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Abstract 

We have obtained an equation, which, according to the author, will make it 

much easier to calculate the states of atoms, molecules and solids. Our equation is 

a modified Schrodinger equation. Moreover, the Schrodinger equation, according 

to Nobel laureate Paul Dirac, contains all the chemical problems. The solution of 

this equation is simpler than the solution of the Schrodinger equation and the 

Hartree-Fock equations. If accurate calculations prove that this equation gives 

accurate results, this equation will be as important as the Schrodinger equation. 

This equation recorded by the author in 1986. Scientists cannot accurately solve 

the Schrodinger equation for multielectronic systems. Scientists cannot write down 

an exact but simpler equation similar to Schrodinger's equation. Scientists and 

scientific journals have been rejecting our equation for 36 years. However, no one 

has proved the wrongness or uselessness of this equation yet. 

Keywords: Schrodinger equation, density functional theory, Thomas-Fermi 

method, Hartree-Fock equations 

Introduction 

The traditional approach is to take into account the Pauli principle in the 

wave function. In this article, an attempt to take into account the Pauli principle in 

the Schrodinger equation and not in the wave function. This makes it possible to 

determine the complete wave function in three-dimensional space, and not in 3𝑁 

dimensional space, where N is equal to the number of electrons in the system. This 

allows us to represent the full wave function not as a sum with a huge number of 

terms. The Schrodinger equation recorded here in a somewhat modified form, in 

which it has never been written. Solving the Schrodinger equation for a many-

electron system is an extremely difficult task. Such complexity, according to the 

author, indicates an insufficient depth of understanding of the properties of the 

many-electron systems and indicates the need to search for equations that will 

make it easier to calculate the properties of many-electron systems. 
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The equation 

Many-electron atoms and molecules have electrons with the same orbital 

moment, the same projection of the orbital moment, and the same projection of 

the spin. We will assume that 𝑁𝑖 of electrons in an atom, molecule, or solid with 

the same spin projection, the same orbital moment and the same orbital moment 

projection can be describe by a one wave function 𝜑𝑖(𝒓). The functions 𝜑𝑖(𝒓) are 

normalized, but not orthonormal. We will assume that an electron in an atom is an 

electron cloud. We will assume that in any small volume of an atom dV there is a 

part 𝑁𝑖 electrons with the same orbital moment, the same projection of the orbital 

moment and the same projection of the spin, equal to 𝑁𝑖|𝜑𝑖(𝒓)|2𝑑𝑉. The Pauli 

principle will be taken into account as follows. We will assume that in any small 

volume of an atom, molecule or solid, each of the 𝑁𝑖 electrons with the same orbital 

moment, the same projection of the orbital moment and the same spin projection 

occupies only 1/𝑁𝑖 part of this small volume. The Pauli principle will be fulfilled, 

since electrons with the same orbital moment, the same projection of the orbital 

moment and the same spin projection will occupy different volumes, or, in other 

words, they will be in different parts of space. 

From Heisenberg's uncertainty principle 

Δx*Δ𝑝𝑥  ⩾ ℏ/2 

it follows that a decrease in the volume occupied by one electron by 𝑁𝑖 times will 

lead to an increase in the kinetic energy of one electron by 𝑁
𝑖

2

3 times. In 𝑁𝑖

2

3 times 

will increase that part of the kinetic energy which is not related to the movement 

of the electron, but is related only to the fact that the electron occupies a limited 

volume. The kinetic energy of 𝑁𝑖  electrons will increase, in comparison with the 

energy of one electron, by 𝑁
𝑖

5

3   times. 

Let us write the equation 
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3   when multiplied by the part of the kinetic energy of electrons not 

associated with orbital motion. 



 

𝑁𝑖
∗ = 𝑁𝑖 when multiplied by the part of the kinetic energy of electrons associated 

with orbital motion. 
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𝜕𝑧2
  -  Laplace operator 

t - is the number of groups of electrons with the same orbital moment, the same 

projection of the orbital moment and the same projection of the spin. 

The equation describes a system consisting of  ν nuclei and N electrons. 

𝐸𝑖 - is the energy of the electrostatic interaction between electrons belonging to 

the group of electrons i with the same orbital angula momentum, the same 

projection of the orbital angula momentum and the same spin projection. The 

energy   𝐸𝑖  can be approximately found from the equation 

𝑁𝑖(𝑁𝑖 − 1)

2
𝜑𝑖(𝒓) ∫

𝑒2

|𝒓 − 𝒓′|
|𝜑𝑖(𝒓′)|2𝑑𝒓′ = 𝐸𝑖𝜑𝑖(𝒓) 

For a more accurate determination of this energy, we represent the wave function 

𝜑𝑖(𝒓) of the group of electrons in the form of a product of one-electron functions 

𝜑𝑖(𝒓)=𝜑𝑖1(𝒓)𝜑𝑖2(𝒓) … 𝜑𝑖𝑝(𝒓) 

ip is the number of electrons described by the wave function 𝜑𝑖(𝑟). 
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The wave functions 𝜑𝑖(𝒓) of groups of electrons are represented as a 

product of one-electron functions only to take into account the correlation 

interaction. If we neglect the correlation interaction, in our equation it is possible 

to describe the properties of electrons only by functions 𝜑𝑖(𝒓). 

 The total wave function Ψ is defined here in the ordinary three-dimensional 

space, and not in 3𝑁 dimensional space and with a fixed arrangement of the nuclei, 

is equal to the simple product of the wave functions of groups of electrons 

Ψ = 𝜑1(𝒓)𝜑2(𝒓)… 𝜑𝑡(𝒓) 

In the traditional approach, the wave function Ψ is equal to the determinant, 

which, for example, for 70 electrons is equal to the sum of more than 10100 terms 

composed of products of one-electron wave functions. 

 This equation differs from the Schrodinger equation by the presence of a 

multiplier 𝑁𝑖
∗. 



 

The coefficient 𝑁𝑖
∗ added to the equation for account the Pauli principle. In 

this case, it is not necessary to take into account the Pauli principle in the wave 

function. There is no need to impose additional restrictions on the wave function, 

to impose additional restrictions that the wave function be antisymmetric and 

represented as a determinant. The idea is to take the Pauli’s principle into account 

in the equation, not in the wave function. 

In the case of a hydrogen atom, 𝑁𝑖=1 

𝑁
𝑖

5
3 = 1

5
3 = 1 

and our equation turns into the Schrodinger equation. 

For 2 s electrons, for example, with spin up, the coefficient 𝑁
𝑖

5

3 is equal to 

𝑁
𝑖

5
3 = 2
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The coefficient 𝑁
𝑖

5

3 for 3 s electrons, for example, with spin up is equal to 

𝑁
𝑖

5
3 = 3
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For n s electrons, for example, with spin up, the coefficient 𝑁
𝑖

5

3 is equal to 

𝑁
𝑖

5
3 = 𝑛

5
3 

If we use the concepts of the shell model and the main quantum number and 

assume, that one s electron, for example, with spin up, is in the first shell and has 

a main quantum number equal to 1, the “second” s electron with spin up is in the 

second shell and has a main quantum number equal to 2, and so on, s electron 

“numbered” n with spin up, is in the n shell and has a main quantum number equal 

to n, then n is the number of shells, containing s electrons with spin up, and the 

largest main quantum number of these electrons. 

For p electrons with the same orbital moment projection and the same spin 

projection, the coefficient 𝑁
𝑖

5

3 is equal to 

𝑁
𝑖

5
3 = (𝑛 − 1)

5
3 

where (n-1) is the number of shells containing these p electrons, and n is the largest 

main quantum number of these p electrons. 



 

This equation is simpler than the Hartree-Fock equations. In the Hartree-Fock 

equations, each electron has its own one-electron wave function. In our approach, 

electrons with the same orbital moment, the same projection of the orbital 

moment and the same spin projection, if we neglect the correlation interaction, 

can be described by a single wave function. In addition, the total wave function is 

defined in an ordinary 3-dimensional space and is equal to a simple product of such 

wave functions, and not a determinant consisting of a huge number of terms. 

This approach has similarities with the Thomas-Fermi method and density 

functional theory. However, there are significant differences: 

1. The Thomas-Fermi method and the density functional theory are not 

applicable for calculating the states of light atoms. Our equation can be used 

to calculate the states of light atoms. For the lightest atom, the hydrogen 

atom, this equation transforms into the Schrodinger equation. For the 

helium atom, our equation gives the same value of the energy of the ground 

state of the atom as the Hartree-Fock equations. 

2. In the Thomas-Fermi method and density functional theory, the kinetic 

energy of electrons is proportional to the electron density n(r) to the power 

of 5/3, 𝑛
5

3(r). In our equation, not all the kinetic energy of the electron, but 

only that part of the kinetic energy that is not related to the orbital motion, 

is multiplied by the coefficient 𝑁
𝑖

5

3. And for each group of electrons there is 

its own coefficient 𝑁𝑖. In addition, multiplying by the coefficient 𝑁
𝑖

5

3 and 

raising the electron density n(r) to the power of 5/3 is not the same thing. 

For example, the graph of the function y=x is a straight line. The graph, for 

example, of the function y=2
5

3*x is also a straight line, but the graph of the 

function y=𝑥
5

3 is not a straight line. Even in the case of a hydrogen atom in 

the Thomas-Fermi method and density functional theory, the kinetic energy 

is proportional to the electron density n(r) to the power of 5/3, 𝑛
5

3(r). 

Moreover, the equations of the Thomas-Fermi method and the density 

functional theory in the case of a hydrogen atom do not pass into the 

Schrodinger equation. In our equation for the hydrogen atom, the kinetic 

energy of the electron is multiplied by the coefficient 𝑁
𝑖

5

3=1
5

3 =1 and our 

equation for the hydrogen atom turns into the Schrodinger equation. 

3. The Thomas-Fermi method and the density functional theory cannot explain 

the periodicity of the properties of atoms in the periodic table. From our 



 

equation follows the periodicity of the properties of atoms. The hydrogen 

atom has 1 s electron, for example, with spin up. The kinetic energy of the 

electron is multiplied by the coefficient 𝑁
𝑖

5

3=1
5

3 =1. In a lithium atom located 

in the 2nd period, there are 2 identical s electrons, for example, with spin up. 

The kinetic energy of these electrons is multiplied by 𝑁
𝑖

5

3=2
5

3 . Thus, our 

equation describes the qualitative changes that occur during the transition 

from a hydrogen atom to a lithium atom, that is, during the transition from 

an atom in the first period to an atom in the second period. And so on. In a 

sodium atom located in the 3rd period, there are 3 s electrons, for example, 

with spin up and the kinetic energy of these electrons is multiplied by a factor 

of 3
5

3. In a potassium atom located in the 4th period, there are 4 s electrons, 

for example, with spin up and the kinetic energy of these electrons is 

multiplied by a factor of 4
5

3. When the shells in the atom are completely filled, 

the kinetic energy of the s electrons of the atom is multiplied by a coefficient 

equal to the number of the period in which the atom is located in the periodic 

table, to the power of 5/3. 

The kinetic energy, unrelated to the orbital motion, p electrons of the atom's, 

for completely filled shells, is multiplied by a coefficient equal to the number 

of the period in which the atom is located in the periodic table, minus 1, to 

the power of 5/3. This, among other things, shows that the kinetic energy of 

p electrons in the first period is multiplied by zero, that is, that there are no 

p electrons in the first period.  

Thus, our equation takes into account the periodicity of the properties of 

atoms. 

We have made calculations of the total energy for a large number of atoms. The 

difference between the energy found by us and the energy of the ground state of 

the atom was 15-20% for many-electron atoms. But the calculations of the total 

energy for each multi-electron atom were performed within 2 minutes using a 

calculator! The calculations were carried out from the first principles without using 

any semi empirical or fitting parameters. To simplify the calculations, it was 

assumed that all electrons are s electrons. In heavy atoms, even if theoretically 

possible states in which all electrons are s electrons, such states are very highly 

excited states. Moreover, comparisons were made with the energy of the ground 

state. The difference of 15-20% is the difference between the energy of a very, very 

highly excited state and the energy of the ground state. Moreover, to simplify 



 

calculations, all electrons were described by a single wave function. Of course, for 

more accurate calculations, each group of electrons with the same orbital moment, 

the same projection of the orbital moment and the same spin projection must be 

described by its own wave function. In addition, to simplify the calculations, it was 

assumed that all wave functions are equal to one exponential function ϕ(r)=𝑒−ϛ∗𝑟. 

The parameter ϛ was the same for all wave functions. Of course, for more accurate 

calculations, we need to choose own value of the parameter ϛ for each wave 

function, and we need to use wave functions that have a more complex form. It is 

important that the energies we received were always located above the ground 

state energy. If the energies we found were less than the energy of the ground 

state, this would indicate that our equation is incorrect. In a multi-electron system, 

there is only one ground state and an infinitely large number of excited states. 

Therefore, a simple wave function chosen at random and the assumption that even 

in heavy atoms, all electrons are s electrons, if they correspond to some real state 

of the atom, then only to a very highly excited state, which, of course, must have a 

much higher energy than the energy of the ground state of the atom. 

Conclusion 

The solution of our equation is simpler than the solution of the Schrodinger 

equation, since the wave function in our approach is defined in the usual three-

dimensional space, and not in the 3𝑁 dimensional space. Moreover, the wave 

function should not be required to be antisymmetric and consist of a huge number 

of terms. These simplifications are achieved due to the fact, that the Pauli principle 

is taken into account in the equation, due to the introduction of the multiplier 𝑁𝑖
∗. 

Our equation is derived from first principles without using empirical parameters 

and, according to the author, is accurate. Whether this equation is really accurate 

can be shown by more accurate calculations. If it turns out that this equation is 

approximate, it can be used for approximate calculation of the states of atoms, 

molecules and solids. If it turns out that our equation is approximate, if necessary, 

it can be amended to obtain more accurate results. 
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