Coding the Quadratic Formula
Using TI84-CE Python

Timothy W. Jones
January 26, 2022

Abstract

Texas Instruments have added coding in Python to their TI-83
family of calculators. The question this paper attempts to address is
why. This investigation starts by considering the programming lan-
guage of Python and its benefits, especially as contrasted with TI-83
Basic (the standard language for these calculators). It then consid-
ers the implementation issues that confront the idea. As an example,
Python is highly extensible, but calculators are by their nature highly
proprietary, not extensible. And then there is the interface with its
other products Smartview and Connect. These are designed to aid
teachers and programmers respectively by porting calculator features
to PC programs. Does Python inter-phase with these? How well?
These concerns are motivated and organized by a concrete program-
ming challenge: seek to code the quadratic formula (we’ll define what
that means) in Python and attempt to port it to a calculator — as
easily as possible, if possible, noting issues and problems as we go
along.

Introduction

I suspect teachers of high school algebra classes were shocked to see Python
on student calculators. What on earth could that mean was my initial reac-
tion. I had heard of the programming language Python and occasionally was
tempted to try to learn it, but always my particular thought was why bother.
I already knew Javascript and TI-83 Basic and that seemed enough for my

needs. That said programming in T1-83 Basic (henceforth just TI-Basic, if 1
remember) had proven to be frustrating for me several times.

The two most annoying things are TI-Basic does not implement functions
and variable names are limited to one capital letter. It is difficult under
these constraints to structure code, especially when, as a teacher, you should
show good programming styles. Knowing Javascript made this annoyance
pronounced; I knew structuring my programs was possible in a different
language, like Javascript, but alas not the language of these TI calculators.
So I was open to the idea of TI-84 Python (henceforth TI-Python), even
more would I be open to TI-84 Javascript!

If all of the above sounds similar to your experiences, you will find it
heartening to know that Python has some very nice features. In particular it
kind of forces good programming structure. It forces coders to indent lines;
in fact, it delimits using indention! That is its most salient feature. It also, as
you would expect, supports functions and varyingly long variable naming. It
is a robust language, comparable to Javascript or C. The latter is suggested
by its use of an import idea.

Smartview and Connect do support Python, but not as strongly as these
support TI-Basic. One can’t edit Python code in Connect and port it for
testing to a physical calculator, for example. This inter-phase is the standard
mode for TI-Basic programs. To get Python programs into Smartview from
a physical calculator, attached via a usb cord, is not as clear and clean as
doing the same with a TI-Basic program. It can be done.

Enough of coming attractions. I will show issues, constraints, beauties,
and annoyances by way of a programming challenge: code the quadratic
formula (QF) in Python on a TI-84 CE with Python calculator using, as
possible conveniences, Connect and Smartview. I've done the same in TI-
Basic, so compare and contrast opportunities will arise. First, what does it
mean exactly to code the QF?

QF: The discriminant

Let’s start with something easy. Prompt for the coefficients of the generic
Az? + Bx + C quadratic, crunch the discriminant, B? — 4AC, and display
the result. Smartview can do both TI-Basic and TI-Python programs easily,
in theory. I say in theory because it took me a few seconds to do it in Basic
and half an hour to do it in Python.

I actually gave up trying to input the simple Python code using the
calculator’s editor. The problem is one has to step through all characters of
Python and you must constantly figure out whether you are in alpha mode
lower case, alpha mode upper case, or non-alpha mode regular. So trying to
type A = int(input(“A =7)) is a real annoying challenge. Granted one can
type this in or one can navigate the menu system and find int and input,
but then you might be in insert mode or type over mode — in addition to the
lower case, upper case, and regular modes just mentioned.

T& Thonny - C\Users\Dell\programshgetDiscWPythonupy @ 3317
File Edit View PRun Tools Help
I 7= 0 % @ | B2 T-smartView™ CEforthe T-84 PlusFamily — O
gf-with-frac.py © getDiscWPython.py File: Edit View Actions Help
1 A=int{input(“A=")) =
7)
3 B=int(input("B=")) B A a= @

3 C=int{input(“C="))

4 D=B*¥2_A¥A*C - . —vr——

. . e T {9 TEXAS INSTRUMENTS -8 s GE

R PR BIse B0 L EBITOR: HYPYOTSE - fl
o

FROGRAM LINE 061
=int({input("fA="))

D=B##¥2-4kA%C
print{"Disc is",D)

Figure 1: Use a Python editor to make the code for the calculator.

Immediately one senses (or at least I sense) why designers made TI-Basic
so constrained. Reserved words like Disp and Prompt delete in one keystroke
and are treated as units: no ambiguity in their creation, you must drill into
the program menu system to create them. There is no case sensitivity for
user created words as there is just one case: upper. Did I mention there is a
cap locks feature?

But: you can use an editor to create Python code and bring it into
Smartview; its not a drag and drop or a copy and paste; its more a navigate
for an hour and hope. Thonny is a nice, free editor. Figure 1 shows how
I ended up creating the program successfully. Note the missing capital A
in the calculator’s editor screen shows the problem of ambiguous character
entry modes. I think it’s in insert mode, but I'm not sure. Note: the manual

for TI-Python stresses how Smartview and Connect can inter-phase with a
Python environment, as they call it, like Thonny: for good reason. Entering
Python code using the build in editor is best done by those only into serious
sadomasticism.

This is a link to python’s main page for beginners: Official Python site.
It mentions Thonny and gives a link. Here is a link to TI-Python’s manual:
TT Python manual. Here’s a link to me making the code for this document
with humorous comments (a bone in my leg annotates code).

£ TExas [NSTRUMENTS TI-84 Plus CE

HORMAL FLOAT AUTO a+bli RADIAM MP []
EDIT HEHU: [alphal [£5]
FROGRAM: GETDISC
:pramGET3
:B2-4RC2D

:Disp D

Figure 2: TI-Basic version of get the discriminant, uses an insert.

B TExAS INSTRUMENTS Ti-84 Plus CE

HORHAL FLOAT AUTD a+bi RADIAH HP n
EDIT HENU: [alrhal [§5]1

PROGRAM:GET3
:Prompt H.B.C

Figure 3: TI-Basic has limited function like structures — inserts of code.

The code for the basic version is given in Figure 2. Here I use the cal-
culators version of functions (more like inserts). I made a GET3, Figure 3,
program and inserted into the GETDISC program. My motivation is that I
frequently want to get three variables named A, B, and C and rather than
make each instance afresh for a program, it is good coding practice to make
one version and re-use it. Python and TI-84’s version of it can do this more
elegantly, correctly you could say, with functions.

QF: Cases

We now are in a position to stipulate what we mean by coding the quadratic
formula. There are five cases, meaning five types of solutions: a single real

https://wiki.python.org/moin/BeginnersGuide
https://education.ti.com/html/webhelp/EG_TI84PlusCEPY/EN/index.html

and rational solution (case one), two real and rational solutions (case two),
two real and irrational solutions (involving a simplified radical) for the third
case, two complex rational solutions for the fourth case, and finally two
complex irrational (radical) solutions for the fifth case. See Figure 15 for
examples of each of these cases.

3 TExAs INSTRUMENTS TI-84 Plus CE

i_H_tIEHnI. FLOAT AUTOD a+bl RADIAH MP |]|
| EDTT HENU: [aTphal [§5]

IPROGRAM: GETAQFCOM
:pramGETDISC
tabs(D)=2E
:J{(E)sF
:fPart(FJ=»G

Figure 4: TI-Basic code that gives the decimal part of D, the discriminant.

All cases are resolved by an appeal to the discriminant, D. If D = 0, Case
1. For the other cases, we must determine if D is a perfect square, like 4, 9, or
16, for example. This is achieved in Basic by computing f Part(sqrt(abs(D))).
If this is 0, meaning the decimal part is 0, then D is a perfect square. Code
for TI-Basic is given in Figure 4. TI-Python doesn’t have the equivalent of
the fPart function (floating or decimal part of a real), but, here it is, you can
make your own in a jiffy in Python and TI-Python. That code is shown in
Figure 5.

def getDecimalPart(x):
return x-int(x)

Figure 5: TI-Python function that works like TI-Basic’s fPart.

Bl s

Al

IR

al

~ LT

=

— 0 H F E R

= E S S

L T s o L L
b et | el el

[
o O N fe G Mo == O CE 60

Figure 6:

prgmiETDISC

abs(D)=E

‘-:IIE]-*F

fPart(F)=G

It (D=8)

Then

Disp "ONE RAT ROOT"
End

It (D=8)

Then

It (G=8)

Then

Disp "EL PS RAT ROOTS"
Else

Disp "EL RAD ROOTS ("
End

End

It (D<8)

Then

It (G=8)

Then

Disp "CP PS RAT ROOTS"
Else

Disp "CP RAD ROOTS ("
End

End

Shell for TI-Basic QF program.

The shell program in both TI-Basic, Figure 6 and TI-Python, Figure 7
are given. Figure 15 (below — way) gives test cases. So, if you want to turn
this screed into a tutorial, see if you can make both work with the test cases.
Notice how the shell for basic is not indented and is hard to read. Indenting
per good programming style gives errors in TI-Basic. Indenting is forced in
Python. The next goal is to fill in the details. Notice we are going for exact
solutions with radicals, not just roots in approximate decimal forms; we want
reduced fractions with simplified radicals, a more difficult proposition.

1 from math import *
2 def getDisc(a,b,c):
return b**2-4%a*c
def getDecimalPart(x):
5 return x-int(x)
& def getQf(a,b,c):
/ D = getDisc(a,b,c)
E = sgrt(abs(D))
F = getDecimalPart(E)
if (D==08):
11 print("D is zero, one root")
12 if (D>8):
13 print("D is greater than zero, two real roots")
1 if (F==0):
15 print("Real perfect square, rational roots")
6 else:
print("Real radical roots")
18 if (D<@):
19 print("D is less than zero, two complex roots")
if (F==8):
1 print("Complex perfect square, rational parts")
else:
print("Complex radical roots")
return
getQf(3,5,7)

Figure 7: Shell for TI-Python QF program.

QF: Central peeves

Before filling out the details for the programs, here is a list of peeves. TI-
Python does not have a GCD function. Regular Python does. It’s part
of the standard math functions that one imports, see Figure 8. One can
make, once again, a GCD functions using a nice recursive function; it’s an
implementation of the Kuclidean algorithm. Figure 9 shows the function I
needed to make; Connect snapped this screen from my physical calculator.
The GCD function is necessary to reduce fractions — mentioned in the various
cases. Figure 10 shows some of TI-Python’s math functions — no GCD. The
recursive function works on the calculator — we’'ve got a GCD, GD it. Just
in case readers are wondering: there are 59 math functions listed at Pythons
Wiki, there are 22 on the TI-84 version of Python. Not to be overly erudite,
TI-Python’s manual tells us that they are implementing a small version of
Python called Circuit Python.

math. ged(*integers)
Return the greatest common divisor of the specified integer arguments. If any of the arguments is nonzero,
then the returned value is the largest positive integer that is a divisor of all arguments. If all arguments are
zero, then the returned value is @. ged() without arguments returns a.

New in version 3.5.

Changed in version 3.9 Added support for an arbitrary number of arguments Formerly, enly two argumenis
wers supported

Figure 8: Wiki entry for GCD, a standard Python math function.

(= EDITOR: MYGCD

PROGREAH LINE 6801
from wmath import %
def myGCD([x,v]):

if y==0;

return =
r=int[fmod(=,v])
return myGCD(y.r)

Figure 9: A function in TI-Python providing the GCD function.

@:trunc()
A:frexp()

Esc |Heodul

Figure 10: A partial list of TI-Python math functions; no GCD.

Another function is required to simplify square roots, to pull out any
perfect squares. Here Python shines and in Basic we are forced to make an
insert of code — if we wish to hide functionality per good coding practice.
We did this hiding with GET3 in the getDISC program earlier. The Basic
code is given in Figure 11 and Figure 12 gives the Python function. One is
forced in the Basic program (Figure 11) to use global variables, the H and
J — very inconvenient. The Basic is a stand alone version. Test it (maybe
understand it!) with 4, 16, and 500. Note the unicode in the Python version;
these give a plus, minus symbol + (Latex does it too) and the square root
symbol (y/2). Former yes in TI-Python, latter no.

Disp " (D)"
Prompt D
abs(D)=E
V(E})=F

fPart (F)-G
iPart(F)-=H
For{X,1,M)

If (fPart(E/X2)=8)
] Then

18 X=H

#11 | End

12 End

13 EfHZ2=d

g14 | If (4=1)

Then

Disp H,"PS"
#17 | Else

Disp: B, ™ ("
End

J O3 Lm0

|
[l S

Figure 11: TI-Basic stand alone simplify radical program.

Regular Python does support, as one would certainly expect, unicode
characters — all of them. As mentioned, we need a square root symbol and
Thonny and regular Python delivers; TI-Python does not. In contrast TI-
Basic does via navigation into its menu system: the second test key (see
Figure 11, line 018). There is a char function in regular Python and a chr
function in TI84 Python, but some characters are generated and some aren’t.
Repetition means annoyance; I'll try to stop. There appears to be no clear
documentation to help a programmer (cf. earlier link to TI-Python’s manual,
nada there). Yet TI-Python in its example programs uses \n which strikes
me as awkward — hailing back to the C programming language. But regular
Python has the same conventions. In contrast Javascript uses a write and
writeln for the same functionality — carriage return idea. Backslash n creeps
me out — there I said it.

In general, the import feature in TI-Python brings in proprietary TI
specific modules with sometimes odd (meaning non-pure-Python) naming
conventions. This means that you have to be careful in making code in
Thonny that you hope will run in your calculator. The manual on TI-Python

def getSimplifyRadical(a,d):
H=1
for j in range(l,a):
if (a/j**2-int(a/j**2)==0):

H=3
J = afH**2
if {1==1):

return getFrac(int(H),d)
else:
return "\uB0B1"+ "(" +getFrac(int(H),d) +")" + "\u221A" + str(int(1))

Figure 12: TI-Python simplify radical function.

mentions this. Recall in the abstract I mentioned the inherent problem of
porting an expansion friendly Python into an inherently proprietary world of
a calculator. Graphics are especially proprietary. What solves this situation
is to make Connect support an editor for TI-Python, something it does not
do. One could predict a new release of Connect will do this and maybe they
will force a new calculator purchase as welll Hm?!

Perhaps here is as a good a place as any to mention that getting programs
to work on calculators is generally a silly endeavor, unless you need the porta-
bility. In an academic setting, it is good to have a single portable, affordable
platform and that’s the TI84 CE with Python’s main selling point, if it has
one! My usual teaching modality is to code in TI-Basic using Smartview
and have students copy what I do. If I can’t code Python in the built in
editor (Smartview is just a calculator simulator; i.e. no help), but must
go to Thonny (likely not on my classroom teacher’s PC), then its potential
as a vehicle for teaching Python programming is pretty much zapped from
the get-go. But maybe students at home can use Thonny and port math
programs to their calculators via Connect (a free download), and use the
programs during tests in their math classes! That’s good for me.

In this regard, the Python book Doing Math With Python tells the back-
story of this saga: Python has lots of imports like sympy that do symbolic
math, graphics, you name it. This could spell out doom for TI calculators
soon! A motive is brewing in my mind for the question why TI-Python? But
I envision math classes being taught with classroom computers and in this
regard I might be out of the mainstream — keep doing math as it was done in
1863 with pencil and paper most teachers say. I mentioned this was a hidden
screed.

Finally, within this category of pet peeves (awful unwanted guests?), read-
ers may have noticed a call to getFrac in the last Python code, Figure 12, line

10

def getFrac(a,b):
c=a/gcd(abs(a),abs(b}))
d=b/gcd(abs(a),abs(b))
if di=1:
return str(int(c))+"/"+str{int(d))
else:
return str{int(c))

Figure 13: Function getFrac implemented in Python.

£ TEXAS [MSTRUMENTS TI-84 Plus CE
HORMAL FLOAT AUTOD o+bi RADIAH HF l]

Figure 14: TI-Basic has a built in, non-programmatic converter to a fraction.

012. The function called is given in Figure 13. Basic does allow an in-line
to frac conversion off its math key, Figure 14. But this proves difficult to
use in programs; we want a string to concatenate with other strings, Figure
12, line 014. This getFrac function in turn forced the creation of myGCD
— one divides out of the numerator and denominator the GCD of the origi-
nal fraction’s versions of these. Excel, regular Python, TI-Python, TI-Basic,
not even Javascript provides such a function with two arguments — I had
to make it myself. There I'm done with irritating things. Annoying house
guests purged, let’s go on, shall we? (Line from Blade Runner — shows my
inter-reaction with TT help desk, as does Barton Fink hall scene with John
Goodman; I had the code in my policy case! Barton Fink, Blade Runner.
Turtle code is an interesting feature of Python.)

The beauty is you can get complete solutions to quadratics with this
calculator’s TI-Python and it is a great math and programming challenge for
students (and teachers).

11

https://www.youtube.com/watch?v=P_8O-iDvlmA
https://www.youtube.com/watch?v=Umc9ezAyJv0

S0 rewuarr
ONERQOT [X -2X +1 1 47 getQf(1,-2,1)
RPS X2 +5X +6 2. 3 A8 getDf(1,5,6)
RPS 20X° —23X + 6| 3/4, 2/5 49 | petQf(20,-23,6)
RPS IXZ+ 12X —-16| L, -4 50 getQf(4,12,-16)
RSQ) X2 —4X +2 242, 2 —/2 51 getQf(1,-4,2)
RSQ) 9XT — 30X + 18 | 5/3 £ +/7/3 52 getQf(9,-30,18)
IPS X7 —4X +8 2+ 24, 2—21 53 petQf(1,-4,8)
IPS OXT —30X +34[5/3+: 54 getQf(9,-38,34)
ISQ) XP_AX 48 2+iV2, 2—iy2 55 pgetQf(1,-4,6)
15Q) OXZ — 30X +32 | 5/3LiVT/3 56 Feth(9,—3@,32)

Figure 15: Quadratic test cases and Thonny Python calls to getQf function.

QF: Complete solutions

Drum roll. Figure 15 has the 10 test cases with their sets of three coefficients
being called by the function getQf. In Thonny these give the correct roots
with radicals, Figure 16. As mentioned, TI-Python can’t do these radical

»>%» %Ru
i
-2
-3
3/4
2/5
1
-4
2+ (1)V2
5/3+(1/3)N7
2412
2-12
5/3+i1
5/3-i1
2+(1)¥21
5/3£(1/3)¥741

Figure 16: Regular Python, made in Thonny, output of QF program. All
cases correct. My nails shiny.

signs. I'm not mad about that (cf. John Goodman in Barton Fink, honest
I'm not). So we amend the code as shown in Figure 17, line 027 (compare
Figure 12, line 014) and produce the program I'm going to load into my
physical TI84 with Python calculator via Connect. In a moment the results of
that trial. Figure 18, captured with Connect, shows success. Note I checked
carefully that the name of the square root function in regular Python was
the same in TI-Python. For really obsessive compulsive readers only: notice
how I switched out line 8 of Figure 12 and put in a more readable reference

12

to getDecimal, Figure 17, line 21.

Using Basic, there is no way to call a function several times without a
lot of troublesome work: a for loop that reassigns fixed global variables and
reruns a program stored separately. That works, but ugh!

Conclusion

Texas Instruments deserves credit for reading the educational tea leaves. If
they add the same Python functionality to Connect as they provide with
Basic, they likely will have a good formula that will stave off for a time a
likely future where calculators, like slide rules, become at best quaint — if I
had my way!

Not to forgo the obvious, programming complete solutions of quadrat-
ics is a nice challenge. We have used if statements, for loops, recursion,
functions, and good programming structure; all were tested with a list of
possible types of quadratics: good classic math crunched well with the lat-
est in technology. I'll make a youtube video later. Not investigated yet is
the possible coup de grace for calculators — the graphic components possible
with Python! Enough of those tiny screens! And way enough of the pencils;
Pencil Trick during TT Board meeting,.

As a practical matter, for my fellow teachers, I'm planning on assigning
this program as an extra credit project (exemption from midterm) in a col-
lege algebra class. We use CANVAS and using it students can insert screen
captures from their calculator and Thonny into a word document, convert
this document into a pdf file, and upload it into CANVAS. A TI-84 CE with
Python coupled with Connect allows for importing Python files created in
Thonny and capturing calculator screen shots, so all should be doable, but it
is an experiment. In a future draft of this document, the result of that trial.

I further plan on proselytizing this to my school’s math department. It is
the sort of thing all teachers should do. It is a necessary and good upgrade
in pedagogy. All students should learn math this way.

Complaints; I teach math, not programming. But please notice how
organized, modern, and deep is the understanding of a student who completes
such a programming assignment. More than this, with the coding I have done
in class with TI-Basic (using Smartview) students are engaged and get a thrill
from meeting a challenge of getting technology to do the mindless grunt work
of adding and subtracting accurately. They like it and they do not like doing

13

https://www.youtube.com/watch?v=g3dl32LaOls

math as it was done in 1714. May regression models be ingrained in all high
school students heads — so they will know that equations govern reality, not
old people and their old school ways!

14

getlFshellpy gf-withfracpy teveriion-getOF py

1 - from math import sqrt
2 def gatDisc{a,b,c):

3 return b**1-4%a%c
4 def getDecimalPart{x):

! return x-int{x)
6 def getGCD(x , v):
! if y == f;
g return x
9 r = inti{x ¥ ¥)
10 return getGiDy |, r)
11 def getFracia,h):
12 ceafpatGED{abs{a), abs (b))
11 d=bfpetGCD{abs{a), abs(b})
14 if dl=1;
15 return strlink{c))+"/Testr{int{d)}
16 elza:
17 return strlint(c))
0 def getSimplifyRadicalla,d):
L Hnl
Fiil for 7 in range(i,a):
1 iF {getbecimalPart{afi™"i =ity
Z2 H=
23] = a.l'H“:'j
il A (Jumll}:
35 raturn getFrac{int{H}) ,d}
A wlsa:
X wakurn “huDER1%e S(° sgetFrac{int(H),d) +)% + "SERT(S & sorlink(d}) 4-":1"1]

J8 def lltqflta,h,c):

o] D = getDiscia,b,c)
“:HJ- E = sgrifabs{0)})

31 F = getDecimalPart(E)

32 £ [Das=@):

33 print{zetFrac(-b,7%a})

£ i (DA}

35 if (F==0):

36 printi{getFrac{-b,2%a)+"+1 sgetFrac{int (£} ,2%a))

37 print{getFrac(=-b, 2*a)s"-i"sgetFrac(int(E), 2%a))

i3 elge:

39 print{getFrac(-b, 2*a) + petiimplifyRadical{absi{D),2*a) +"i%}
48 £F (D30):

il 1F: {Fe=t):

43 print{getFrac{-b+int{E},2%a)}}

a3 print{getFrac{-b-int{E),Z*a}})

el #lae:

A5 print{getFrac-b,2%a) « getSimplifyRadicallD, 2*a))
ith return

Figure 17: Regular Python code modified (line 27) for upload to calculator
via Connect. 15

r‘f-_“ FYTHON SHELL : I]
i

-4

2+{1)8QRT(2)

5/3%(1/3)SART(7)

2+iZ

2-iz2

5/3+i1

§5/3-i1

2X(1)SORT(2)i

2/3(1/3)8ART(7)1

=33 |

[Fns.. [a A #]Tools [Editor[Files|

Figure 18: The output of QF program on physical calculator. Captured via
Connect.

16

