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Abstract

The title of this workshop is: ”What comes beyond standard mod-
els?”. Standard models are based on Poincare invariant quantum
theory. However, as shown in the famous Dyson’s paper ”Missed
Opportunities” and in my publications, such a theory is a special de-
generate case of de Sitter invariant quantum theory. I argue that the
phenomenon of cosmological acceleration has a natural explanation
as a consequence of quantum de Sitter symmetry in semiclassical ap-
proximation. The explanation is based only on universally recognized
results of physics and does not involve models and/or assumptions
the validity of which has not been unambiguously proved yet (e.g.,
dark energy and quintessence). I also explain that the cosmological
constant problem and the problem why the cosmological constant is
as is do not arise.

Keywords: quantum de Sitter symmetry; cosmological acceleration; irre-
ducible representations; dark energy

1 Introduction

The title of this workshop is: ”What comes beyond standard models?”.
Standard models are based on Poincare invariant quantum theory. How-
ever, as shown in the famous Dyson’s paper ”Missed Opportunities” and
in my publications, such a theory is a special degenerate case of de Sitter
invariant quantum theory.

The problem of cosmological acceleration is an example where the ap-
proach based on de Sitter symmetry solves the problem proceeding only
from universally recognized results of physics without involving models
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and/or assumptions the validity of which has not been unambiguously
proved yet (e.g., dark energy and quintessence). This problem was con-
sidered in my papers published in known journals, and in the book recently
published by Springer.

My publications are based on large calculations. To understand them,
the readers must be experts not only in quantum theory, but also in the
theory of representations of Lie algebras in Hilbert spaces. Therefore, un-
derstanding my results can be a challenge for many physicists. Since the
problem of cosmological acceleration is very important and my approach
considerably differs from approaches of other authors, in this presentation
to the 25th Bled workshop I outline only the ideas of my approach without
calculations.

2 History of dark energy

This history is well-known. First Einstein introduced the cosmological con-
stant Λ because he believed that the universe was stationary and his equa-
tions can ensure this only if Λ 6= 0. But when Friedman found his solutions
of equations of General Relativity (GR) with Λ = 0, and Hubble found that
the universe was expanding, Einstein said (according to Gamow’s memo-
ries) that introducing Λ 6= 0 was the biggest blunder of his life. After that,
the statement that Λ must be zero was advocated even in textbooks.

The explanation was that, according to the philosophy of GR, matter
creates a curvature of space-time, so when matter is absent, there should
be no curvature, i.e., space-time should be the flat Minkowski space. That
is why when in 1998 it was realized that the data on supernovae could be
described only with Λ 6= 0, the impression was that it was a shock of some-
thing fundamental. However, the term with Λ in the Einstein equations has
been moved from the left hand side to the right hand one, it was declared
that in fact Λ = 0, but the impression that Λ 6= 0 was the manifestation of
a hypothetical field which, depending on the model, was called dark energy
or quintessence. In spite of the fact that, as noted in wide publications (see
e.g., [1] and references therein), their physical nature remains a mystery,
the most publications on the problem of cosmological acceleration involve
those concepts.

Several authors criticized this approach from the following considera-
tions. GR without the contribution of Λ has been confirmed with a good
accuracy in experiments in the Solar System. If Λ is as small as it has been
observed, then it can have a significant effect only at cosmological distances
while for experiments in the Solar System the role of such a small value is
negligible. The authors of [2] titled ”Why All These Prejudices Against a
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Constant?” note that it is not clear why we should think that only a special
case Λ = 0 is allowed. If we accept the theory containing the gravitational
constant G, which cannot be calculated and is taken from outside, then
why can’t we accept a theory containing two independent constants?

Let us note that currently there is no physical theory which works under
all conditions. For example, it is not correct to extrapolate nonrelativistic
theory to the cases when speeds are comparable to c, and it is not correct
to extrapolate classical physics for describing energy levels of the hydrogen
atom. GR is a successful classical (i.e., non-quantum) theory for describing
macroscopic phenomena where large masses are present, but extrapolation
of GR to the case when matter disappears is not physical. One of the princi-
ples of physics is that a definition of a physical quantity is a description how
this quantity should be measured. The concepts of space and its curvature
are pure mathematical. Their aim is to describe the motion of real bodies.
But the concepts of empty space and its curvature should not be used in
physics because nothing can be measured in a space which exists only in
our imagination. Indeed, in the limit of GR when matter disappears, space
remains and has a curvature (zero curvature when Λ = 0, positive curva-
ture when Λ > 0 and negative curvature when Λ < 0) while, since space is
only a mathematical concept for describing matter, a reasonable approach
should be such that in this limit space should disappear too.

A common principle of physics is that when a new phenomenon is dis-
covered, physicists should try to first explain it proceeding from the existing
science. Only if all such efforts fail, something exotic can be involved. But
in the case of cosmological acceleration, an opposite approach was adopted:
exotic explanations with dark energy or quintessence were accepted without
serious efforts to explain the data in the framework of existing science.

3 Elementary particles in relativistic and de Sitter-
invariant theories

In the problem of cosmological acceleration, only large macroscopic bodies
are involved and that is why one might think that for considering this
problem, there is no need to involve quantum theory. Most works on this
problem proceed from GR with additional assumptions the validity of which
has not been unambiguously proved yet (see e.g. [1] and references therein).

However, ideally, the results for every classical (i.e., non-quantum) prob-
lem should be obtained from quantum theory in semiclassical approxima-
tion. We will see that considering the problem of cosmological acceleration
from the point of view of quantum theory, sheds a new light on understand-
ing this problem.
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Standard particle theory and standard models are based on Poincare
symmetry where elementary particles are described by irreducible represen-
tations (IRs) of the Poincare group or its Lie algebra. The representation
generators of the Poincare algebra commute according to the commutation
relations

[Pµ, P ν ] = 0, [Pµ,Mνρ] = −i(ηµρP ν − ηµνP ρ),
[Mµν ,Mρσ] = −i(ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ) (1)

where µ, ν = 0, 1, 2, 3, Pµ are the operators of the four-momentum, Mµν

are the operators of Lorentz angular momenta and ηµν is such that η00 =
−η11 = −η22 = −η33 = 1 and ηµν = 0 if µ 6= ν.

Although the Poincare group is the group of motions of Minkowski
space, the description in terms of relations (1) does not involve Minkowski
space at all. It involves only representation operators of the Poincare al-
gebra, and those relations can be treated as a definition of relativistic in-
variance on quantum level (see the discussion in [3, 4]). In particular, the
fact that ηµν formally coincides with the metric tensor in Minkowski space
does not imply that this space is involved.

In classical field theories, the background space (e.g., Minkowski space)
is an auxiliary mathematical concept for describing real fields and bodies.
In quantum theory, any physical quantity should be described by an op-
erator, but there is no operator corresponding to the coordinate x of the
background space. In quantum field theory, Minkowski space is an aux-
iliary mathematical concept for describing interacting fields. Here a local
Lagrangian L(x) is used, and x is only an integration parameter. The goal
of the theory is to construct the S-matrix in momentum space, and, when
this construction has been accomplished, one can forget about space-time
background. This is in the spirit of the Heisenberg S-matrix program ac-
cording to which in quantum theory one can describe only transitions of
states from the infinite past when t → −∞ to the distant future when
t→ +∞.

The fact that the S-matrix is the operator in momentum space does
not exclude a possibility that, in semiclassical approximation, it is possible
to have a space-time description with some accuracy but not with absolute
accuracy (see e.g., [4] for a detailed discussion). For example, if p is the mo-
mentum operator of a particle then, in the nonrelativistic approximation,
the position operator of this particle in momentum representation can be
defined as r = i~∂/∂p. In this case, r is a physical quantity characterizing
a given particle and is different for different particles.

In relativistic quantum mechanics, for considering a system of noninter-
acting particles, there is no need to involve Minkowski space. A description
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of a single particle is fully defined by its IR by the operators commuting
according to Eq. (1) while the representation describing several particles
is the tensor product of the corresponding single-particle IRs. This im-
plies that the four-momentum and Lorenz angular momenta operators for
a system are sums of the corresponding single-particle operators. In the
general case, representations describing systems with interaction are not
tensor products of single-particle IRs, but there is no law that the con-
struction of such representations should necessarily involve a background
space-time.

In his famous paper ”Missed Opportunities” [5] Dyson notes that de
Sitter (dS) and anti-de Sitter (AdS) theories are more general (fundamen-
tal) than Poincare one even from pure mathematical considerations because
dS and AdS groups are more symmetric than Poincare one. The transition
from the former to the latter is described by a procedure called contraction
when a parameter R (see below) goes to infinity. At the same time, since dS
and AdS groups are semisimple, they have a maximum possible symmetry
and cannot be obtained from more symmetric groups by contraction.

The paper [5] appeared in 1972 (i.e., more than 50 years ago) and, in
view of Dyson’s results, a question arises why general theories of elementary
particles (QED, electroweak theory and QCD) are still based on Poincare
symmetry and not dS or AdS ones. Probably, physicists believe that, since
the parameter R is much greater than even sizes of stars, dS and AdS
symmetries can play an important role only in cosmology and there is no
need to use them for describing elementary particles. We believe that this
argument is not consistent because usually more general theories shed a
new light on standard concepts. The discussion in our publications and, in
particular, in this paper is a good illustration of this point.

By analogy with relativistic quantum theory, the definition of quantum
dS symmetry should not involve dS space. If Mab (a, b = 0, 1, 2, 3, 4, Mab =
−M ba) are the operators describing the system under consideration, then,
by definition of dS symmetry on quantum level, they should satisfy the
commutation relations of the dS Lie algebra so(1,4), i.e.,

[Mab,M cd] = −i(ηacM bd + ηbdMac − ηadM bc − ηbcMad) (2)

where ηab is such that η00 = −η11 = −η22 = −η33 = −η44 = 1 and ηab = 0
if a 6= b. The definition of AdS symmetry on quantum level is given by the
same equations but η44 = 1.

The procedure of contraction from dS and AdS symmetries to Poincare
one is defined as follows. If we define the operators Pµ as Pµ = M4µ/R
where R is a parameter with the dimension length then in the formal limit
when R→∞, M4µ →∞ but the quantities Pµ are finite, Eqs. (2) become
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Eqs. (1). This procedure is the same for the dS and AdS symmetries and
it has nothing to do with the relation between the Minkowski and dS/AdS
spaces.

In [4, 6] it has been proposed the following
Definition: Let theory A contain a finite nonzero parameter and theory

B be obtained from theory A in the formal limit when the parameter goes
to zero or infinity. Suppose that, with any desired accuracy, theory A can
reproduce any result of theory B by choosing a value of the parameter. On
the contrary, when the limit is already taken, one cannot return to theory
A, and theory B cannot reproduce all results of theory A. Then theory A
is more general than theory B and theory B is a special degenerate case of
theory A.

As argued in [4, 6], in contrast to Dyson’s approach based on Lie groups,
the approach to symmetry on quantum level should be based on Lie al-
gebras. Then it has been proved that, on quantum level, dS and AdS
symmetries are more general (fundamental) than Poincare symmetry, and
this fact has nothing to do with the comparison of dS and AdS spaces with
Minkowski space. It has been also proved that classical theory is a special
degenerate case of quantum one in the formal limit ~ → 0, and nonrela-
tivistic theory is a special degenerate case of relativistic one in the formal
limit c→∞. In the literature the above facts are explained from physical
considerations but, as shown in [4, 6], they can be proved mathematically
by using properties of Lie algebras.

Physicists usually understand that physics cannot (and should not) de-
rive that c ≈ 3 · 108m/s and ~ ≈ 1.054 · 10−34kg·m2/s. At the same time,
they usually believe that physics should derive the value of Λ, and that
the solution of the dark energy problem depends on this value. However,
background space in GR is only a classical concept, while on quantum level
symmetry is defined by a Lie algebra of basic operators.

The parameters (c, ~, R) are on equal footing because each of them is
the parameter of contraction from a more general Lie algebra to a less
general one, and therefore those parameters must be finite. In particular,
the formal case c = ∞ corresponds to the situation when the Poincare
algebra does not exist because it becomes the Galilei algebra, and the formal
case R = ∞ corresponds to the situation when the de Sitter algebras do
not exist because they become the Poincare algebra.

Quantum de Sitter theories do not need the dimensionful parameters
(c, ~, R) at all. They arise in less general theories, and the question why
they are as are does not arise because the answer is: ~ is as is because
people want to measure angular momenta in kg·m2/s, c is as is because
people want to measure velocities in m/s, and R is as is because people
want to measure distances in meters. The values of the parameters (c, ~, R)
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in (kg,m, s) have arisen from people’s macroscopic experience, and there
is no guaranty that those values will be the same during the whole history
of the universe (see e.g., [4] for a more detailed discussion). The fact that
particle theories do not need the quantities (c, ~) is often explained such
that the system of units c = ~ = 1 is used. However, the concept of systems
of units is purely classical and is not needed in quantum theory.

It is difficult to imagine standard particle theories without IRs of the
Poincare algebra. Therefore, when Poincare symmetry is replaced by a
more general dS one, dS particle theories should be based on IRs of the dS
algebra. However, as a rule, physicists are not familiar with such IRs. The
mathematical literature on such IRs is wide but there are only a few papers
where such IRs are described for physicists. For example, an excellent
Mensky’s book [7] exists only in Russian.

4 Explanation of cosmological acceleration

In this section we explain that, as follows from quantum theory, the value
of Λ in classical theory must be non-zero and the question why Λ is as is
does not arise.

Consider a system of free macroscopic bodies, i.e., we do not consider
gravitational, electromagnetic and other interactions between the bodies.
Suppose that distances between the bodies are much greater than their
sizes. Then the motion of each body as a whole can be formally described
in the same way as the motion of an elementary particle with the same mass.
In semiclassical approximation, the spin effects can be neglected, and we
can consider our system in the framework of dS quantum mechanics of free
particles.

The explicit expressions for the operators Mab in IRs of the dS Lie
algebra have been derived in [8] (see also [4, 6, 9]). In contrast to stan-
dard quantum theory where the mass m of a particle is dimensionful, in dS
quantum theory, the mass mdS of a particle is dimensionless. In the approx-
imation when Poincare symmetry works with a high accuracy, these masses
in units c = ~ = 1 are related as mdS = Rm. Also, in dS quantum theory,
the Hilbert space of functions in IRs is the space of functions depending
not on momenta but on four-velocities v = (v0,v) where v0 = (1 + v2)1/2.
Then in the spinless case, the explicit expressions for the operators Mab

are (see e.g., Eq. (3.16) in [4]):

J = l(v), N = −iv0
∂

∂v
, E = mdSv0 + iv0(v

∂

∂v
+

3

2
)

B = mdSv + i[
∂

∂v
+ v(v

∂

∂v
) +

3

2
v] (3)

7



where J = {M23,M31,M12}, N = {M01,M02,M03}, B = {M41,M42,M43},
l(v) = −iv×∂/∂v and E = M40. The important observation is that, at this
stage, we have no coordinates yet. For describing the motion of the particle
in terms of coordinates, we must define the position operator. If Poincare
symmetry works with a high accuracy, the momentum of the particle can
be defined as p = mv and, as noted above, the position operator can be
defined as r = i~∂/∂p.

In semiclassical approximation, we can treat p and r as usual vectors.
Then, if E = E/R, P = B/R and the classical nonrelativistic Hamiltonian
is defined as H = E −mc2, it follows from Eq. (3) that

H(P, r) =
P2

2m
− mc2r2

2R2
(4)

Here the last term is the dS correction to the non-relativistic Hamiltonian.
The representation describing a free N-body system is a tensor product

of the corresponding single-particle IRs. This means that every N-body
operator Mab is a sum of the corresponding single-particle operators.

Consider a system of two free particles described by the quantities Pj

and rj (j = 1, 2). Define standard nonrelativistic variables

P = P1 + P2, q = (m2P1 −m1P2)/(m1 +m2)

R = (m1r1 +m2r2)/(m1 +m2), r = r1 − r2 (5)

Here P and R are the momentum and position of the system as a whole, and
q and r are the relative momentum and relative radius-vector, respectively.
Then as follows from Eqs. (4) and (5), the internal two-body Hamiltonian
is

Hnr(r,q) =
q2

2m12
− m12c

2r2

2R2
(6)

where m12 is the reduced two-particle mass. Then, as follows from the
Hamilton equations, in semiclassical approximation the relative accelera-
tion is given by

a = rc2/R2 (7)

where a and r are the relative acceleration and relative radius vector of the
bodies, respectively.

The fact that the relative acceleration of noninteracting bodies is not
zero does not contradict the law of inertia, because this law is valid only
in the case of Galilei and Poincare symmetries. At the same time, in the
case of dS symmetry, noninteracting bodies necessarily repulse each other.
In the formal limit R→∞, the acceleration becomes zero as it should be.

Equations of relative motion derived from Eq. (6) are the same as those
derived from GR if Λ 6= 0. In particular, the result (7) coincides with that
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in GR if the curvature of dS space equals Λ = 3/R2, where R is the radius
of this space. Therefore the cosmological constant has a physical meaning
only on classical level, the parameter of contraction from dS symmetry to
Poincare one coincides with R and, as noted above, a question why R is as
is does not arise.

In GR, the result (7) does not depend on how Λ is interpreted, as
the curvature of empty space or as the manifestation of dark energy or
quintessence. However, in quantum theory, there is no freedom of inter-
pretation. Here R is the parameter of contraction from the dS Lie algebra
to the Poincare one, it has nothing to do with dark energy or quintessence
and it must be finite because dS symmetry is more general than Poincare
one.

Every dimensionful parameter cannot have the same numerical values
during the whole history of the universe. For example, at early stages of the
universe such parameters do not have a physical meaning because semiclas-
sical approximation does not work at those stages. In particular, the terms
”cosmological constant” and ”gravitational constant” can be misleading.
General Relativity successfully describes many data in the approximation
when Λ and G are constants but this does not mean that those quantities
have the same numerical values during the whole history of the universe.

5 Discussion and conclusion

In view of the problem of cosmological acceleration, the cosmological con-
stant problem is widely discussed in the literature. This problem arises as
follows.

One starts from Poincare invariant quantum field theory (QFT) of
gravity defined on Minkowski space. This theory contains only one phe-
nomenological parameter — the gravitational constant G, and the cos-
mological constant Λ is defined by the vacuum expectation value of the
energy-momentum tensor. The theory contains strong divergencies which
cannot be eliminated because the theory is not renormalizable. Therefore,
the results for divergent integrals can be made finite only with a choice of
the cutoff parameter. Since G is the only parameter in the theory, a rea-
sonable choice of the cutoff parameter in momentum space is the Planck
momentum ~/lP where lP is the Plank length. In units ~ = c = 1, G has
the dimension 1/length2 and Λ has the dimension length2. Therefore, the
value of Λ obtained in this approach is of the order of 1/G. However, this
value is more than 120 orders of magnitude greater than the experimental
one.

In view of this situation, the following remarks can be made. As ex-
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plained in Sec. 3, Poincare symmetry is a special degenerate case of dS
symmetry in the formal limit R → ∞. Here R is a parameter of contrac-
tion from dS algebra to Poincare one. This parameter has nothing to do
with the relation between Poincare and dS spaces. The problem why R is
as is does not arise by analogy with the problem why c and ~ are as are.
As explained in Sec. 4, the cosmological constant Λ has a physical mean-
ing only in semiclassical approximation and here it equals 3/R2. Therefore
the cosmological constant problem and the problem why the cosmological
constant is as is do not arise.

As noted in Sec. 3, the background space-time is only a mathematical
concept which has a physical meaning only in classical theory. This concept
turned out to be successful in QED. In particular, the results for the electron
and muon magnetic moments agree with experiments with the accuracy of
eight decimal digits. However, QED works only in perturbation theory
because the fine structure constant is small. There is no law that the
ultimate quantum theory will necessarily involve the concept of background
space-time. QFTs of gravity (for example, Loop Quantum Gravity) usually
assume that in semiclassical approximation, the background space in those
theories should become the background space in GR. However, in Sec. 4,
the result for the cosmological acceleration in semiclassical approximation
has been obtained without space-time background and this result is the
same as that obtained in GR.

Although the physical nature of dark energy remains a mystery, there
exists a wide literature where the authors propose QFT models of dark en-
ergy. These models are based on Poincare symmetry with the background
Minkowski space. So, the authors do not take into account the fact that
de Sitter symmetry is more general (fundamental) than Poincare symme-
try and that the background space is only a classical concept. While in
most publications, only proposals about future discovery of dark energy
are considered, the authors of [1] argue that dark energy has been already
discovered by the XENON1T collaboration. In June 2020, this collabora-
tion reported an excess of electron recoils: 285 events, 53 more than the
expected 232 with a statistical significance of 3.5σ. However, in July 2022,
a new analysis by the XENONnT collaboration discarded the excess [10].

As shown in Sec. 4, the result (7) has been derived without using dS
space and its geometry (metric and connection). It is simply a consequence
of dS quantum mechanics in semiclassical approximation. We believe that
this result is more important than the result of GR because any classical
result should be a consequence of quantum theory in semiclassical approx-
imation.

Therefore, the phenomenon of cosmological acceleration has nothing to
do with dark energy or other artificial reasons. This phenomenon is purely
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a kinematical consequence of dS quantum mechanics in semiclassical ap-
proximation.
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