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Abstract 

It is impossible to fully represent a non-associative algebra using group theory due to the associativity 

requirement for the group operation. This precludes a full group theoretical cover of Cayley-Dickson 

algebras beginning with the generally non-associative Octonion Algebra doubling count. However, if 

we “forget” the sign attached to the result of the product of any two basis elements, every Cayley-

Dickson algebra of doubling count n: CD(n) is modelled by the Exclusive Or group X(n), up to ignored 

sign of fixed nature or orientation choice. This paper explores the bijective correspondence between 

every CD(n) algebra and all of its subalgebras, and every X(n) group and all of its subgroups. A 

recursion relationship for determining the number of subalgebras of order 2m for any CD(n), which is 

equivalent to the number of subgroups of order 2m for the corresponding group X(n), is presented. 

*** 

For any given integer n ≥ 0, define X(n) as an order 2n group of binary integer members ranging from 0 

to 2n – 1 with group operation the binary bit-wise exclusive or (xor or the operator ^) of two group 

member integers. 

The group identity member I for X(n) is the integer 0, since for any integer k: k^0 = 0^k = k. We have 

for any binary number k: k^k = 0. Therefore, every group member of X(n) is its own inverse. The xor 

operator is commutative, meaning the group table will be symmetric, thus X(n) is Abelian. Every 

member of X(n) will form its own single member group conjugacy class, and thus every subgroup of 

X(n) will be a normal subgroup. X(n) is a Dedekind Group. 

The product of two Cayley-Dickson algebra basis elements is within sign a single third basis element, 

and the algebra applied will set the basis element types, quantities and their product rules. The basis 

elements for any Cayley-Dickson algebra CD(n) may be enumerated sequentially with integer indexes 

ranging 0 to 2n – 1. Every product of two basis elements fits the algebraic expression ea * eb = ±ec, 

where a, b and c can be any combination, same or not, of the integer 0 representing the single scalar 

basis element index, and non-zero integers representing non-scalar basis elements that square to –e0. 

Every CD(n) may be further structured such that for any product ea * eb = ±ec, the index set { a b c } is 

restricted to sets where the xor of all three is always zero.  

For all six permutations of three chosen integers that xor to 0 mapped to a, b and c in ea * eb = ±ec, if all 

three are zero, * is defined by the algebra of real numbers. If one index is zero and the other two are the 

same non-zero index, * is defined by Complex Algebra. If all three are different and non-zero, * is 

defined by the product rules of the non-scalar triplet of Quaternion Algebra. All non-triplet basis 

element products for Quaternion Algebra are complex or real subalgebra products, so these three 

algebras fully cover the definitions for the product of any two basis elements for any Cayley-Dickson 

algebra. There are no other ways to get three indexes to xor to 0, therefore this xor operator 

correspondence spans all three of the algebras that fully specify the product of any two CD(n) basis 

elements in a very natural, optimal and complete fashion. However, what the xor operator cannot do is 

provide any guidance on which sign is appropriate in the ±ec product result. 

We will be exclusively working here on the identification of all sets { a b c } representing the indexes 

for every basis element product and result, and how they structurally fit with other products in Cayley-
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Dickson algebras, leaving unanswered whether any particular product result basis element is scaled by 

+1 or –1. In doing so, we obviate the issue that a non-associative algebra cannot be completely 

represented by any necessarily associative group structure. The correspondence between the algebraic 

expression ea * eb = ±ec ignoring sign and the Boolean expression a^b=c or equivalently a^b^c = 0 

suggests a correspondence between Cayley-Dickson algebra CD(n) ignoring basis element product 

result signs, and the xor group X(n). As we shall soon see, this correspondence is complete. The 

correspondence between X(n) including all of its subgroups, and ignored sign CD(n) including all of its 

subalgebras is an isomorphism. 

Every group X(n) will have some quantity of non-trivial normal subgroups exclusively with order 2m 

for every integer m in the range 0 < m < n. Each of these normal subgroups will be isomorphic to 

X(m). Every group X(n) will therefore have the same number of non-trivial quotient groups X(n)/X(m), 

and these quotient groups will be isomorphic to X(n-m). It should be understood that X(0) is order 1, 

including just the identity member I. 

The number of normal subgroups of order 2m for X(n) will be equivalent to the number of order 2m 

subalgebras for order 2n Cayley-Dickson algebra CD(n). The subset of integers within each of these 

normal subgroups, when applied as indexes for algebraic basis elements, partition the basis elements 

showing up in its corresponding subalgebra. The subgroup group table will give the unsigned basis 

element product combinations for its corresponding subalgebra. Since every X(n) will have the full 

complement of normal subgroups of order 2m, all subalgebras for any CD(n) algebra will be 

represented. 

Within any single quotient group X(n)/X(m), the union of its kernel and any other coset will form a 

group of order 2m+1 isomorphic to X(m+1), in a manner of speaking, doubling the kernel subgroup and 

thus the corresponding subalgebra. Doubling using different kernels isomorphic to X(m) can make 

different and meaningful representations of the same doubled group and corresponding algebra basis 

set. An example of this would be using the correspondence groups for the seven Quaternion 

subalgebras of a given Octonion Algebra. Each of the doublings on these kernels will produce the 

correspondence group for the chosen Octonion Algebra. As we will soon see, the other cosets paired 

with the kernels in this example are all basic quad indexes specific to the particular kernel. The 

doubling of the full complement of kernels isomorphic to X(m) will span the full complement of 

subgroups of X(n) isomorphic to X(m+1). 

In general, for any X(n) and integer 1 ≤ m ≤ n/2, the number of order 2m normal subgroups of X(n) will 

be equal to the number of order 2n-m normal subgroups of X(n). Stated another way, the number of 

normal subgroups of order m charted vs. m for a given n will be symmetric about n/2 for both odd and 

even n. This is due to the duality between X(n)/X(m) ≈ X(n-m) and X(n)/X(n-m) ≈ X(m). With the 

bijectivity of the correspondences between subgroups and subalgebras ignoring product sign, the same 

can be said for the number of subalgebras of order 2m for CD(n). 

Let’s start with X(4), the Sedenion Algebra correspondence group. Its group members are the integers 0 

through 15. The group table for X(4) is 
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^ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14 

2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13 

3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12 

4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11 

5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10 

6 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9 

7 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 

8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 

9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6 

10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5 

11 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4 

12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3 

13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2 

14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1 

15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

 

X(4) has 15 normal subgroups isomorphic to X(1), the Complex Algebra correspondence group: 

[0,1], [0,2], [0,3], [0,4], [0,5], [0,6], [0,7], [0,8], [0,9], [0,10], [0,11], [0,12], [0,13], [0,14], [0,15] 

Using each of these, we can form 15 separate order 8 quotient groups X(4)/X(1) each isomorphic to 

X(3), the Octonion correspondence group. The number of straight up order 8 normal subgroups of X(4) 

is also 15, isomorphic to X(3). They correspond to the Octonion subalgebras of the Sedenions. The full 

complement of 15 order 8 normal subgroups of X(4) are itemized next by group table 

 

 

 

 

 

 

 

 

 

 

 

 

^ 0 1 2 3 4 5 6 7 

0 0 1 2 3 4 5 6 7 

1 1 0 3 2 5 4 7 6 

2 2 3 0 1 6 7 4 5 

3 3 2 1 0 7 6 5 4 

4 4 5 6 7 0 1 2 3 

5 5 4 7 6 1 0 3 2 

6 6 7 4 5 2 3 0 1 

7 7 6 5 4 3 2 1 0 

^ 0 1 2 3 8 9 10 11 

0 0 1 2 3 8 9 10 11 

1 1 0 3 2 9 8 11 10 

2 2 3 0 1 10 11 8 9 

3 3 2 1 0 11 10 9 8 

8 8 9 10 11 0 1 2 3 

9 9 8 11 10 1 0 3 2 

10 10 11 8 9 2 3 0 1 

11 11 10 9 8 3 2 1 0 

^ 0 1 2 3 12 13 14 15 

0 0 1 2 3 12 13 14 15 

1 1 0 3 2 13 12 15 14 

2 2 3 0 1 14 15 12 13 

3 3 2 1 0 15 14 13 12 

12 12 13 14 15 0 1 2 3 

13 13 12 15 14 1 0 3 2 

14 14 15 12 13 2 3 0 1 

15 15 14 13 12 3 2 1 0 

^ 0 1 4 5 8 9 12 13 

0 0 1 4 5 8 9 12 13 

1 1 0 5 4 9 8 13 12 

4 4 5 0 1 12 13 8 9 

5 5 4 1 0 13 12 9 8 

8 8 9 12 13 0 1 4 5 

9 9 8 13 12 1 0 5 4 

12 12 13 8 9 4 5 0 1 

13 13 12 9 8 5 4 1 0 
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^ 0 1 4 5 10 11 14 15 

0 0 1 4 5 10 11 14 15 

1 1 0 5 4 11 10 15 14 

4 4 5 0 1 14 15 10 11 

5 5 4 1 0 15 14 11 10 

10 10 11 14 15 0 1 4 5 

11 11 10 15 14 1 0 5 4 

14 14 15 10 11 4 5 0 1 

15 15 14 11 10 5 4 1 0 

^ 0 1 6 7 8 9 14 15 

0 0 1 6 7 8 9 14 15 

1 1 0 7 6 9 8 15 14 

6 6 7 0 1 14 15 8 9 

7 7 6 1 0 15 14 9 8 

8 8 9 14 15 0 1 6 7 

9 9 8 15 14 1 0 7 6 

14 14 15 8 9 6 7 0 1 

15 15 14 9 8 7 6 1 0 

^ 0 1 6 7 10 11 12 13 

0 0 1 6 7 10 11 12 13 

1 1 0 7 6 11 10 13 12 

6 6 7 0 1 12 13 10 11 

7 7 6 1 0 13 12 11 10 

10 10 11 12 13 0 1 6 7 

11 11 10 13 12 1 0 7 6 

12 12 13 10 11 6 7 0 1 

13 13 12 11 10 7 6 1 0 

^ 0 2 4 6 8 10 12 14 

0 0 2 4 6 8 10 12 14 

2 2 0 6 4 10 8 14 12 

4 4 6 0 2 12 14 8 10 

6 6 4 2 0 14 12 10 8 

8 8 10 12 14 0 2 4 6 

10 10 8 14 12 2 0 6 4 

12 12 14 8 10 4 6 0 2 

14 14 12 10 8 6 4 2 0 

^ 0 2 4 6 9 11 13 15 

0 0 2 4 6 9 11 13 15 

2 2 0 6 4 11 9 15 13 

4 4 6 0 2 13 15 9 11 

6 6 4 2 0 15 13 11 9 

9 9 11 13 15 0 2 4 6 

11 11 9 15 13 2 0 6 4 

13 13 15 9 11 4 6 0 2 

15 15 13 11 9 6 4 2 0 

^ 0 2 5 7 8 10 13 15 

0 0 2 5 7 8 10 13 15 

2 2 0 7 5 10 8 15 13 

5 5 7 0 2 13 15 8 10 

7 7 5 2 0 15 13 10 8 

8 8 10 13 15 0 2 5 7 

10 10 8 15 13 2 0 7 5 

13 13 15 8 10 5 7 0 2 

15 15 13 10 8 7 5 2 0 

^ 0 2 5 7 9 11 12 14 

0 0 2 5 7 9 11 12 14 

2 2 0 7 5 11 9 14 12 

5 5 7 0 2 12 14 9 11 

7 7 5 2 0 14 12 11 9 

9 9 11 12 14 0 2 5 7 

11 11 9 14 12 2 0 7 5 

12 12 14 9 11 5 7 0 2 

14 14 12 11 9 7 5 2 0 

^ 0 3 4 7 8 11 12 15 

0 0 3 4 7 8 11 12 15 

3 3 0 7 4 11 8 15 12 

4 4 7 0 3 12 15 8 11 

7 7 4 3 0 15 12 11 8 

8 8 11 12 15 0 3 4 7 

11 11 8 15 12 3 0 7 4 

12 12 15 8 11 4 7 0 3 

15 15 12 11 8 7 4 3 0 
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The cosets for the 15 X(4)/X(1) quotient groups are the following 

[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10, 11], [12, 13], [14, 15] 

[0, 2], [1, 3], [4, 6], [5, 7], [8, 10], [9, 11], [12, 14], [13, 15] 

[0, 3], [1, 2], [4, 7], [5, 6], [8, 11], [9, 10], [12, 15], [13, 14] 

[0, 4], [1, 5], [2, 6], [3, 7], [8, 12], [9, 13], [10, 14], [11, 15] 

[0, 5], [1, 4], [2, 7], [3, 6], [8, 13], [9, 12], [10, 15], [11, 14] 

[0, 6]. [1, 7], [2, 4], [3, 5], [8, 14], [9, 15], [10, 12], [11, 13] 

[0, 7], [1, 6], [2, 5], [3, 4], [8, 15], [9, 14], [10, 13], [11, 12] 

[0, 8], [1, 9], [2, 10], [3, 11], [4, 12], [5, 13], [6, 14], [7, 15] 

[0, 9], [1, 8], [2, 11], [3, 10], [4, 13], [5, 12], [6, 15], [7, 14] 

[0, 10], [1, 11], [2, 8], [3, 9], [4, 14], [5, 15], [6, 12], [7, 13] 

[0, 11], [1, 10], [2, 9], [3, 8], [4, 15], [5, 14], [6, 13], [7, 12] 

[0, 12], [1, 13], [2, 14], [3, 15], [4, 8], [5, 9], [6, 10], [7, 11] 

[0, 13], [1, 12], [2, 15], [3, 14], [4, 9], [5, 8], [6, 11], [7, 10] 

[0, 14], [1, 15], [2, 12], [3, 13], [4, 10], [5, 11], [6, 8], [7, 9] 

Each of the coset pairs of integers in these 15 quotient groups xor to the same integer, spanning the full 

complement 15 of non-identity integers. Each of their coset product tables are isomorphic to X(3). The 

union of a kernel and one other coset member forms a group isomorphic to X(2) . 

Look now at the quotient groups X(4)/X(2). These will be order four coset product groups of four 

member cosets, and each of these quotient groups will be isomorphic to X(2), the Quaternion 

correspondence group. X(4) has 35 order 4 normal subgroups isomorphic to X(2) to use for the kernel 

here, matching the fact that Sedenions have 35 Quaternion subalgebras. The basis element members for 

^ 0 3 4 7 9 10 13 14 

0 0 3 4 7 9 10 13 14 

3 3 0 7 4 10 9 14 13 

4 4 7 0 3 13 14 9 10 

7 7 4 3 0 14 13 10 9 

9 9 10 13 14 0 3 4 7 

10 10 9 14 13 3 0 7 4 

13 13 14 9 10 4 7 0 3 

14 14 13 10 9 7 4 3 0 

^ 0 3 5 6 8 11 13 14 

0 0 3 5 6 8 11 13 14 

3 3 0 6 5 11 8 14 13 

5 5 6 0 3 13 14 8 11 

6 6 5 3 0 14 13 11 8 

8 8 11 13 14 0 3 5 6 

11 11 8 14 13 3 0 6 5 

13 13 14 8 11 5 6 0 3 

14 14 13 11 8 6 5 3 0 

^ 0 3 5 6 9 10 12 15 

0 0 3 5 6 9 10 12 15 

3 3 0 6 5 10 9 15 12 

5 5 6 0 3 12 15 9 10 

6 6 5 3 0 15 12 10 9 

9 9 10 12 15 0 3 5 6 

10 10 9 15 12 3 0 6 5 

12 12 15 9 10 5 6 0 3 

15 15 12 10 9 6 5 3 0 
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all 35 Quaternion subalgebras for Sedenion Algebra are specified by index using the kernel member of 

each of the 35 quotient group cosets below, and the kernel group tables indicate the unsigned product 

pairings for their corresponding Quaternion subalgebra. 

The cosets for the 35 order four X(4)/X(2) quotient groups are as follows: 

[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15] 

[0, 1, 4, 5], [2, 3, 6, 7], [8, 9, 12, 13], [10, 11, 14, 15] 

[0, 1, 6, 7], [2, 3, 4, 5], [8, 9, 14, 15], [10, 11, 12, 13] 

[0, 1, 8, 9], [2, 3, 10, 11], [4, 5, 12, 13], [6, 7, 14, 15] 

[0, 1, 10, 11], [2, 3, 8, 9], [4, 5, 14, 15], [6, 7, 12, 13] 

[0, 1, 12, 13], [2, 3, 14, 15], [4, 5, 8, 9], [6, 7, 10, 11] 

[0, 1, 14, 15], [2, 3, 12, 13], [4, 5, 10, 11], [6, 7, 8, 9] 

[0, 2, 4, 6], [1, 3, 5, 7], [8, 10, 12, 14], [9, 11, 13, 15] 

[0, 2, 5, 7], [1, 3, 4, 6], [8, 10, 13, 15], [9, 11, 12, 14] 

[0, 2, 8, 10], [1, 3, 9, 11], [4, 6, 12, 14], [5, 7, 13, 15] 

[0, 2, 9, 11], [1, 3, 8, 10], [4, 6, 13, 15], [5, 7, 12, 14] 

[0, 2, 12, 14], [1, 3, 13, 15], [4, 6, 8, 10], [5, 7, 9, 11] 

[0, 2, 13, 15], [1, 3, 12, 14], [4, 6, 9, 11], [5, 7, 8, 10] 

[0, 3, 4, 7], [1, 2, 5, 6], [8, 11, 12, 15], [9, 10, 13, 14] 

[0, 3, 5, 6], [1, 2, 4, 7], [8, 11, 13, 14], [9, 10, 12, 15] 

[0, 3, 8, 11], [1, 2, 9, 10], [4, 7, 12, 15], [5, 6, 13, 14] 

[0, 3, 9, 10], [1, 2, 8, 11], [4, 7, 13, 14], [5, 6, 12, 15] 

[0, 3, 12, 15], [1, 2, 13, 14], [4, 7, 8, 11], [5, 6, 9, 10] 

[0, 3, 13, 14], [1, 2, 12, 15], [4, 7, 9, 10], [5, 6, 8, 11] 

[0, 4, 8, 12], [1, 5, 9, 13], [2, 6, 10, 14], [3, 7, 11, 15] 

[0, 4, 9, 13], [1, 5, 8, 12], [2, 6, 11, 15], [3, 7, 10, 14] 

[0, 4, 10, 14], [1, 5, 11, 15], [2, 6, 8, 12], [3, 7, 9, 13] 

[0, 4, 11, 15], [1, 5, 10, 14], [2, 6, 9, 13], [3, 7, 8, 12] 

[0, 5, 8, 13], [1, 4, 9, 12], [2, 7, 10, 15], [3, 6, 11, 14] 

[0, 5, 9, 12], [1, 4, 8, 13], [2, 7, 11, 14], [3, 6, 10, 15] 

[0, 5, 10, 15], [1, 4, 11, 14], [2, 7, 8, 13], [3, 6, 9, 12] 

[0, 5, 11, 14], [1, 4, 10, 15], [2, 7, 9, 12], [3, 6, 8, 13] 

[0, 6, 8, 14], [1, 7, 9, 15], [2, 4, 10, 12], [3, 5, 11, 13] 

[0, 6, 9, 15], [1, 7, 8, 14], [2, 4, 11, 13], [3, 5, 10, 12] 

[0, 6, 10, 12], [1, 7, 11, 13], [2, 4, 8, 14], [3, 5, 9, 15] 

[0, 6, 11, 13], [1, 7, 10, 12], [2, 4, 9, 15], [3, 5, 8, 14] 

[0, 7, 8, 15], [1, 6, 9, 14], [2, 5, 10, 13], [3, 4, 11, 12] 

[0, 7, 9, 14], [1, 6, 8, 15], [2, 5, 11, 12], [3, 4, 10, 13] 

[0, 7, 10, 13], [1, 6, 11, 12], [2, 5, 8, 15], [3, 4, 9, 14] 

[0, 7, 11, 12], [1, 6, 10, 13], [2, 5, 9, 14], [3, 4, 8, 15] 

 

Looking closely at the cosets, the non-kernel members are the indexes for three different basic quad 

basis element sets appropriate for the Quaternion triplet in the kernel. The union of the kernel and one 

of the other cosets in turn builds three separate groups isomorphic to X(3) corresponding to three 

separate Octonion subalgebra candidates for the Sedenions, validating the fact that each Quaternion 

subalgebra triplet will appear in three separate Octonion subalgebra candidates for the Sedenions. Each 

Octonion subalgebra candidate requires seven Quaternion triplets, so these 35 sets of cosets cover 

correspondences for the full set of 35*3/7 = 15 Octonion subalgebras for Sedenion Algebra. 
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Rather than drilling down further on the Sedenion Algebra correspondence, let’s look closer at the 

Octonion Algebra correspondence X(3). It has seven order two normal subgroups isomorphic to X(1) 

corresponding to the seven Complex Algebra subalgebras for Octonion Algebra. These produce seven 

quotient groups. It also has seven order 4 normal subgroups isomorphic to X(2) to provide the 

Quaternion correspondences to each of the seven Quaternion subalgebras for Octonion Algebra. The 

cosets for the seven X(3)/X(1) quotient groups are as follows: 

[0, 1], [2, 3], [4, 5], [6, 7] 

[0, 2], [1, 3], [4, 6], [5, 7] 

[0, 3], [1, 2], [4, 7], [5, 6] 

[0, 4], [1, 5], [2, 6], [3, 7] 

[0, 5], [1, 4], [2, 7], [3, 6] 

[0, 6], [1, 7], [2, 4], [3, 5] 

[0, 7], [1, 6], [2, 5], [3, 4] 

 

The coset product table group for each of these is isomorphic to the group X(2). The union of kernel 

and one other coset forms a group also isomorphic to X(2). The integer members of the seven order 4 

normal subgroups set the basis partitions for the seven Quaternion subalgebras and their group table 

sets the unsigned product combinations. For completeness their group tables are as follows: 

^ 0 2 4 6 

0 0 2 4 6 

2 2 0 6 4 

4 4 6 0 2 

6 6 4 2 0 

 

 

^ 0 1 2 3 

0 0 1 2 3 

1 1 0 3 2 

2 2 3 0 1 

3 3 2 1 0 

 

 

 

 

 

 

It is worth noting that X(2) is a Klein 4-group. We can use each of these seven normal subgroups 

isomorphic to X(2) to form seven quotient groups X(3)/X(2). The seven cosets for these quotient 

groups are as follows: 

[0, 2, 4, 6], [1, 3, 5, 7] 

[0, 1, 4, 5], [2, 3, 6, 7] 

^ 0 1 4 5 

0 0 1 4 5 

1 1 0 5 4 

4 4 5 0 1 

5 5 4 1 0 

^ 0 3 4 7 

0 0 3 4 7 

3 3 0 7 4 

4 4 7 0 3 

7 7 4 3 0 

^ 0 1 6 7 

0 0 1 6 7 

1 1 0 7 6 

6 6 7 0 1 

7 7 6 1 0 

^ 0 2 5 7 

0 0 2 5 7 

2 2 0 7 5 

5 5 7 0 2 

7 7 5 2 0 

^ 0 3 5 6 

0 0 3 5 6 

3 3 0 6 5 

5 5 6 0 3 

6 6 5 3 0 
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[0, 3, 4, 7], [1, 2, 5, 6] 

[0, 1, 2, 3], [4, 5, 6, 7]  

[0, 2, 5, 7], [1, 3, 4, 6] 

[0, 1, 6, 7], [2, 3, 4, 5] 

[0, 3, 5, 6], [1, 2, 4, 7] 

 

These pairs are the full complement of basis element indexes for the seven Quaternion subalgebras for 

a single Octonion Algebra followed by the indexes for their basic quad basis element sets. 

X(2) has three order two normal subgroups isomorphic to X(1). They correspond to the three Complex 

Algebra subalgebras for the Quaternions. X(1) has only the trivial normal subgroup [I], and X(0) is the 

correspondence group for the algebra of real numbers. 

From the group structure for X(n) and thus correspondence with subalgebras of the nth doubled 

Cayley-Dickson algebra CD(n), the following table formulas can be derived with stated restrictions for 

X(n) and its subgroups, and therefore CD(n) and its subalgebras. 

 

Features derived from X(n) Formula Restrictions 

Order of full X(n) group and CD(n) algebra 2n  

Number of non-trivial order 2 subgroups of X(n) 

= number of CD(n) Complex subalgebras 

2n – 1 n ≥ 2 

Number of non-trivial order 4 subgroups of X(n) 

= number of CD(n) Quaternion subalgebras 

 ( 2n-1 – 1) (2n – 1) / 3 n ≥ 3 

Number of non-trivial order 8 subgroups of X(n) 

= number of CD(n) Octonion subalgebras 

(2n-2 – 1)(2n-1 – 1) (2n – 1) / 21 n ≥ 4 

Recursion for number of non-trivial order 2m 

subgroups of X(n) = number of CD(n) order 2m 

subalgebras 

Nm = Nm-1 (2
n-m+1 – 1) / (2m – 1) Nx = number 

of subgroups 

of order 2x 

n ≥ m+1 

 

The following is a table of the number of normal subgroups and subalgebras of order 2m for group 

order 2n X(n) and algebra order 2n CD(n) for 2 ≤ n ≤ 8 

 n=2 3 4 5 6 7 8 

m=1 3 7 15 31 63 127 255 

2  7 35 155 651 2667 10795 

3   15 155 1395 11811 97155 

4    31 651 11811 200787 

5     63 2667 97155 

6      127 10795 

7       255 

 

We have significantly simplified the task of understanding Cayley-Dickson algebras and their 

subalgebras by permitting the tools of group theory to be applied by first forgetting which sign is 

appropriate in the ±ec product result for the basis element product ea * eb = ±ec, building 

correspondence groups of positive integers representing the basis element indexes and using xor as the 
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group operation. With the correspondence groups in hand, which specifies most of the internal structure 

of a Cayley-Dickson algebra and its subalgebras, we must “unforget” by assignment where the 

negations show up in the algebra and subalgebra basis element product tables.  

The first step is to replace integers in the desired group table with the label used to represent a basis 

element, like “e”, with the cell content for a subscript. The task is complete when all cells requiring 

negation have been identified and negated. The group table will then be converted to the algebra basis 

element product table, fully defining the algebra. Some like negations will be required for any CD(n) 

algebra or subalgebra, others will be choices possibly with restrictions. Real number products have no 

basis element negations involved. The square of any non-scalar basis element is always –e0 so these 

negations must be done in any group table conversion. The remaining negations come from the non-

scalar triplet basis element product rule for a Quaternion (sub)algebra, and these are defined by 

orientation choices. Of course, this is only relevant to CD(n) for n ≥ 2. 

W. R. Hamilton’s discovery of Quaternion Algebra came about after the breakthroughs first of giving 

up on extending 2D complex numbers to 3D, trying the next increase to 4D with one scalar basis 

element, and three non-scalar basis elements that square to –e0 equivalent to –1. The final breakthrough 

was coming to the realization the three non-scalar basis element products anti-commute, and the 

product of any two is within sign the third with a specific cyclic pattern. The six basis element product 

combinations between these three elements are covered by the following ordered triplet ( ea eb ec ) with 

the product rule the first *second = +third when traversing through this triplet cyclically left to right, 

and results in –third when doing the commuted products traversing cyclically right to left. If we were to 

perform any odd number of transpositions of two basis elements in ( ea eb ec ) we would come up with a 

different rule where all six products are negated. Each odd transposition scheme is equivalent to 

flipping the order to ( ec eb ea ). This negated rule produces a different appearing Quaternion Algebra. 

There are no other options, so we have a choice between two orientations for Quaternion Algebra, the 

basis element product rule ( ea eb ec ) or the basis element product rule ( ec eb ea ). 

The orientation of every CD(n) for n ≥ 2 is fully, succinctly and exclusively defined by the orientations 

assigned to each of its Quaternion subalgebras. The importance of Quaternion Algebra cannot be 

overstated. This also shines a light on the importance of the group correspondence process above, it 

simplifies the task of identifying all Quaternion subalgebras as well as higher order subalgebras that 

may impose their own orientation limitations as we will see next. 

If we are determining CD(2), the single Quaternion triplet orientation choice is free, choose one and 

done. This is not the case when we move up to CD(3), Octonion Algebra. Here, we have seven separate 

Quaternion subalgebras, and all 27 = 128 possible orientation choice permutations will not produce a 

valid Octonion Algebra, only 16 will. This is where the restrictions on orientation choices first come in. 

For Octonion Algebra, the effort remembering the consistent Quaternion subalgebra triplet partitions 

easily determined by the xor to 0 rule, their orientations for one of 16 proper Octonion Algebra 

orientations, and a simple rule to morph one of 16 proper Octonion Algebras to another, is orders of 

magnitude simpler than the perhaps impossible task of memorizing 16 separate 8x8 multiplication 

tables, let alone one table. The CD(3+) basis element product tables are obtuse, the triplet orientation 

cover condense the tables to something that can be visualized or at least, simply stated. 

When n ≥ 4, we have another issue, there will be multiple appearances of any single Quaternion 

subalgebra in subalgebras of higher order, and each occurrence orientation must be singularly defined. 

This will restrict the orientation choices for these higher order subalgebras. We have already seen this 

when the Sedenion correspondence was drilled down on. Each of its Quaternion subalgebras will 

appear in three separate Octonion subalgebra candidates, and the multiplicity restriction is quite severe 

as it prevents all 15 Octonion subalgebras from being proper Octonion as stated above. This is why I 
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say Octonion subalgebra candidate. The best that can be done is proper orientations for the seven 

Octonion subalgebra candidates that share a common basis element, and one more from any of the 

remaining eight. The Quaternion subalgebra multiplicity will force the remaining seven Octonion 

subalgebra candidates to broken status, one triplet rule negation off of isomorphism with one of the 

select 16 proper permutations. The single improper triplet in a given broken Octonion subalgebra 

candidate will be the intersection of that candidate and the proper Octonion subalgebra that does not 

include the common basis element. In a compatible manner, the worst that can be done is select sets of 

five Octonion subalgebra candidates where only four can be properly oriented. This is the essence of 

Sedenion Algebra not being a division algebra, every fundamental zero divisor involves products using 

the Octonion subalgebra-wise inconsistent triplet rules. The eight proper Octonion subalgebras produce 

no zero divisors as one might expect.  

All of this is covered in some detail within Reference [1]. 
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