝛼
+ Γ𝑝

𝛼𝑠𝐴𝑠 

⟹
𝜕𝐴𝑝

𝜕𝑥𝛼
= ∇𝛼𝐴𝑝 − Γ𝑝

𝛼𝑠𝐴𝑠  

Again we consider the standard formula[2] 

∇𝛼𝐵𝑝 =
𝜕𝐵𝑝

𝜕𝑥𝛼
− Γ𝑠

𝛼𝑝𝐵𝑠 

⟹
𝜕𝐵𝑝

𝜕𝑥𝛼
= ∇𝛼𝐵𝑝 + Γ𝑠

𝛼𝑝𝐵𝑠 

𝜕(𝐴𝑝𝐵𝑝)

𝜕𝑥𝛼
= 𝐴𝑝(∇𝛼𝐵𝑝 + Γ𝑠

𝛼𝑝𝐵𝑠) + 𝐵𝑝(∇𝛼𝐴𝑝 − Γ𝑝
𝛼𝑠𝐴𝑠) 

𝜕(𝐴𝑝𝐵𝑝)

𝜕𝑥𝛼
= 𝐴𝑝∇𝛼𝐵𝑝 + 𝐵𝑝∇𝛼𝐴𝑝 + Γ𝑠

𝛼𝑝𝐵𝑠𝐴𝑝 − Γ𝑝
𝛼𝑠𝐵𝑝𝐴𝑠 
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The last term to the right,by the interchange of the dummy indics:𝑠 ↔ 𝑝 

Γ𝑝
𝛼𝑠𝐵𝑝𝐴𝑠 = Γ𝑠

𝛼𝑝𝐵𝑠𝐴𝑝  

=Therefore, 

𝜕(𝐴𝑝𝐵𝑝)

𝜕𝑥𝛼
= 𝐴𝑝∇𝛼𝐵𝑝 + 𝐵𝑝∇𝛼𝐴𝑝 + Γ𝑠

𝛼𝑝𝐵𝑠𝐴𝑝 − Γ𝑠
𝛼𝑝𝐵𝑠𝐴𝑝  

𝜕(𝐴𝑝𝐵𝑝)

𝜕𝑥𝛼
= 𝐴𝑝∇𝛼𝐵𝑝 + 𝐵𝑝∇𝛼𝐴𝑝 = ∇𝛼(𝐴𝑝𝐵𝑝) 

𝜕(𝐴𝑝𝐵𝑝)

𝜕𝑥𝛼
= ∇𝛼(𝐴𝑝𝐵𝑝) (1) 

2. Next we consider the result 

𝜕

𝜕𝑥𝛾
(𝐵𝛼𝛽𝐴𝛼𝛽) = 𝐴𝛼𝛽∇𝛾𝐵𝛼𝛽 + 𝐵𝛼𝛽 ∇𝛾𝐴𝛼𝛽    

Proof: 

We consider the following relations 

∇𝛾𝐴𝛼𝛽 = 𝐴𝛼𝛽 ;𝛾 =
𝜕𝐴𝛼𝛽

𝜕𝑥𝛾
+ Γ𝛾𝑠

𝛼𝐴𝑠𝛽 + Γ𝛾𝑠
𝛽𝐴𝛼𝑠 

∇𝛾𝐵𝛼𝛽 = 𝐵𝛼𝛽;𝛾 =
𝜕𝐵𝛼𝛽

𝜕𝑥𝛾
− Γ𝑠

𝛾𝛼𝐵𝑠𝛽 − Γ𝑠
𝛾𝛽𝐵𝛼𝑠 

[The above relations do not assume 𝐴𝛼𝛽  and 𝐵𝛼𝛽  as symmetric tensors] 

We obtain, 

𝜕

𝜕𝑥𝛾
(𝐵𝛼𝛽𝐴𝛼𝛽 ) = 𝐵𝛼𝛽(∇𝛾𝐴𝛼𝛽 − Γ𝛾𝑠

𝛼𝐴𝑠𝛽 − Γ𝛾𝑠
𝛽𝐴𝛼𝑠) + 𝐴𝛼𝛽(∇𝛾𝐵𝛼𝛽 + Γ𝑠

𝛾𝛼𝐵𝑠𝛽 + Γ𝑠
𝛾𝛽𝐵𝛼𝑠) 

𝜕

𝜕𝑥𝛾
(𝐵𝛼𝛽𝐴𝛼𝛽) = 𝐵𝛼𝛽(−Γ𝛾𝑠

𝛼𝐴𝑠𝛽 − Γ𝛾𝑠
𝛽𝐴𝛼𝑠) + 𝐴𝛼𝛽 (Γ𝑠

𝛾𝛼𝐵𝑠𝛽 + Γ𝑠
𝛾𝛽𝐵𝛼𝑠) + 𝐴𝛼𝛽 ∇𝛾𝐵𝛼𝛽 + 𝐵𝛼𝛽 ∇𝛾𝐴𝛼𝛽 

= −Γ𝛾𝑠
𝛼𝑔𝑠𝛽𝐵𝛼𝛽 − Γ𝛾𝑠

𝛽𝑔𝛼𝑠𝐵𝛼𝛽 + Γ𝑠
𝛾𝛼𝐴𝛼𝛽𝑇𝑠𝛽 + Γ𝑠

𝛾𝛽𝐴𝛼𝛽𝐵𝑠𝛼 + 𝐴𝛼𝛽∇𝛾𝐵𝛼𝛽 + 𝐵𝛼𝛽∇𝛾𝐴𝛼𝛽 

𝜕

𝜕𝑥𝛾
(𝐵𝛼𝛽𝐴𝛼𝛽) = (−Γ𝛾𝑠

𝛼𝐴𝑠𝛽𝐵𝛼𝛽 + Γ𝑠
𝛾𝛼𝐴𝛼𝛽𝐵𝑠𝛽) + (Γ𝑠

𝛾𝛽𝐴𝛼𝛽𝐵𝛼𝑠 − Γ𝛾𝑠
𝛽𝐴𝛼𝑠𝐵𝛼𝛽) + 𝐴𝛼𝛽∇𝛾𝐵𝛼𝛽

+ 𝐵𝛼𝛽∇𝛾𝐴𝛼𝛽   

[In the above 𝛼, 𝑠, 𝛽 are dummy indices] 

We work out the two parentheses separately.  

With the second term in  the first parenthesis to the right we interchange as follows 

𝛼 ↔ 𝑠 
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(−Γ𝛾𝑠
𝛼𝐴𝑠𝛽𝐵𝛼𝛽 + Γ𝑠

𝛾𝛼𝐴𝛼𝛽𝐵𝑠𝛽) = (−Γ𝛾𝑠
𝛼𝐴𝑠𝛽𝑇𝛼𝛽 + Γ𝛼

𝛾𝑠𝐴𝑠𝛽𝐵𝛼𝛽) = 0 

 

With the second term in the second parenthesis 

𝛽 ↔ 𝑠 

(Γ𝑠
𝛾𝛽𝐴𝛼𝛽𝐵𝛼𝑠 − Γ𝛾𝑠

𝛽𝐴𝛼𝑠𝐵𝛼𝛽) = (Γ𝑠
𝛾𝛽𝐴𝛼𝛽𝐵𝛼𝑠 − Γ𝛾𝛽

𝑠𝐴𝛼𝛽𝐵𝛼𝑠) = 0 

𝜕

𝜕𝑥𝛾
(𝐵𝛼𝛽𝐴𝛼𝛽) = 𝐴𝛼𝛽∇𝛾𝐵𝛼𝛽 + 𝐵𝛼𝛽∇𝛾𝐴𝛼𝛽 = ∇𝛾(𝐵𝛼𝛽𝐴𝛼𝛽) 

𝜕

𝜕𝑥𝛾
(𝐵𝛼𝛽𝐴𝛼𝛽) = ∇𝛾(𝐵𝛼𝛽𝐴𝛼𝛽) (2) 

𝐵𝛼𝛽𝐴𝛼𝛽may be of the form 𝑔𝛼𝛽𝑃𝛼𝑄𝛽  (2′) 

If f is a scalar then 
𝜕𝑓

𝜕𝑥𝑗is a rank on covariant tensor 

∇𝑖

𝜕𝑓

𝜕𝑥𝑗
=

𝜕2𝑓

𝜕𝑥𝑖 𝜕𝑥𝑗
− Γ𝑠

𝑖𝑗

𝜕𝑓

𝜕𝑥𝑠
 

=
𝜕2𝑓

𝜕𝑥𝑗𝜕𝑥𝑖
− Γ𝑠

𝑗𝑖

𝜕𝑓

𝜕𝑥𝑠
= ∇𝑗

𝜕𝑓

𝜕𝑥𝑖
 

∇𝑖

𝜕𝑓

𝜕𝑥𝑗
= ∇𝑗

𝜕𝑓

𝜕𝑥𝑖
 (3) 

where 

𝑔𝛼𝛽𝑃𝛼𝑄𝛽 = 𝑓      (4) 

∇𝑖

𝜕(𝑔𝛼𝛽𝑃𝛼𝑄𝛽)

𝜕𝑥𝑗
= ∇𝑗

𝜕(𝑔𝛼𝛽𝑃𝛼𝑄𝛽)

𝜕𝑥𝑖
  (5.1) 

Keeping in mind ∇𝑖𝑔𝛼𝛽 = 0 and considering (3) and (5))we have 

 

∇𝑖

𝜕(𝑔𝛼𝛽𝑃𝛼𝑄𝛽)

𝜕𝑥𝑗
= ∇𝑖 (𝑔𝛼𝛽∇𝑗(𝑃𝛼𝑄𝛽)) = 𝑔𝛼𝛽∇𝑖∇𝑗(𝑃𝛼𝑄𝛽) (5.2) 

Similarly 

∇𝑗

𝜕(𝑔𝛼𝛽𝑃𝛼𝑄𝛽)

𝜕𝑥𝑖
= ∇𝑗 (𝑔𝛼𝛽∇𝑖(𝑃𝛼𝑄𝛽)) = 𝑔𝛼𝛽∇𝑗∇𝑖(𝑃𝛼𝑄𝛽)(5.3) 

From (5.1),(5.2) and (5.3) we have 
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𝑔𝛼𝛽∇𝑖∇𝑗(𝑃𝛼𝑄𝛽) = 𝑔𝛼𝛽∇𝑗∇𝑖(𝑃𝛼𝑄𝛽)   

⇒ 𝑔𝛼𝛽∇𝑖∇𝑗(𝑃𝛼𝑄𝛽) − 𝑔𝛼𝛽∇𝑗∇𝑖(𝑃𝛼𝑄𝛽) = 0  

⇒ 𝑔𝛼𝛽[∇𝑖∇𝑗 − ∇𝑗∇𝑖](𝑃𝛼𝑄𝛽) = 0 𝑓𝑜𝑟 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑃𝛼 𝑎𝑛𝑑 𝑄𝛽  (6) 

We have, 

∇i∇𝑗(𝑃𝛼𝑄𝛽) = ∇i(𝑃𝛼∇𝑗𝑄𝛽 + 𝑄𝛽∇𝑗𝑃𝛼) 

∇i∇𝑗(𝑃𝛼𝑄𝛽) = 𝑃𝛼∇i∇𝑗𝑄𝛽 + (∇i𝑃𝛼)(∇𝑗𝑄𝛽) + (∇𝑖𝑄𝛽)(∇j𝑃𝛼) + 𝑄𝛽∇i∇𝑗𝑃𝛼 (7) 

 

∇j∇𝑖(𝑃𝛼𝑄𝛽) = ∇j(𝑃𝛼∇𝑖𝑄𝛽 + 𝑄𝛽∇𝑖𝑃𝛼) 

∇j∇𝑖(𝑃𝛼𝑄𝛽) = 𝑃𝛼∇j∇𝑖𝑄𝛽 + (∇j𝑃𝛼)(∇𝑖𝑄𝛽) + (∇𝑗𝑄𝛽)(∇i𝑃𝛼) + 𝑄𝛽∇j∇𝑖𝑃𝛼  (8) 

From (7) and (8) 

[∇i∇𝑗 − ∇j∇𝑖](𝑃𝛼𝑄𝛽) = 𝑃𝛼(∇i∇𝑗 − ∇j∇𝑖)𝑄𝛽 + 𝑄𝛽(∇i∇𝑗 − ∇j∇𝑖)𝑃𝛼(9) 

Using (6) we obtain, 

𝑔𝛼𝛽[∇i∇𝑗 − ∇j∇𝑖](𝑃𝛼𝑄𝛽) = 𝑔𝛼𝛽𝑃𝛼(∇i∇𝑗 − ∇j∇𝑖)𝑄𝛽 + 𝑔𝛼𝛽𝑄𝛽(∇i∇𝑗 − ∇j∇𝑖)𝑃𝛼 = 0   

𝑔𝛼𝛽𝑃𝛼(∇i∇𝑗 − ∇j∇𝑖)𝑄𝛽 + 𝑔𝛼𝛽𝑄𝛽(∇i∇𝑗 − ∇j∇𝑖)𝑃𝛼 = 0  (10) 

𝑔𝛼𝛽𝑃𝛼(∇j∇𝑖 − ∇i∇𝑗)𝑄𝛽 + 𝑔𝛼𝛽𝑄𝛽(∇j∇𝑖 − ∇i∇𝑗)𝑃𝛼 = 0  (11) 

 

Next we apply the following formula[3] on (10)or equivalently on (11)  

[∇j∇𝑖 − ∇i∇𝑗]𝐴𝑝 = 𝑅𝑛
𝑝𝑖𝑗𝐴𝑛(12) 

Applying (8)(12) on the left side of (7) (10)we have, 

𝑔𝛼𝛽𝑃𝛼𝑅𝑛
𝛽𝑖𝑗𝑄𝑛 + 𝑔𝛼𝛽𝑄𝛽𝑅𝑛

𝛼𝑖𝑗𝑃𝑛 = 0 𝑓𝑜𝑟 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑦𝑃𝛼 , 𝑄𝛽  (13) 

Partial differentiating (13) with respect to 𝑃𝑛=𝑘 , 𝑘 being a free index and not a dummy we obtain 

𝑔𝑘𝛽𝑃𝑘𝑅𝑛
𝛽𝑖𝑗𝑄𝑛 + 𝑔𝛼𝛽𝑄𝛽𝑅𝑘

𝛼𝑖𝑗𝑃𝑘 = 0[𝑛𝑜 𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑛 𝑘](14) 

𝑔𝑘𝛽𝑅𝑛
𝛽𝑖𝑗𝑄𝑛 + 𝑔𝛼𝛽𝑄𝛽𝑅𝑘

𝛼𝑖𝑗 = 0 

Partial differentiating with respect to 𝑄𝑛=𝑠 
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𝑔𝑘𝛽𝑅𝑠
𝛽𝑖𝑗 + 𝑔𝛼𝑠𝑅𝑘

𝛼𝑖𝑗 = 0[𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑛 𝛼 𝑎𝑛𝑑 𝛽](15) 

For orthogonal systems 

𝑔𝑘𝑘𝑅𝑠
𝑘𝑖𝑗 + 𝑔𝑠𝑠𝑅𝑘

𝑠𝑖𝑗 = 0 [𝑛𝑜 𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑛 𝑘 𝑜𝑟 𝑜𝑛 𝑠](16) 

Let us test equation (12)(16) using 𝑅𝑠
𝑘𝑖𝑗for Shwarzschild’s geometry:k=r,s=t 

𝑔𝑟𝑟𝑅𝑡
𝑟𝑖𝑗 + 𝑔𝑡𝑡𝑅𝑟

𝑡𝑖𝑗 = 0 (17)[𝑟 𝑎𝑛𝑑 𝑡 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑎 𝑑𝑢𝑚𝑚𝑦 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 ] 

𝑔𝑟𝑟𝑅𝑡
𝑟𝑡𝑟 + 𝑔𝑡𝑡𝑅𝑟

𝑡𝑡𝑟 = 0 (18.1) 

We try verifying (14) using standard results for Schwarzschild’s geometry 

 

− (1 −
2𝐺𝑚

𝑐2𝑟
)

−1 2𝐺𝑚

𝑐2𝑟3 − 2𝐺𝑚𝑟2
+ (1 −

2𝐺𝑚

𝑐2𝑟
)

2(𝐺𝑐2𝑚𝑟 − 2𝐺2𝑚2)

𝑐4𝑟4
= 0 (18.2) 

− (1 −
2𝐺𝑚

𝑐2𝑟
)

−1 2𝐺𝑚

𝑐2𝑟3 (1 −
2𝐺𝑚
𝑐2𝑟

)
+ (1 −

2𝐺𝑚

𝑐2𝑟
)

2𝐺𝑚𝑐2𝑟 (1 −
2𝐺𝑚
𝑐2𝑟

)

𝑐4𝑟4
= 0 

If, 1 −
2𝐺𝑚

𝑐2𝑟
≠ 0 

− (1 −
2𝐺𝑚

𝑐2𝑟
)

−2 1

𝑐2𝑟3
+ (1 −

2𝐺𝑚

𝑐2𝑟
)

2 1

𝑐2𝑟3
= 0 

1

𝑐2𝑟3
[(1 −

2𝐺𝑚

𝑐2𝑟
)

2

− (1 −
2𝐺𝑚

𝑐2𝑟
)

−2

] = 0 

⟹ (1 −
2𝐺𝑚

𝑐2𝑟
)

2

− (1 −
2𝐺𝑚

𝑐2𝑟
)

−2

= 0 

⟹ (1 −
2𝐺𝑚

𝑐2𝑟
)

2

= (1 −
2𝐺𝑚

𝑐2𝑟
)

−2

 

⟹ (1 −
2𝐺𝑚

𝑐2𝑟
)

4

= 1 (18.3) 

Real solution, 1 −
2𝐺𝑚

𝑐2𝑟
= ±1 ⟹

2𝐺𝑚

𝑐2𝑟
= 0 ⟹ 𝑟 ⟶ ∞[flat space time where the Riemann tensor=rank 

four null tensor or 
𝐺𝑚

𝑐2𝑟
= 1 ⟹we are inside the event horizon 

If  

1 −
2𝐺𝑚

𝑐2𝑟
= 0, 
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the left side of (14’)(18.2) becomes undefined[both terms become undefined]. If we consider 1 −
2𝐺𝑚

𝑐2𝑟
⟶ 𝟎 

we are as a matter of fact taking 1 −
2𝐺𝑚

𝑐2𝑟
≠ 0,a case which has already been discussed. 

              

One should keep in the mind that each point of the manifold is traversed by an infinitude of non 

geodesics asides geodesics.. For non geodesics four force is zero.Four vectors like P and Q my be 

identified from the stated non geodesics. Equation (8) utilizes a vector 𝐴𝑝which has to be consistent 

with the manifold being considered.To this end we may consider the four vector discussed 

An Alternative Discrepancy: 

𝑅𝛼𝛽𝛼𝛽 = 𝑅𝛽𝛼𝛽𝛼  (19) 

𝑔𝛼𝑘𝑅𝑘
𝛽𝛼𝛽

= 𝑔𝛽𝑘𝑅𝑘
𝛼𝛽𝛼  (20) 

With equation (16) we have considered a summation on 𝑘 but not on 𝛼[by our choice 

In the orthogonal system 

𝑔𝛼𝛼𝑅𝛼
𝛽𝛼𝛽

= 𝑔𝛽𝛽𝑅𝛽
𝛼𝛽𝛼[𝑛𝑜 𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑛 𝑎𝑙𝑝ℎ𝑎 𝑎𝑛𝑑 𝑏𝑒𝑡𝑎](21.1) 

𝑔𝑡𝑡𝑅𝑡
𝑟𝑡𝑟

= 𝑔𝑟𝑟 𝑅𝑟
𝑡𝑟𝑡  (18) 

(1 −
2𝐺𝑚

𝑐2𝑟
)

2𝐺𝑚

𝑐2𝑟3 − 2𝐺𝑚𝑟2
− (1 −

2𝐺𝑚

𝑐2𝑟
)

−1

(−
2(𝐺𝑐2𝑚𝑟 − 2𝐺2𝑚2)

𝑐4𝑚4
) = 0  (21.2) 

(1 −
2𝐺𝑚

𝑐2𝑟
)

2𝐺𝑚

𝑐2𝑟3 − 2𝐺𝑚𝑟2
+ (1 −

2𝐺𝑚

𝑐2𝑟
)

−1

(
2(𝐺𝑐2𝑚𝑟 − 2𝐺2𝑚2)

𝑐4𝑚4
) = 0 

If 1 −
2𝐺𝑚

𝑐2𝑟
≠ 0 

 

(1 −
2𝐺𝑚

𝑐2𝑟
)

2 2𝐺𝑚

𝑐2𝑟3 − 2𝐺𝑚𝑟2
+

2(𝐺𝑐2𝑚𝑟 − 2𝐺2𝑚2)

𝑐4𝑚4
= 0 

(1 −
2𝐺𝑚

𝑐2𝑟
)

2 2𝐺𝑚

𝑟2(𝑐2𝑟 − 2𝐺𝑚)
+

2𝐺𝑚(𝑐2𝑟 − 2𝐺𝑚)

𝑐4𝑚4
= 0 

For 𝑐2𝑟 ≠ 2𝐺𝑚 

(1 −
2𝐺𝑚

𝑐2𝑟
)

2 1

𝑟2
+

(𝑐2𝑟 − 2𝐺𝑚)2

𝑐4𝑚4
= 0 (21.3) 
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The sum of two perfect squared quantities adding upto zero.For  

1 −
2𝐺𝑚

𝑐2𝑟
≠ 0, 

we do have an impossibility 

 

If  

1 −
2𝐺𝑚

𝑐2𝑟
= 0, 

the left side of (18’) becomes undefined[both terms become undefined]. If we consider 1 −
2𝐺𝑚

𝑐2𝑟
⟶ 𝟎 

we are actually taking 1 −
2𝐺𝑚

𝑐2𝑟
≠ 0,a case which has already been discussed. 

Equations (14’) or (19) point to some deep rooted fundamental problem with conventional theory 

The non trivial components of the Riemann tensor are of a suspicious or of a controversial nature[as 

demonstrated y the Schwarzschild metric]. 

Section II 

We considerhave in all frames of reference the formulas[4] 

𝑅𝛼𝛼𝛾𝛿 = 0, 𝑅�̅��̅�𝛾𝛿 = 0, … … . . [24 𝑧𝑒𝑟𝑜 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑓𝑟𝑎𝑚𝑒] 

Also 

𝑅𝛼𝛽𝛾𝛾 = 0, 𝑅�̅��̅�𝛾𝛾 = 0, … … . . [24 𝑧𝑒𝑟𝑜 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑓𝑟𝑎𝑚𝑒] 

The above results follow from  

𝑅𝛼𝛽𝛾𝛿 = −𝑅𝛽𝛼𝛾𝛿  

𝛼 = 𝛽 ⟹ 𝑅𝛼𝛼𝛾𝛿 = 0 

𝑅𝛼𝛽𝛾𝛿 = −𝑅𝛼𝛽𝛿𝛾  

𝛾 = 𝛿 ⟹ 𝑅𝛼𝛽𝛾𝛾 = 0 

𝑅𝛼𝛼𝛼𝛼 = 0, 𝑅�̅��̅��̅��̅� = 0[𝑓𝑜𝑢𝑟 𝑧𝑒𝑟𝑜 𝑐𝑜𝑚𝑝𝑜𝑚𝑒𝑛𝑡𝑠] 

𝑅𝛼𝛼𝛼𝛿 = 0, 𝑅�̅��̅��̅�𝛿 = 0[𝑡𝑤𝑒𝑙𝑣𝑒 𝑧𝑒𝑟𝑜 𝑐𝑜𝑚𝑝𝑜𝑚𝑒𝑛𝑡𝑠] 

 

Again from the transformation of rank four covariant tensors we have, 



8 
 

𝑅�̅��̅�𝛾𝛿 =
𝜕𝑥𝛼

𝜕�̅��̅�

𝜕𝑥𝛽

𝜕�̅��̅�

𝜕𝑥𝛾

𝜕�̅�𝛾

𝜕𝑥𝛿

𝜕�̅�𝛿
𝑅𝛼𝛽𝛾𝛿  

0 =
𝜕𝑥𝛼

𝜕�̅��̅�

𝜕𝑥𝛽

𝜕�̅��̅�

𝜕𝑥𝛾

𝜕�̅�𝛾

𝜕𝑥𝛿

𝜕�̅�𝛿
𝑅𝛼𝛽𝛾𝛿(22) 

On the right side of (22), 𝑅𝛼𝛽𝛾𝛿  are the Riemann curvature components in a certain specified frame of 

reference and for some specified geometry. On the left side zero presents 𝑅𝛼𝛼𝛾𝛿 = 0 in various other 

frames of reference[an infinitely many of them] against the arbitrary transformations 
𝜕𝑥𝛼

𝜕�̅��̅�

𝜕𝑥𝛽

𝜕�̅��̅�

𝜕𝑥𝛾

𝜕�̅��̅�

𝜕𝑥𝛿

𝜕�̅��̅�
. 

These transformations being arbitrary the only option would be to have 𝑅�̅��̅�𝛾𝛿for all components. 

Equation ((20) represents an infinite set of linear homogeneous equations in a finite number of 

variables[unknowns] given by 𝑅𝛼𝛽𝛾𝛿 . If these equations are independent[even if  subset of them greater 

than the number of variables are independent] then the variables 𝑅𝛼𝛽𝛾𝛿  have to vanish  

Further Analysis 

We consider the following infinite number of homogeneous equations: 

𝑎𝛼𝛽𝛾𝛿𝑅𝛼𝛽𝛾𝛿 = 0 (23) 

𝑎𝛼𝛽𝛾𝛿 ≡
𝜕𝑥𝛼

𝜕�̅��̅�

𝜕𝑥𝛽

𝜕�̅��̅�

𝜕𝑥𝛾

𝜕�̅�𝛾

𝜕𝑥𝛿

𝜕�̅�𝛿
 

Assume there are k nontrivial 𝑅𝛼𝛽𝛾𝛿 in (23).For any specified k,𝑅𝛼𝛽𝛾𝛿we may think of an exercise where 

an infinite[buty not arbitrary] number of coefficient sets {𝑎𝛼𝛽𝛾𝛿}satisfying (A) are generated that is we 

speculate n infinite number of equations like (23) 

Let us consider k equations from  (23)out of the infinitude possible 

We have k linear homogeneous equations. For non trivial 𝑅𝛼𝛽𝛾𝛿 ,determinant of coefficient matrix has to 

be zero[for any k equations chosen]:det[𝑎𝛼𝛽𝛾𝛿] = 0. Thus the rank of the coefficient matrix is less than 

k.Now the dimension of row spa c=rank of matrix.Therefore the dimension of row space is less thank. At 

least one row is a linear combination of the others. Any k transformations chosen are not linearly 

independent if they satisfy (23)[k=number of non trivial 𝑅𝛼𝛽𝛾𝛿 ] 

But our linear transformation elements 𝑎𝛼𝛽𝛾𝛿 are expected to be linearly independent row wise from 

the coefficient matrix.We must also keep in our mind that if two or more sets of equations[k equations 

and k unknowns] have the same solution set for all the sets then the equations have to be 

equivalent:each equation of any set should be expressible as a linear combination of the others. 

For m linear homogeneous equations involving n variables[unknowns] in each line,if the number of 

independent equations exceeds the number of variables then each variable reduces to zero value. 

Now from the definition of the Riemann tensor it follows that 
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𝑅𝛼
𝛽𝛾𝛿 =

𝜕Γ𝛼
𝛽𝛿

𝜕𝑥𝛾
−

𝜕Γ𝛼
𝛽𝛾

𝜕𝑥𝛿
+ Γ𝛼

𝛾 Γ 𝛽𝛿 − Γ𝛼
𝛿 Γ 𝛽𝛾  (24) 

If 𝛼, 𝛽, 𝛾and𝛿 are distinct then 𝑅𝛼
𝛽𝛾𝛿 = 0 

Proof: We recall that for the orthogonal system Γ𝛼
𝛽𝛿 = 0 if 𝛼, 𝛽and𝛿are distnct 

Γ𝛼
𝛽𝛿 = 0, Γ𝛼

𝛽𝛾 = 0 ⟹
𝜕Γ𝛼

𝛽𝛿

𝜕𝑥𝛾
= 0,

𝜕Γ𝛼
𝛽𝛾

𝜕𝑥𝛾
= 0 

Γ𝛼
𝛾 Γ 𝛽𝛿 − Γ𝛼

𝛿 Γ 𝛽𝛾 = Γ𝛼
𝛾𝛾Γ𝛾

𝛽𝛿 + Γ𝛼
𝛾𝛼Γ𝛼

𝛽𝛿 − Γ𝛼
𝛿𝛿Γ𝛿

𝛽𝛾 − Γ𝛼
𝛿𝛼Γ𝛼

𝛽𝛾 = 0 (25) 

Thus if If 𝛼, 𝛽, 𝛾and𝛿 are distinct then 𝑅𝛼
𝛽𝛾𝛿 = 0 

We transform 𝑅𝛼
𝛽𝛾𝛿with If 𝛼, 𝛽, 𝛾and𝛿from one coordinate system to an infinite number of orthogonal 

coordinate systems 

𝑅𝑝
𝑞𝑟𝑠 =

𝜕𝑥𝑞

𝜕�̅�𝛼

𝜕�̅�𝛽

𝜕𝑥𝑞

𝜕�̅�𝛾

𝜕𝑥𝑟

𝜕�̅�𝛿

𝜕𝑥𝑠
�̅�𝛼

𝛽𝛾𝛿  (26) 

On the left side if p,q,r and s are distinct then 

0 =
𝜕𝑥𝑞

𝜕�̅�𝛼

𝜕�̅�𝛽

𝜕𝑥𝑞

𝜕�̅�𝛾

𝜕𝑥𝑟

𝜕�̅�𝛿

𝜕𝑥𝑠
�̅�𝛼

𝛽𝛾𝛿  (27) 

We have an infinite number of distinct linear homogeneous equations with a finite number of non trivial 

unknowns, �̅�𝛼
𝛽𝛾𝛿. The indices may or may not be distinct with �̅�𝛼

𝛽𝛾𝛿  on the right side. Therefore the 

Riemann tensor components ere zero in all  systems. They have to be zero in all other frames of 

reference [the non orthogonal or orthogonal frames] 

Our conclusion of zero valued Riemann tensor components has followed logically in a legitimate manner 

The non trivial components of the Riemann tensor observed in conventional physics are of a suspicious 

or of a controversial nature[as demonstrated by the Schwarzschild metric].This observation has been 

already made in the last section[towards the end of it] 

 

One should also keep in the mind that the null tensor[rank four ,covariant,  follows the   well known 

properties of the Riemann tensor listed below. 

𝑅𝛼𝛽𝛾𝛿 = −𝑅𝛽𝛼𝛾𝛿  

𝑅𝛼𝛽𝛾𝛿 = −𝑅𝛼𝛽𝛿𝛾  

𝑅𝛽𝛼𝛿𝛾 = 𝑅𝛼𝛽𝛿𝛾 

𝑅𝛼𝛽𝛿𝛾 + 𝑅𝛼𝛿𝛽𝛾 + 𝑅𝛼𝛾𝛿𝛽 = 0 
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Conclusions 

As claimed at the outset we have discovered a conflict between standard results and derived equations. 

Then considering linear homogeneous equations we have derived that the Riemann tensor is a rank four 

null tensor.  

[Data sharing is not applicable to this article as no new data were created or analyzed in this study.] 
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