Finding regions of correlated polarization directions of the 1450 QSO radio sources in the JVAS1450 catalog

Richard Shurtleff*

Abstract

This article presents a way to survey catalogued data, here the JVAS1450 catalog of polarized radio QSOs that has been measured, collected, catalogued, and made available by others. The polarization directions are spread out haphazard over the Northern Equatorial hemisphere. We find five degree radius regions whose sources' polarization directions converge significantly at points on the Celestial Sphere or diverge significantly. Samples are collected for further study. The appendix consists of a computer software program that performs the needed calculations. The computer program can be adapted to other choices of region radii and to other sets of transverse vectors.

Keywords: Alignment; Hub Test; Transverse Vectors; Polarization; Jets; Survey
*Department of Sciences, Wentworth Institute of Technology, 550 Huntington Avenue, Boston, MA, USA, 02115, orcid.org/0000-0001-5920-759X, e-mail addresses: shurtleff@@wit.edu, momentummatrix@yahoo.com

0 . Preface

The pdf version of this notebook is available online from the viXra archive. Search by title and author.
To find the ready-to-run notebook follow one of the links in Ref. 1.
The notebooks in this series were created using Wolfram Mathematica, Version Number: 12.1, Ref. 2.

Note(s):
(1) Some numerical quantities in the pdf version may differ from the ready-to-run version in Ref. 1 because the ready-to-run version may have been run after the pdf was produced. The ready-to-run version and the pdf version may be updated independently of one another.
(2) The notation is undergoing a change from " S " indicating significance to " p " standing for significance. Some of the " S " labels have most likely survived.

CONTENTS

Part I the Article

0 . Preface

1. Introduction
2. The Hub Test
3. Setting up the regions
4. The significance of the regions' alignments
5. Combining regions to make samples
6. Concluding Remarks

References

Part II the Appendix
A1. Introduction
A2. User Input
A3. Preliminary
A4. Sources
A5. Building a Grid
A6. Setting up circular regions to analyze
A7. Probability Distributions and Significance of the Regions
A8. Mapping the significance of the regions
A9. Selecting sources to analyze

1. Introduction

Observations of an astronomical object may include quantities such as polarization and jets that can be represented as transverse vectors, vectors that are perpendicular to the direction to the object itself. If a set of transverse vectors from many objects are correlated, this information may reflect on the objects themselves or of the intervening medium through which the observations are made or otherwise.

Given a set of transverse vectors on the sky, one may ask if their directions are correlated. Possible transverse vectors include the polarization direction of electromagnetic radiation and the direction of asymmetries such as jets. Reducing a jumble of transverse vectors to regions with interesting correlations is the goal of the present article.

The data for the QSOs studied in this report are taken from the JVAS1450, Ref. 3,4, a catalog of 1450 QSOs that was kindly communicated to me by one of the authors of Ref. 3. Details of the dataset can be found in Ref. 3. As explained in Ref. 3, the JVAS1450 catalog includes data from the earlier large JVAS/CLASS 8.4-GHz catalog, Ref. 4. See Fig. 1 for a display of the data treated in this article.

The test of alignment used in this article, the Hub Test, extends the polarization directions, making Great Circle geodesics on the Celestial Sphere. The polarization directions are perfectly aligned if they intersect at some point H on the sphere. The directions are well-aligned when they converge in a small area near some point $H_{\min }$. The Hub Test can find correlations for samples with hubs $H_{\text {min }}$ that are near the sources as well as the distant Hubs of other alignment tests.

The Hub Test is equally capable of finding avoidance hubs, $H_{\max }$, places where the density of the Great Circle geodesics is low. Part I the article focusses on alignment, while Part II the Appendix treats both avoidance and alignment on equal terms.

The survey discussed herein seeks interesting samples to study. The QSO sources are assigned to 5° radius circular regions centered on the grid points of a 2° mesh. To be evaluated, a minimum of seven sources per region is required. The regions are sorted by the significance of their alignments according to the Hub Test. Previous articles, Ref. 5 and 6, have evaluated a couple of interesting samples of QSOs that are identified in this survey.

The Hub Test is briefly presented in Sec. 2. The catalog of QSOs and mapping the data occurs in Sec. 3. Then, Sec. 4 analyzes the alignment of 5° radius samples and locates the significantly aligned samples. Maps of the results can be found in Sec. 4. Locating neighboring significantly aligned sets of sources is the goal and that is accomplished in Sec. 4. Sec. 5 completes Part I the Article with some concluding remarks.

Equatorial Coordinate System

Figure 1. A whole-sphere map of the sources and polarization directions of the JVAS1450 catalog. The plot is centered on (RA,dec) $=\left(180^{\circ}, 0\right)$. East is to the right.
2. The Hub Test

The Hub Test, Ref. 7, judges the alignment of transverse vectors with the directions to a point on the Celestial Sphere. By involving the direction to another point, the Hub test is indirect. For a single source, the basic quantities are illustrated in Fig. 2. The "alignment angle" η is the acute angle η between two great circles at $S, 0^{\circ} \leq \eta \leq 90^{\circ}$. The alignment angle η measures how well the polarization direction \hat{v}_{ψ} matches the direction \hat{v}_{H} toward the point H. Perfect alignment occurs when $\eta=0^{\circ}$ and the two great circles overlap. When these two great circles are perpendicular, $\eta=90^{\circ}$, that indicates maximum "avoidance" of the polarization direction \hat{v}_{ψ} with the point H on the sphere. The halfway value, $\eta=45^{\circ}$, favors neither alignment nor avoidance.

Figure 2: The Celestial sphere is pictured on the left and on the right is the plane tangent to the sphere at the source S. The linear polarization direction \hat{v}_{ψ} lies in the tangent plane and determines the purple great circle on the sphere. A point H on the sphere together with the point S determine a second great circle, the blue circle drawn on the sphere. Clearly, H and S must be distinct in order to determine a unique great circle. The acute angle η measures the alignment of the polarization direction ψ with the point H.

With N sources $S_{i}, i=1, \ldots, N$, there are N alignment angles $\eta_{\text {iH }}$ at each point H. One can calculate an average alignment angle $\bar{\eta}$ at H,

$$
\begin{equation*}
\bar{\eta}(\mathrm{H})=\frac{1}{N} \sum_{i=1}^{N} \eta_{\mathrm{iH}}, \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\cos \left(\eta_{\mathrm{iH}}\right)=\left|\hat{v}_{\psi} \cdot \hat{v}_{H}\right| . \tag{2}
\end{equation*}
$$

Given a positive numerical value for the absolute value of the dot product on the right in (2), the solution for the angle η_{iH} is taken to be the positive acute angle with $0^{\circ} \leq \eta_{\mathrm{iH}} \leq 90^{\circ}$. Clearly, the average alignment angle $\bar{\eta}(\mathrm{H})$ at the point H must also be acute. An example of the function $\bar{\eta}(\mathrm{H})$ is presented in Figs. 3 and 4.

The alignment angle $\bar{\eta}(\mathrm{H})$ is a function of position H on the sphere. In general, the function $\bar{\eta}(\mathrm{H})$ is symmetric across diameters, $\bar{\eta}(\mathrm{H})=\bar{\eta}(-\mathrm{H})$, because great circles are symmetric across diameters.

For random polarization directions, the average $\bar{\eta}(\mathrm{H})$ should be near 45°, since each alignment angle η_{iH} is acute, $0^{\circ} \leq \eta_{\mathrm{iH}} \leq 90^{\circ}$, and random polarization directions should not favor large values or small values of η_{iH}, and, therefore, average to about 45°.

Points H where the average alignment angle $\bar{\eta}(\mathrm{H})$ is smaller than 45°, the great circles tend to converge and where the angle $\bar{\eta}(\mathrm{H})$ is larger than 45°, the great circles can be said to diverge. The extremes of the function $\bar{\eta}(\mathrm{H})$ measure extreme convergence and extreme divergence of the great circles determined by the polarization directions. We use the term "alignment" for convergence and "avoidance" for divergence.

In this article and notebook, we often use "min" to label the smallest alignment angle $\bar{\eta}_{\text {min }}$, the minimum value of the function $\bar{\eta}(\mathrm{H})$, Eq. (1). The points on the Celestial Sphere where the minimum occurs are the "hubs" $H_{\min }$ and $-H_{\min }$. Thus "min" is associated with convergence of the polarization directions. For divergence, the hubs $H_{\max }$ and $-H_{\max }$ locate places where the polarization directions most avoid, as indicated by the largest alignment angle $\bar{\eta}_{\text {max }}$, the maximum value of the function $\bar{\eta}(\mathrm{H})$. Thus, we very often label an avoidance related quantity with "max".

Figure 3: For the sample of 13 QSOs called Clump 2 in Fig. 6, the alignment angle function $\bar{\eta}(\mathrm{H})$ in (1) is mapped on the Celestial Sphere (Aitoff plot, centered on $(\alpha, \delta)=\left(180^{\circ}, 0\right)$, East to the right). The QSOs are shaded green \square. The smallest alignment angle, $\bar{\eta}_{\min }=10.9^{\circ}$, is located at the hubs $H_{\min }$ and $-H_{\min }$, where the polarization directions converge best. One alignment hub $H_{\min }$ is located very close to the QSOs. The largest alignment angle, $\bar{\eta}_{\max }=62.7^{\circ}$, occurs at the avoidance hubs $H_{\max }$ and $-H_{\max }$. See Ref. 6 .

Figure 4: The region near the QSOs in Fig. 3. The QSOs are located at the green dots. The short black lines through the QSOs indicate the polarization directions. Measuring polarization directions ψ clockwise from North, one sees that the angles ψ range from more than $\psi=90^{\circ}$ for the northern-most QSOs to 45° or so for the southerly QSOs. Most are in the general direction of the alignment hub $H_{\min }$, but their directions depend on where they are located. The QSOs display parallax.

The significance, p or p-value and sometimes S, of the smallest alignment angle $\bar{\eta}_{\min }$ is defined as the likelihood that randomly directed polarization vectors would produce a smaller value of $\bar{\eta}_{\min }$. Therefore, by this definition, one way to determine significance is to repeat the process of making Great Circles from polarization directions, calculating the alignment function $\bar{\eta}(\mathrm{H})$, and finding $\bar{\eta}_{\text {min }}$, all for randomly directed vectors. One such process makes a "random run".

The most reliable method of determining significance that we consider is called "Direct Method A". Following the definition of significance, one generates many random runs with randomly directed transverse vectors assigned to the sources. A histogram of the random-based results for $\bar{\eta}_{\min }$ is then approximated by a suitable fitting function. Aside from a scale factor that normalizes the distribution, the fitting function of the histogram is the probability distribution of the random results $\bar{\eta}_{\min }$. Having found a function that approximates the probability distribution, one estimates the likelihood that random runs return better results than the observed
$\bar{\eta}_{\text {min }}{ }^{\text {obs }}$ and that is the significance of $\bar{\eta}_{\text {min }}{ }^{\text {obs }}$. Similar comments apply for avoidance.
It would be terribly inconvenient to apply Direct Method A for all the regions in the survey. Instead we introduce a "Library" of data that can be used to reconstitute the probability distributions for a range of samples with various number of sources and with various sizes. The Library data is used in two ways, as "Interpolation Method B" and as "Function Method C", to develop values of significance for the alignments of the many regions considered in the survey. The Methods are discussed briefly where they are introduced in Sec. A7. For a more complete discussion, see Ref. 8.

3. Setting up the regions

The Hub Test needs enough information to draw great circles outward from the sources in the directions of the polarization vectors. Thus the required data includes the location of the sources as well as the polarization direction at each source. Also, the uncertainty in the measured polarization direction is needed to estimate the error bars on the calculated quantities. In this report, the uncertainty in the locations is taken to be insignificant.

The JVAS1450 catalog and the JVAS/CLASS 8.4-GHz catalog gives us all the locations of the sources in J2000.0 equatorial coordinates so we can find right ascension and declination of the sources in decimal degrees and the polarization position angle and its uncertainty in decimal degrees. The data also includes other interesting quantities such as the redshift. Such extra data is not needed here.

The computer program in Part II the Appendix assumes the needed data is collected in a table, called "data00", in a prescribed order. One hopes the program in the Appendix can serve as a kind of template. If one possesses other data from other sources in another experimental campaign, then, by putting the other data in the same form as the data00 table here, one can run the program and get alignment and avoidance maps for the other data.

Figure 5. The grid. At a constant declination (latitude), the right ascension (longitude) of the grid points are spaced by 2°. The circles of constant declination are separated by 2°. Each of the regions analyzed is centered on one of the grid points.

The program constructs a mesh of grid points. The spacing of points on the grid can be adjusted as one wishes. See Figs. 5 for a
plot of the grid for this article. We use a grid spacing of 2°, taking into account the shrinking radii of circles of constant declination as they approach the poles.

The computer program Part II the Appendix has another user-definable quantity, the region radius. Regions in this report have 5° radii. Not all the 5° radius regions have sources, only a few sources are in the South. And the number of sources in a region must be at least 7 for the significance estimates to be sufficiently valid.

The problem is with probability distributions, like Gaussians, that assign nonzero probability to non-acute alignment angles. With the distributions in this article and for samples with fewer than 7 sources, the probability of negative alignment angles is nonnegligible. But alignment angles are acute and never negative, so any assignment of likelihood to negative alignment angles is an artifact. Similarly, the avoidance angle cannot be larger than 90°, yet the probability distribution continues to infinity with nonzero likelihood. We can ignore these effects for samples with more than seven sources, $N \geq 7$.

Very Significantly Aligned Regions ($\mathrm{S}=p \leq 1 \%$)

Figure 6. Regions with sources that are very significantly aligned are shaded in color. The centers of 5° radius regions that have at least 7 sources are plotted as gray points, a total of 1811 regions. The 19 regions whose polarization directions align with a significance less than 1%, meaning that $p \leq 0.01$, are considered "very significantly aligned" and are shaded in color. The range of significance runs from $p=0.00047$ to $p=0.01$ (very significant limit), and, since $-\log _{10} 0.00047=3.3$, we have $2.0 \leq$ $-\log _{10} p \leq 3.3$. As shown in Fig. A4, the uncertainty in $-\log _{10} p$ is about ± 0.4, running from ± 0.25 to ± 0.5.
4. The significance of the regions' alignments

With the Hub Test, the alignment of a sample is gauged by the smallest average alignment angle $\bar{\eta}_{\text {min }}$, the minimum value of the function $\bar{\eta}(\mathrm{H})$, Eq. (1). For example, Fig. 3 plots the function $\bar{\eta}(\mathrm{H})$ for the sample of 13 QSOs in Ref. 6. Similarly, for each of the 1811 qualifying regions, one finds the function $\bar{\eta}(\mathrm{H})$ and then determine the smallest alignment angle $\bar{\eta}_{\text {min }}$. Thus, we get 1811 results $\bar{\eta}_{\text {min }}$, one for each region.

By assuming the significance of the alignment indicated by $\bar{\eta}_{\text {min }}$ depends mainly on the number of sources N and the root-meanradius ρ RMS of the region, one can find significance by Interpolation Method B and Function Method C, Ref. 8, based on an archived Library. The Library has a collection of parameters to generate probability distributions that can be utilized to obtain the significance of the alignment of the sources in a region.

Here, with polarization data from JVAS1450, we find that just 19 regions have very significant alignment. These are plotted in color in Fig. 6. Since there are 1811 regions, 19 regions is very close to 1% of the total number of regions. However, the most significantly aligned region has a significance of $p=0.00047$ which means its alignment is better than all but one in 2100 regions with randomly directed polarizations. The most significantly aligned region lies just above the center of Fig. 6.

If the most significantly aligned region was the only region aligned better than 2100 randomly directed regions, one could argue that the alignment was consistent with pure chance. But there are other well-aligned regions in Fig. 6, so the likelihood that all are aligned by chance is much smaller than $1 / 1811$. Furthermore, by collecting the sources in different regions, one can find larger collections of well-aligned samples and these may have significances that make the number 1811 of regions seem small. For example, by combining the 8 sources in the most significantly aligned region with 19 sources from overlapping very significantly aligned regions, one has a sample of 27 sources that has been studied in Ref. 5. There, the sample is shown to be aligned better than one in about 70,000 randomly directed samples. Collecting the 13 sources in two regions near $($ RA, dec $)=\left(170^{\circ}, 50^{\circ}\right)$, one obtains a sample that is better aligned than one in 55,000 randomly directed samples. So the alignment of these samples is unlikely to be due to randomly oriented polarization directions.

Figure 7. Regions with significant alignment are shaded in color. There are 96 colored dots compared with the 19 in Fig. 6. That makes sense, because to qualify as "significant" as many as one in twenty randomly directed samples need be better aligned than the region in question. For the "very significantly" aligned regions of Fig. 6, only one in a hundred randomly directed regions can be better aligned.

The less selective one is, the more regions are collected. In Fig. 7, the required significance is weakened to $p \leq 5 \%$ from the p $\leq 1 \%$ in Fig. 6. Thus the regions in color in Fig. 7 are aligned 'significantly', $p \leq 5 \%$, but not 'very significantly' which would require $p=1 \%$ or less. One sees that the very significantly aligned regions displayed in Fig. 6 are surrounded by other regions that are merely significantly aligned.

5. Combining regions to make samples

We have previously studied two samples of polarized radio QSOs from the JVAS1450 catalog, Refs. 5 and 6. In this section we discuss the steps that determine the two samples that were studied and published. For details, see Sec. A9 "Selecting sources to
analyze" in Part II the Appendix. The samples studied previously are labeled Clump 1 and Clump 2 in Figs. 6.
Clump 1 consists of eight overlapping 5° radius regions with alignments that are very significant, $p \leq 0.01=1 \%$. The most significantly aligned region has eight sources and is aligned with significance $p_{0}=4.7 \times 10^{-4}$. Combining the sources from the eight regions yields a sample with $N=27$ QSO sources and a root-mean-square radius ρ RMS of 6.8°, which is roughly equivalent to a 10° radius circular region since taking the root-mean-square introduces a factor of about 0.7 . One finds in Ref. 5 , that the smallest alignment angle $\bar{\eta}_{\text {min }}$ for the sample is $\bar{\eta}_{\text {min }}=21.1^{\circ}$ which has a significance of $p=(0.44$ to 4.5$) \times 10^{-5} \preccurlyeq 0.1 p_{0}$. Thus, by combining the eight regions one finds a sample that is better aligned than any of the individual regions.

Clump 2 in Fig. 6 has just two 5° regions with 13 QSOs when combined. The root-mean-square radius is about $5^{\circ}, \rho$ RMS $=$ 4.7°. The significance of the alignment of the polarization directions of the 13 QSOs is $p=(1.7$ to 2.3$) \times 10^{-5}$, compared with p_{0} $=2.4 \times 10^{-3}$ for one of the two regions. Again, we find that combining the two very significant regions yields a sample with more significant alignment than either region separately.

We found that simply combining neighboring very significantly aligned regions produced samples that were worth studying. One supposes that there are other, more careful, ways to find a sample to study. However, the point of making the survey is to find order in the jumble and to locate well aligned sources, thereby identifying neighborhoods that may worthy of further research.

6. Concluding Remarks

When confronted with a jumble of transverse vectors like that in Fig. 1, generating a survey that maps the significance of the alignment in regions may help organize the data and identify areas to investigate further. Conducting a survey like that in this report can be a first step to finding well-aligned polarization directions of a large catalog.

There are no guarantees, of course. Some overlooked small area may contain sources with interesting alignment properties, overlooked because the alignment is diluted in a region that is too big. A 5° radius region survey might be blind to a well-aligned collections of sources confined to 1° samples. Conversely, one suspects that a 1° region survey might miss some of the alignments that a 5° survey uncovers. Maybe the answer is to conduct more surveys.

Since finding the smallest alignment angle $\bar{\eta}_{\text {min }}$ and the largest avoidance angle $\bar{\eta}_{\text {max }}$ are such similar processes, this article treats only alignment in any detail. Yet avoidance may be the more important property of polarization directions for some sets of data. What if the polarization direction is perpendicular to some local structure. Then correlations of perpendiculars, i.e. avoidance and $\bar{\eta}_{\text {max }}$, take center stage. Part II the Appendix treats alignment and avoidance equally.

References

1. R. Shurtleff, the ready-to-run Mathematica version of this notebook is available at the following URLs: https://www.wolframcloud.com/obj/shurtleffr/Published/20211221Survey1450QSOsMapb.nb https://www.dropbox.com/s/6bqy56vazlfuuu6/20211221Survey1450QSOsMapb.nb?dl=0
2. Wolfram Research, Inc., Mathematica, Version 12.1, Champaign, IL (2020).
3.(11) See Table 1 QSOs and Sec. 2 in Pelgrims, V. and Hutsemékers, D., Polarization alignments of quasars from the JVAS/CLASS 8.4-GHz surveys, MNRAS, 450, 4161-4173, doi: 10.1093/mnras/stv917, arXiv:astro-ph:1503.03482 (2015). The JVAS1450 catalog was kindly emailed to me by V. Pelgrims .
4.(13) Jackson, N., Battye, R. A., Browne, I. W. A., Joshi, S., Muxlow, T. W. B., and Wilkinson, P. N., A survey of polarization in the JVAS/CLASS flat-spectrum radio source surveys - I. The data and catalogue production, MNRAS, 376, 371-377, doi: 10.1111/j.1365-2966.2007.11442.x, arXiv:astro-ph/0703273 (2007).
3. Shurtleff, R., "Evaluating the Alignment of the Polarized Radio Waves from 27 QSOs in a Region near the NGP", https://vixra.org/abs/2105.0091 (2021).
4. Shurtleff, R., "Evaluating the Alignment of the Polarized Radio Waves from 13 QSOs in Ursa Major", https://vixra.org/abs/2110.0077 (2021).
5. Shurtleff, R., "Indirect polarization alignment with points on the sky, the Hub Test", https://vixra.org/abs/2011.0026 (2020).
6. Shurtleff, R., "Alternate Methods for Judging the Significance of Hub Test Results", https://vixra.org/abs/2112.0109 (2021).
7. Wikipedia contributors. "Aitoff projection." Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 25 May.
8. Web. 3 Jan. 2018.

Part II the Appendix

CONTENTS of Part II

A1. Introduction
A2. User Input
A3. Preliminary
A4. Sources
A5. Building a Grid
A6. Setting up circular regions to analyze
A7. Probability Distributions and Significance of the Regions
A7a. The Library data
A7b. Interpolation Method B
A7c. Fit the Library Data with Functions, Function Method C
A7d. Combine Interpolation Method B and Function Method C
A7e. Significance of alignment and avoidance for the regions
A8. Mapping the significance of the regions
A9. Selecting sources to analyze

A1. Introduction

The Appendix is the computer program, a "notebook" written in the Wolfram Mathematica language. The inputs to the program in Sec. Al can be changed so the survey can deal with new data.

The Appendix treats alignment and avoidance equally, what it finds for one, it finds for the other. Avoidance may be important if the polarization direction turns out to be perpendicular to some feature such as a jet or some other structure. Then it would be important to find correlations of directions that are perpendicular to the polarization vectors and that would be revealed by gauging avoidance.

A2. User Input

This notebook may be used as a template to evaluate new data.

1. The new data should conform to the format of the table "data00" displayed below.
2. You may want to furnish a home directory so the program can find and save data files.
3. The grid spacing can be chosen by the user below in this section.
4. The regions to be analyzed are circular with a radius that can be chosen by the user in this section.

Definitions:


```
homeDirectory =
    "C:\\Users\\shurt\\Dropbox\\HOME_DESKTOP-0MRE5OJ\\SendXXX_CJP_CEJPetc\\SendViXra\\
        20200715AlignmentMethod\\20211221MapsOfSignificance"
```

```
C:\Users\shurt\Dropbox\HOME_DESKTOP-0MRE50J\SendXXX_CJP_CEJPetc\
    SendViXra\20200715AlignmentMethod\20211221MapsOfSignificance
```

The following cell has the data 00 table with the information about the sources. It is very large and, therefore, it is hidden from view. To see it go to "Cell Properties" and click "Open".

```
(*The table data00 can be uploaded from a file.*)
(*SetDirectory[homeDirectory]
        data00=Get["20200718data08JVAS1450.dat"];*)
gridSpacing = 2 (*grid spacing in degrees*);
rgnRadius = 5.(*degrees*);
```

A3. Preliminary

Definitions:

er, eN, eE are unit vectors in a 3D Cartesian coordinate system from Origin to Source,
$(\alpha, \delta)=$ RA and Dec of the source. We use degrees for the angles.
$\operatorname{er}(\alpha, \delta)=$ unit vectors from Origin to Source
eN $(\alpha, \delta)=$ local North at Source
$\mathrm{eE}(\alpha, \delta)=$ local East at Source
α FROMr(er) $=$ RA determined by radial unit vector er
$\delta F R O M r(e r)=$ Dec determined by radial unit vector er

Aitoff Plot Functions
$\alpha \mathrm{H}(\alpha, \delta), \mathrm{xH}(\alpha, \delta), \mathrm{yH}(\alpha, \delta)$, where xH, yH is centered on $\alpha=0$.
$\mathrm{xH} 180(\alpha, \delta), \mathrm{yH} 180(\alpha, \delta)$, where xH is centered on $\alpha=180^{\circ}$.
$\ln [6]:=$
The date and time that this statement was evaluated: Wed 12 Jan 2022 14:05:57 GMT-5.
$\cos \left[\theta_{-}\right]:=\operatorname{Cos}\left[\theta\left(\frac{2 . \pi}{360 .}\right)\right] ;$
$\sin \left[\theta_{-}\right]:=\operatorname{Sin}\left[\theta\left(\frac{2 . \pi}{360 .}\right)\right] ;$
$\tan \left[\theta_{-}\right]:=\operatorname{Tan}\left[\theta\left(\frac{2 . \pi}{360 .}\right)\right] ;$
$\arccos \left[x_{-}\right]:=\operatorname{ArcCos}[x]\left(\frac{360 .}{2 . \pi}\right) ; \arcsin \left[x_{-}\right]:=\operatorname{ArcSin}[x]\left(\frac{360 .}{2 . \pi}\right) ;$
$\arctan \left[x_{-}\right]:=\operatorname{ArcTan}[x]\left(\frac{360 .}{2 . \pi}\right)$
$\ln [10]:=$
ror a Source at (RA,dec) = (α, δ): er, eN
eE are unit vectors from Origin to Source, local North, local East, resp. *)
$\operatorname{er}\left[\alpha_{-}, \delta_{-}\right]:=\operatorname{er}[\alpha, \delta]=\{\cos [\alpha] \times \cos [\delta], \sin [\alpha] \times \cos [\delta], \sin [\delta]\}$
$\mathrm{eN}\left[\alpha_{-}, \delta_{-}\right]:=\mathrm{eN}[\alpha, \delta]=\{-\cos [\alpha] \times \sin [\delta],-\sin [\alpha] \times \sin [\delta], \cos [\delta]\}$
$\mathrm{eE}\left[\alpha_{-}, \delta_{-}\right]:=\mathrm{eE}[\alpha, \delta]=\{-\sin [\alpha], \cos [\alpha], \theta\}$
\{"Check er.er = 1, er.eN = 0, er.eE = 0, eN.eN
$=1$, eN.eE = 0,eE.eE = 1, erXeE = eN, eEXeN = er, eNXer = eE: ",
$\{0\}=$ Union [Flatten [Simplify[\{er $[\alpha, \delta] . \operatorname{er}[\alpha, \delta]-1, \operatorname{er}[\alpha, \delta] . \operatorname{eN}[\alpha, \delta], \operatorname{er}[\alpha, \delta] . \operatorname{eE}[\alpha, \delta]$, eN $[\alpha, \delta] . \operatorname{eN}[\alpha, \delta]-1$, eN $[\alpha, \delta] . e E[\alpha, \delta]$, eE $[\alpha, \delta] . e E[\alpha, \delta]-1, \operatorname{Cross}[\operatorname{er}[\alpha, \delta], \operatorname{eE}[\alpha, \delta]]-$ $\mathrm{eN}[\alpha, \delta], \operatorname{Cross}[\operatorname{eE}[\alpha, \delta], \operatorname{eN}[\alpha, \delta]]-\operatorname{er}[\alpha, \delta], \operatorname{Cross}[\operatorname{eN}[\alpha, \delta], \operatorname{er}[\alpha, \delta]]-\operatorname{eE}[\alpha, \delta]\}]]]\}$

Out[13]=
\{Check er.er $=1$, er.eN $=0$, er.eE $=0$, eN.eN $=1$, $e N . e E=0, e E . e E=1$, erXeE $=e N$, eEXeN = er, eNXer = eE: , True $\}$

Get (α, δ) in degrees from radial vector r :

```
\(\ln [14]:=\alpha \operatorname{FROMr}\left[r_{-}\right]:=\left(N\left[\arctan \left[\operatorname{Abs}\left[\frac{r[[2]]}{r[[1]]}\right]\right]\right] / ;(r[[2]] \geq 0 \& \& r[[1]]>0)\right)\)
    \(\alpha \operatorname{FROMr}\left[r_{-}\right]:=\left(N\left[180 .-\arctan \left[\operatorname{Abs}\left[\frac{r[[2]]}{r[[1]]}\right]\right]\right] / ;(r[[2]] \geq 0 \& \& r[[1]]<0)\right)\)
    \(\alpha \operatorname{FROMr}\left[r_{-}\right]:=\left(N\left[180 .+\arctan \left[\operatorname{Abs}\left[\frac{r[[2]]}{r[[1]]}\right]\right]\right] / ;(r[[2]]<\theta \& \& r[[1]]<0)\right)\)
    \(\alpha \operatorname{FROMr}\left[r_{-}\right]:=\left(N\left[360 .-\arctan \left[\operatorname{Abs}\left[\frac{r[[2]]}{r[[1]]}\right]\right]\right] / ;(r[[2]]<\theta \& \& r[[1]]>0)\right)\)
    \(\alpha \operatorname{FROMr}\left[r_{-}\right]:=(90 . / ;(r[[2]] \geq 0 \& \&[[1]]==0))\)
    \(\alpha \operatorname{FROMr}\left[r_{-}\right]:=(270 . / ;(r[[2]]<\theta \& \&[[1]]==0))\)
    \(\delta \operatorname{FROMr}\left[r_{-}\right]:=\left(N\left[\arctan \left[\frac{r[[3]]}{\left.\left.\sqrt{r[[1]]^{\wedge 2+r[[2]]^{\wedge} 2}}\right]\right] / ;\left(\sqrt{r[[1]]^{\wedge} 2+r[[2]]^{\wedge} 2}>0\right)}\right)\right.\right.\)
\(\delta \operatorname{FROMr}\left[r_{-}\right]:=\left(\operatorname{Sign}[r[[3]]] 90 . / ;\left(\sqrt{r[[1]]^{\wedge} 2+r[[2]]^{\wedge}}==0\right)\right)\)
```

The following Aitoff Plot formulas can be found in, for example, Ref. 9.

Imagine the Sources are plotted on the Celestial sphere and we are looking down on the sphere from the outside.
$\ln [22]:=$

```
\alphaH[\alpha_, \delta_] := \alphaH[\alpha, \delta] = arccos[cos[\delta]\times\operatorname{cos[\alpha/2.]]}
xH[\mp@subsup{\alpha}{-}{\prime},\mp@subsup{\delta}{-}{\prime}]:= xH[\alpha,\delta]=\frac{2.\operatorname{cos[\delta]\times\operatorname{sin}[\alpha/2.]}}{\operatorname{Sinc}[\alphaH[\alpha,\delta]]}
yH[\mp@subsup{\alpha}{-}{\prime},\mp@subsup{\delta}{-}{\prime}]:=\textrm{yH}[\alpha,\delta]=\frac{\operatorname{sin}[\delta]}{\operatorname{Sinc}[(\frac{2.\pi}{360.})\alphaH[\alpha,\delta]]}
```

Using the following functions produces an Aitoff Plot that is centered on $\alpha=180^{\circ}$.
Imagine the Sources are plotted on the Celestial sphere and we are looking down on the sphere from the outside.
$\ln [25]:=$

$$
\begin{aligned}
& \mathrm{xH} 180\left[\alpha_{-}, \delta_{-}\right]:=\mathrm{xH} 180[\alpha, \delta]=\frac{2 \cdot \cos [\delta] \times \sin [(\alpha-180 .) / 2 \cdot]}{\operatorname{Sinc}\left[\left(\frac{2 \cdot \pi}{360 .}\right) \alpha \mathrm{H}[(\alpha-180 .), \delta]\right]} \\
& \mathrm{yH} 180\left[\alpha_{-}, \delta_{-}\right]:=\mathrm{yH} 180[\alpha, \delta]=\frac{\sin [\delta]}{\operatorname{Sinc}\left[\left(\frac{2 \cdot \pi}{360 .}\right) \alpha \mathrm{H}[(\alpha-180 .), \delta]\right]}
\end{aligned}
$$

A4. Sources
The source data table "data00" was input above in Sec. A2.
Definitions:
data00 - This data table contains the information that produces the rest of the notebook.
data00:
1.Object \# 2. Ra (rad) 3. Dec (rad) 4. $\psi(\mathrm{rad}) \quad$ 5. $\sigma \psi(\mathrm{rad})\left[\begin{array}{lll}6 . \mathrm{z} & 7 . \mathrm{p}(\%) & 8 . \sigma \mathrm{p}(\%)\end{array}\right]$

Items 6,7,8 are not used in this notebook.
from data00:
rai(i) RA of ith source (radians)
deci(i) dec of ith source (radians)
$\psi i(i) \quad$ position angle
$\sigma \psi i(i) \quad$ uncertainty in ψ
calculated:
ri(i) unit vector from Origin to ith Source
vNi(i) Local North at the ith Source, a 3D unit vector
vEi(i) Local East at the ith Source, a 3D unit vector
$v \psi i(i) \quad$ unit vector in direction of $\mathrm{PA} \psi$ in tangent plane at the ith Source
$n S x \psi i(i)$ cross product of $r i(i)$ and $v \psi i(i)=r \times v \psi$, perpendicular to both, a unit vector in tangent plane at the ith Source plot
xyAitoffSources source coordinates on Aitoff projection of the Celestial Sphere
crossesOverPlus, Minusthe polarization vectors of some sources cross over the edge of the Aitoff projection
noCrossing sources with polarization vectors contained in the Aitoff projection
rPlus $\psi[i, d]$
endpoints of the polarization vector for the $i^{\text {th }}$ source (d positive and negative)
polarLinesNoCrossing[d]
polarLinesCrossingPlus[d]
polarization vectors for sources with no crossing problem
polarization vectors for sources with d positive crossing beyond
polarLinesCrossingMinus[d] polarization vectors for sources with d negative crossing beyond
mapOfSources Aitoff plot of the data, sources and their polarization vectors
$\ln [27]:=$ (*Example of a data00 record.*) data00[[16]]
Out[27]=
$\{16,0.0502079,0.016832,2.99673,0.0147697,1.4904,3.02524,0.0893572\}$
$\ln [28]:=$
(*From data00. CONVERT DATA TO DEGREES*)
$\operatorname{rai}\left[i_{-}\right]:=\operatorname{rai}[i]=\operatorname{data} 00[[i, 2]]\left(\frac{360 .}{2 . \pi}\right)(* R A$ of $i t h$ source*)
$\operatorname{dec} i\left[i_{-}\right]:=\operatorname{dec} i[i]=\operatorname{data} 00[[i, 3]]\left(\frac{360 .}{2 . \pi}\right)(* \operatorname{dec} *)$
$\psi i\left[i_{-}\right]:=\psi i[i]=\operatorname{data} 00[[i, 4]]\left(\frac{360 .}{2 . \pi}\right) \quad(* P P A$,
polarization position angle: clockwise from North with East to the right. *)
$\sigma \psi \mathbf{i}\left[\mathbf{i}_{-}\right]:=\sigma \psi \mathbf{i}[\mathbf{i}]=\operatorname{data} 00[[\mathbf{i}, 5]]\left(\frac{360 .}{2 . \pi}\right)$
(*Convenient functions*)
$\operatorname{ri}\left[\mathbf{i}_{-}\right]:=\operatorname{ri}[\mathbf{i}]=\operatorname{er}[\operatorname{rai}[\mathbf{i}]$, deci$[i]]$
(*unit vector from Origin to ith Source on Celestial Sphere*)
$\mathrm{vNi}\left[\mathrm{i}_{-}\right]:=\mathrm{vNi}[\mathrm{i}]=\mathrm{eN}\left[\mathrm{rai}[\mathrm{i}]\right.$, deci[i]] (*North at $\mathrm{i}^{\text {th }}$ source*)
$v E i\left[i_{-}\right]:=v E i[i]=e E[r a i[i]$, deci$[i]]$ (*East at $i^{\text {th }}$ source*)
$\mathbf{v} \psi \mathbf{i}\left[i_{-}\right]:=v \psi i[i]=\cos [\psi i[i]] \times v N i[i]+\sin [\psi i[i]] \times v E i[i]$ (*unit vector in direction of PPA*)
$n S x \psi i\left[i_{-}\right]:=n S x \psi i[i]=\sin [\psi i[i]] \times v N i[i]-\cos [\psi i[i]] \times v E i[i](* r \operatorname{Cross} v \psi *)$
$\ln [37]:=$
(*Plot sources*)
xyAitoffSources =
Table[\{xH180[rai[i], deci[i]], yH180[rai[i], deci[i]]\}, \{i, Length[data00] \}];
$\ln [38]:=$
(*Plot polarization directions*)
rPlus $\psi\left[i_{-}, d_{-}\right]:=(r i[i]+d v \psi i[i]) /((r i[i]+d v \psi i[i]) \cdot(r i[i]+d v \psi i[i]))^{1 / 2}$
crossesOverPlus = \{\}; crossesOverMinus = \{\};
For $[i=1, i \leq$ Length [data00], $i++$,
If [α FROMr [rPlus $\psi[i, 0.05]$] - rai[i] <-200, AppendTo[crossesOverPlus, i]];
If[α FROMr[rPlus $\psi[i,-0.05]$] - rai[i] > 200, AppendTo[crossesOverMinus, i]]]
noCrossing = Complement [Range[Length[data00]], Union[crossesOverPlus, crossesOverMinus]];
$\ln [42]:=$ (*Plot polarization directions*)
polarLinesNoCrossing[d_] :=
Table[Line[$\{\{x H 180[\alpha$ FROMr [$\mathrm{rPlus} \psi[i, d]], \delta \operatorname{ROMr}[r P l u s \psi[i, d]]]$, $y \mathrm{y} 180[\alpha \mathrm{FROMr}[\mathrm{rPlus} \psi[i, d]], \delta \operatorname{RROMr}[\operatorname{rPlus} \psi[i, d]]]\}$,
$\{x H 180[\alpha$ FROMr [r Plus $\psi[i,-d]], \delta \operatorname{FROMr}[\operatorname{rPlus} \psi[i,-d]]]$, yH180[α FROMr [rPlus $\psi[i,-d]$], $\delta \operatorname{FROMr}[\operatorname{rPlus} \psi[i,-d]]]\}\}],\{i$, noCrossing\}]
polarLinesCrossingPlus[d_] := Table[Line[\{\{xH180[rai[i], deci[i]], yH180[rai[i], deci[i]]\}, \{xH180[α FROMr[rPlus $\psi[i,-d]], \delta \operatorname{ROMr}[r P l u s \psi[i,-d]]$, yH180[α FROMr [$\operatorname{rPlus} \psi[i,-d]], \delta \operatorname{FROMr}[\operatorname{rPlus} \psi[i,-d]]]\}\}],\{i, \operatorname{crossesOverPlus\}]}$
polarLinesCrossingMinus[d_] := Table[Line[\{\{xH180[aFROMr[rPlus $[\mathrm{i}, \mathrm{d}]$],
$\delta \operatorname{FROMr}[\mathrm{rPlus} \psi[i, d]]], y H 180[\alpha \operatorname{ROMr}[r \operatorname{Plus} \psi[i, d]], \delta \operatorname{ROMr}[r P l u s \psi[i, d]]]\}$,
\{xH180[rai[i], deci[i]], yH180[rai[i], deci[i]]\}\}],
\{i, crossesOverMinus(*noCrossing*) \}]

```
(*Construct the map of \overline{\eta}(H).*)
mapOfSources =
Show [{Table[ParametricPlot [{xH180 [\alpha, \delta], yH180 [\alpha, \delta]},
{\delta, -90, 90}, PlotStyle }->{\mathrm{ Black, Thickness[0.002]}, PlotPoints }->\mathrm{ 60,
PlotRange }->{{-4.0,3.5},\frac{7.5}{11.0}{-3,3}}, Axes >> False, Frame ->False],{\alpha, 0, 360, 30}],
    Table[ParametricPlot [{xH180[\alpha, \delta], yH180[\alpha,\delta]}, {\alpha, 0, 360},
        PlotStyle }->\mathrm{ {Black, Thickness[0.002]}, PlotPoints }->\mathrm{ 60], { , -60, 60, 30}], Graphics[
        {PointSize[0.004], Text[StyleForm["N", FontSize -> 14, FontWeight -> "Plain"], {0, 1.85}],
        Text[StyleForm["Equatorial Coordinate System", FontSize -> 14, FontWeight -> "Plain"],
                {0, -1.85}], Black, {(*Thick,*) polarLinesNoCrossing[0.05]},
            Black, {(*Thick,*) polarLinesCrossingPlus[0.05]}, Black, {(*Thick,*)
            polarLinesCrossingMinus[0.05]}, (*Sources S:*)Orange, Point[ xyAitoffSources ]
                }]}, ImageSize }->\mathbf{1.2\times432]
Print["Figure A1. Pine needle plot of the transverse vectors of the sources. There are ",
    Length[data00], " sources."]
```

N

Equatorial Coordinate System

Figure A1. Pine needle plot of the transverse vectors of the sources. There are 1450 sources.

A5. Build a Grid

Make a grid for the Northern hemisphere, then the Southern hemisphere, then combine them.

Definitions:
$\mathrm{d} \theta 1 \quad$ separation in degrees between grid points on a constant latitude circle and separation of constant latitude circles.
gridN, gridS North and South hemisphere grids
nGrid number of grid points
$\mathrm{rHj}(\mathrm{j}) \quad$ unit radial vector to jth grid point H_{j}
$\alpha \mathrm{Hj}[\mathrm{j}], \delta \mathrm{Hj}[\mathrm{j}]$ RA and dec of the $j^{\text {th }}$ grid point in degrees
$\mathrm{vHij}(\mathrm{i}, \mathrm{j}) \quad$ unit vector tangent to the great circle connecting the ith source with Hj in tangent space of the ith source
$\mathrm{nSxHij}(\mathrm{i}, \mathrm{j}) \quad$ unit vector perpendicular to the plane of the great circle containing the ith source and the jth grid point Hj
$\eta \mathrm{iHj}(\mathrm{i}, \mathrm{j}) \quad$ alignment angle between the PPA direction and the great circle toward Hj in the tangent space at the ith source.
gridN and gridS and grid

1. sequential point\# \quad 2. RA index 3 . dec index \quad 4. RA (range: $0-360^{\circ}$) \quad 5. dec (range: $-90^{\circ}-+90^{\circ}$) 6. Cartesian coordinates of the point
$\ln [47]:=$
```
d01 = gridSpacing;(* grid Spacing in degrees*)
```

Let's get the grid. With "gridSpacing" $=2^{\circ}$, it is a $2^{\circ} \times 2^{\circ}$ grid.
(*KEEP this cell - DO NOT DELETE*)
gridN = \{\};idN = 1;
For $\left[\delta j=0 ., \delta j<\frac{90 .}{d \theta 1}, \delta j++, \delta p o i n t H=\delta j \operatorname{d\theta 1}\right.$;
For $\left[\right.$ ai $=0 .$, ai $<$ Ceiling $\left[\frac{360 .}{\text { d } \theta 1}(\cos [\delta p o i n t H]+0.01)\right]$,
ai ++, α pointH = ai de1/(cos[δ pointh] + 0.01) ;
AppendTo[gridN, \{idN, ai, δj, α pointh, δ pointH, er[α pointH, δ pointH] $\}$];
$i d N=i d N+1$
]]
(*KEEP this cell - DO NOT DELETE*)
gridS = \{\};idN = 1;
For $\left[\delta j=1 ., \delta j<\frac{90 .}{d \theta 1}, \delta j++, \delta p o i n t H=-\delta j\right.$ d $\theta 1$;
For $\left[\right.$ ai $=0 .$, ai $<\operatorname{Ceiling}\left[\frac{360 .}{\text { d } \theta 1}(\cos [\delta\right.$ pointH $\left.]+0.01)\right]$,
ai ++, α pointH = ai dө1/(cos[δ pointh] + 0.01 $)$;
AppendTo[gridS, \{idN, ai, $\delta j, \alpha$ pointH, δ pointh, er[α pointH, δ pointH] \}];
$i d N=i d N+1$
]]
(*KEEP this cell - DO NOT DELETE*)
grid = \{\}; j=1;
For $[\mathrm{jN}=1, \mathrm{jN} \leq$ Length $[\mathrm{gridN}]$, $\mathrm{jN}++$, AppendTo[grid,
$\{j, \operatorname{gridN}[[j N, 2]], \operatorname{gridN}[[j N, 3]], \operatorname{gridN}[[j N, 4]], \operatorname{gridN}[[j N, 5]], \operatorname{gridN}[[j N, 6]]\}] ;$
$\mathrm{j}=\mathrm{j}+1$]
For $[\mathrm{jS}=1, \mathrm{jS} \leq$ Length $[$ gridS $], j S++$, AppendTo[grid,
\{j, grids[[jS, 2]], gridS[[jS, 3]], gridS[[jS, 4]], gridS[[jS, 5]], gridS[[jS, 6]]\}];
$\mathbf{j}=\mathbf{j}+1$]
$\ln [55]:=$
nGrid = Length[grid];
$\operatorname{rHj}\left[\mathrm{j}_{-}\right]:=\mathrm{rHj}[\mathrm{j}]=\operatorname{grid}[[\mathrm{j}, 6]]$ (*unit radial vector to grid point H_{*})
$\alpha \mathrm{Hj}\left[\mathrm{j}_{-}\right]:=\alpha \mathrm{FROMr}[\mathrm{rHj}[\mathrm{j}]]$
$\delta \mathrm{Hj}\left[\mathrm{j}_{-}\right]:=\delta \operatorname{FROMr}[\mathrm{rHj}[\mathrm{j}]]$
$\ln [59]:=\left(* i^{\text {th }}\right.$ Source and $j^{\text {th }}$ grid point*)
(*VHij: unit vector tangent to the great circle connecting
the i th source with Hj in tangent space of the ith source*)
(*nSxHij: unit vector perpendicular to the plane of the great circle containing the i th source and Hj *)
(* $\eta \mathrm{iHj}$: alignment angle between the PPA direction ψ and the great circle toward Hj in the tangent space at the ith source. See Fig. 2.*)
(* The two unit vectors $n S x \psi i$ and $n S x H i j$ are perpendicular to $\mathrm{v} \psi$ and vHij , but the angle between them is the same*)
vHij[i_, $\left.j_{-}\right]:=\operatorname{vHij}[i, j]=(r H j[j]-(r H j[j] . r i[i]) r i[i]) /$
$(\sqrt{ }((\mathrm{rHj}[\mathrm{j}]-(\mathrm{rHj}[\mathrm{j}] . \mathrm{ri}[\mathrm{i}]) \mathrm{ri}[\mathrm{i}]) \cdot(\mathrm{rHj}[\mathrm{j}]-(\mathrm{rHj}[\mathrm{j}] . \mathrm{ri}[\mathrm{i}]) \mathrm{ri}[\mathrm{i}])))$
$n S x H i j\left[i_{-}, j_{-}\right]:=n S x H i j[i, j]=\frac{\operatorname{Cross}[\operatorname{ri}[i], \operatorname{rHj}[j]]}{\sqrt{(\operatorname{CrOss}[\operatorname{ri}[i], \operatorname{rHj}[j]]) \cdot(\operatorname{CrOss[ri[i],\operatorname {rHj}[j]])}}}$
$\eta \mathrm{iHj}\left[\mathbf{i}_{-}, \mathrm{j}_{-}\right]:=\eta \mathrm{iHj}[\mathrm{i}, \mathrm{j}]=\arccos [\mathrm{Abs}[\mathrm{nSx} \psi \mathrm{i}[\mathrm{i}] . \mathrm{nSxHij}[\mathrm{i}, \mathrm{j}]]$]
(*Check (α, δ) range for the grid*)
(*ListPlot[\{Sort[Table[grid[[j,4]], \{j, nGrid\}]],Sort[Table[grid[[j,5]],\{j, nGrid\}]]\}];*)
(*See the grid points*)
Show [\{Graphics3D[\{Sphere[\{0, 0, 0\}], Thick, $\operatorname{Line[\{ \{ 0,~0,~-1.2\} ,~\{ 0,~0,~1.2\} \}],~}$
Text[Style["N", Bold], \{0, 0, 1.25\}]\}, Boxed \rightarrow False], ListPointPlot3D[
Table[rHj[j], \{j, nGrid\}], PlotStyle \rightarrow \{PointSize[0.007]\}]\}, ImageSize $\rightarrow 72 \times 4]$
Print["Figure A2. The grid. There are ", nGrid, " grid points."]

Figure A2. The grid. There are 10518 grid points.

A6. Setting up circular regions to analyze

(a) Collect the sources in circular regions centered on the grid points. (b) Drop the regions with too few sources. (c) Some regions may have duplicate source lists, meaning two regions have the same sources but different center points. Keep one of the two regions.

Definitions:

1. region ID\# in "rgnCntrAndSrcId" table $2 . \mathrm{N}=$ number of sources in the region
2. $\{\mathrm{j}, \eta \min \}: \mathrm{j}=$ grid point ID\#
where $\bar{\eta}$ is minimum $\eta \min \quad$ 4. $\{\mathrm{j}, \eta \max \}: \mathrm{j}=$ grid point $\mathrm{ID} \#$ where $\bar{\eta}$ is maximum $\eta \max$ $(\eta \operatorname{mink}(\mathrm{k}), \eta \operatorname{maxk}(\mathrm{k})) \quad$ In degrees. The \min and \max angles η for the sources in the kth region to align with any grid point Hj .
$\ln [66]:=$ rgnCntrAndSrcId0 = $\}$;
For $[\mathrm{j}=1, \mathrm{j} \leq$ Length $[\mathrm{grid}], \mathrm{j}++$, rgnCntr $=\operatorname{grid}[[\mathrm{j}, 6]]$;
$\rho \mathrm{rgn}=$ rgnRadius; (* region radius in degrees*)
rgnSrcId = \{\};
For $[i=1, i \leq$ Length[data00], $i++$,
If [er[rai[i], deci[i]].rgnCntr $\geq \cos [\rho r g n], \operatorname{rgnSrcId}=$ AppendTo[rgnSrcId, $i]]] ;$
AppendTo[rgnCntrAndSrcIde, $\{\mathbf{j}, \mathrm{rgnSrcId}\}]$]
(*Get a table with only sufficiently populous regions.*)
rgnCntrAndSrcId2 = \{\};
j = 0;
For [igrid=1, igrid \leq Length [grid], igrid ++,
If[Length[rgnCntrAndSrcIde[[igrid, 2]]] \geq rgnPOPnumMIN, (j=j+1;
AppendTo[rgnCntrAndSrcId2, \{j, rgnCntrAndSrcIde[[igrid, 1]], rgnCntrAndSrcIde[[igrid, 2]]\}])]]
sortRgnNsrc $=$ Sort[Table[\{k, Length[rgnCntrAndSrcId2[[k, 3]]]\},
$\{k$, Length[rgnCntrAndSrcid2]\}], \#1[[2]] <\#2[[2]] \&];
\{sortRgnNsrc[[1]], sortRgnNsrc[[-1]]\};
NsrcMIN = sortRgnNsrc[[1, 2]];
NsrcMAX = sortRgnNsrc[[-1, 2]];
For $[n=1, n \leq 2$ NsrcMAX, $n++, r g n I D s W i t h n S r c \theta[n]=\{ \}]$
rgnIDsWithnSrco[NsrcMAX];
(*Collect the IDs*)
For [k=1, k <= Length[rgnCntrAndSrcId2], $k++$,
AppendTo[rgnIDsWithnSrce[Length[rgnCntrAndSrcId2[[k, 3]]]], k]]
duplicatk $=\{ \}$;
For $[\mathrm{n}=\mathrm{NsrcMIN}, \mathrm{n} \leq \operatorname{NsrcMAX}, \mathrm{n}++$, For $[\mathrm{k} 1=1, k 1 \leq \operatorname{Length}[\mathrm{rgnIDsWithnSrc} \mathrm{\theta}[\mathrm{n}]$] $\mathbf{1}$,
$\mathrm{k} 1++$, For $[\mathrm{k} 3=\mathrm{k} 1+1, \mathrm{k} 3 \leq$ Length [rgnIDsWithnSrce [n]], k3++,
If[Length[Union[rgnCntrAndSrcId2[[rgnIDsWithnSrce[n][[k1]], 3]] -
rgnCntrAndSrcId2[[rgnIDsWithnSrce[n][[k3]], 3]]]] = 1, AppendTo[duplicatk,
$\{r g n I D s W i t h n S r c \theta[n][[k 1]], \operatorname{rgnIDsWithnSrc\theta }[n][[k 3]]\}]$]
(*For example, the regions in duplicatk[[2]]
have the same sources in rgnCntrAndSrcId2[[k,3]] item 3.*)
Print["Region ", duplicatk[[2, 1]], " and region ", duplicatk[[2, 2]],
" have the same sources. The data00 IDs are ",
rgnCntrAndSrcId2[[duplicatk[[2, 1]], 3]], " and ",
rgnCntrAndSrcId2[[duplicatk[[2, 2]], 3]], "."]

Region 19 and region 20 have the same sources. The data00 IDs are
$\{198,203,204,205,206,208,209\}$ and $\{198,203,204,205,206,208,209\}$.
(*Get the second region in each pair in duplicatk. These will be dropped. *) dropDupk $=$ Union[Table[duplicatk[[d2, 2]], \{d2, Length[duplicatk] $\}]$];

Remove duplicate populations.
rgnCntrAndSrcId = \{ \} ; k=1;
For [ka = 1, ka s Length [rgnCntrAndSrcId2], ka++, If [Not [MemberQ[dropDupk, ka]], (AppendTo[rgnCntrAndSrcId, \{k, rgnCntrAndSrcId2[[ka, 2]], rgnCntrAndSrcId2[[ka, 3]]\}]; $\mathbf{k}=\mathbf{k}+1$]]

For $[\mathrm{n}=1, \mathrm{n} \leq 2 \operatorname{NsrcMAX}, \mathrm{n}++, \operatorname{rgnIDsWithnSrc}[\mathrm{n}]=\{ \}]$
rgnIDsWithnSrc[NsrcMAX];
(*Collect the IDs*)
For $[k=1, k<=$ Length [rgnCntrAndSrcId] , $k++$,
AppendTo[rgnIDsWithnSrc[Length[rgnCntrAndSrcId[[k, 3]]]], k]]

ListPlot[Table [n, Length [rgnIDsWithnSrc[n]]\}, $\{n, 1, \operatorname{NsrcMAX}+5\}$],
PlotRange $\rightarrow\{\{0$, NsrcMAX +5$\}$, All\}, PlotLabel \rightarrow "Number of regions with n sources ", GridLines \rightarrow Automatic, Frame \rightarrow True, FrameLabel \rightarrow \{" n ", "Number"\}, ImageSize $\rightarrow 72 \times 4$] Print["Figure A3. There are ", Length[rgnIDsWithnSrc[NsrcMIN]], " regions with ", NsrcMIN, " sources, the minimum number. There are ", Length[rgnIDsWithnSrc[NsrcMAX]], " regions with the maximum number of sources, ", NsrcMAX, "."]

Figure A3. There are 377 regions with 7 sources, the minimum number. There are
2 regions with the maximum number of sources, 20.
nSrck[k_] := nSrck[k] = Length[rgnCntrAndSrcId[[k, 3]]]
(*number of sources in the kth region*)
nSrcTable = Sort [Table[nSrck[k], \{k, Length[rgnCntrAndSrcId] \}] ;
srcIDrgnk[k_] :=srcIDrgnk[k] = rgnCntrAndSrcId[[k, 3]]
(* data00 id numbers of the sources in the kth region*)
α SrcRgnk[k_] := Table[data00[[ide8, 2]]* (360./(2. π)), \{id08, srcIDrgnk[k]\}];
(* RAs in degrees for the sources in the k th region*)
$\delta \operatorname{SrcRgnk}\left[k_{-}\right]:=\operatorname{Table}[$ data00[[id08 , 3]]*(360./(2. $\pi)$), \{id08, srcIDrgnk[k]\}]; (* decs *)
xyHSrcRgnk[k_] := Table[\{ xH180[$\alpha \operatorname{SrcRgnk[k][[i]],~\delta SrcRgnk[k][[i]]],~}$ yH180 [$\alpha \operatorname{SrcRgnk}[k][[i]], \delta \operatorname{SrcRgnk}[k][[i]]]\},\{i, \operatorname{Length}[\alpha \operatorname{SrcRgnk}[k]]\}]$
(*Aitoff coordinates for the locations of the sources in the k th region*)
$\ln [94]:=$ rAVEk0[k_] := rAVEk0[k] =
Sum[ri[rgnCntrAndSrcId[[k, 3, n1]]], \{n1, Length[rgnCntrAndSrcId[[k, 3]]]\}]/nSrck[k]
rAVEk[k_] := rAVEk0[k]/(rAVEk0[k].rAVEk0[k]) ${ }^{1 / 2}$
(*unit radial vector to average location of the sources in the k th region*)
α AVEk [k_] := α AVEk [k] = α FROMr [rAVEk [k]]
$\delta A V E k\left[k _\right]:=\delta A V E k[k]=\delta F R O M r[r A V E k[k]]$
$\ln [98]:=$

```
(*We need the RMS radius of the k}\mp@subsup{}{}{\mathrm{ th }}\mathrm{ region to determine significances.*)
\rhoSrcToAVEk[k_] := Table[arccos[ ri[ rgnCntrAndSrcId[[k, 3, n1]] ].rAVEk[k] ],
    {n1, Length[ rgnCntrAndSrcId[[k, 3]] ]}]
\rhoRMSk[k_] := (\frac{1}{\mathrm{ Length[rgnCntrAndSrcId[[k, 3]] ]}}<㇒
Sum[\rhoSrcToAVEk[k][[i]] '2, {i, Length[ \rhoSrcToAVEk[k] ]}]) 1/2
```

(* η BarHkj: average alignment angle at Hj for the sources in the kth region, Eq. (1).*)
η BarHkj[k_, j_] :=
η BarHkj[k, j] = Sum[$\eta \mathbf{i H j}[\mathbf{i}, \mathbf{j}],\{\mathbf{i}, \operatorname{srcIDrgnk[k]\}]/Length[srcIDrgnk[k]]}$

The following cell has the $\mathrm{kNj} \eta$ Minj η Max table. It is very large and, therefore, it is hidden from view. To see it go to "Cell Properties" and click "Open".
$k N j \eta M i n j \eta M a x$ angles in degrees

1. region ID\# in "rgnCntrAndSrcId" table 2. $\mathrm{N}=$ number of sources in the region $3 .\{\mathrm{j}, \eta \min \}: \mathrm{j}=$ grid point ID\# where $\bar{\eta}$ is minimum $\eta \min \quad$ 4. $\{\mathrm{j}, \eta \max \}: \mathrm{j}=\operatorname{grid}$ point $\mathrm{ID} \#$ where $\bar{\eta}$ is maximum $\eta \max$
```
(*KEEP THIS CELL to generate the kNj\etaMinj\etaMax table.*)
(*t1=TimeUsed[]
    kNj\etaMinj }\eta\mathrm{ Max={};
For[k=1,k\leqLength [rgnCntrAndSrcId],k++,\etaBark=Table[{j,\etaBarHkj[k,j]},{j,Length[grid]}];
    sort \etaBark=Sort[\etaBark,#1[[2]]<#2[[2]]&];
    j\etaMin=sort\etaBark[[1]];
    j\etaMax=sort\etaBark[[-1]];
    AppendTo[kNj MMinj }\eta\mathrm{ Max,{k,nSrck[k],j jMin,j }\eta\mathrm{ Max }]]]
    t2=TimeUsed[]
        t2-t1*)
(*This cell takes some time. On Dec. 30,2021, it took 1445.39 seconds.*)
```

$\ln [103]:=$ (*Save kNj η Minj η Max*)
(*SetDirectory [homeDirectory]
Put[kNj η Minj η Max, "20211230kNjEtaMinjEtaMax1450a.dat"]
*)
(*Get kNj η Minj η Max, if you've got it.*)
(*SetDirectory[homeDirectory] ;
kNj η Minj η Max=Get["20211226kNjEtaMinjEtaMax1450.dat"];
*)
ln[105]:= η mink [k_] := η mink [k] = kNj $\left.\eta \operatorname{Minj} \eta M_{M a x}[\mathrm{k}, 3,2]\right]$
(*In degrees. The smallest alignment angle η min determines how well the sources in
the k th region align with any point Hj on the grid, i.e. anywhere on the sphere.*)
η maxk [k_] := η maxk[k] = $\mathrm{kNj} \eta \operatorname{Minj} \eta \operatorname{Max}[\mathrm{k}, 4,2]$] (*In degrees. The largest avoidance
angle η max gives a measure of avoidance from any point Hj on the sphere*)

Section Summary

```
Initially, a total of 10518
    regions are created, each centered on one of the 10518 grid points which are
    2 degrees apart. The regions are circular, each with a radius of 5. degrees.
Regions with duplicate lists of sources
    are dropped. Regions must have a minimum number of sources.
There are }1811\mathrm{ regions with sufficient populations and duplicates dropped.
The min number of sources in a region is 7 and the max number is 20.
The median number of sources in a region is 9.
The arithmetic average number of sources in a region is 9.
```


A7. Probability Distributions and Significance of the Regions

The problem of "significance" is to determine the likelihood that random polarizations directions would have better alignment or avoidance than the observed polarization directions. Suppose we are given a region with a smallest alignment angle $\bar{\eta}_{\min }$ and a largest avoidance angle $\bar{\eta}_{\text {max }}$. The most reliable method of finding the significance of either value is to creates many copies of the region but assign the sources randomly directed polarizations. Collect the angles $\bar{\eta}_{\min }$ and $\bar{\eta}_{\text {max }}$ for each randomly directed copy and make a probability distribution for the collection of $\bar{\eta}_{\min }$ and a probability distribution for the collection of $\bar{\eta}_{\max }$. Fit the distributions with suitable functions and integrate to find the significances. This process is "Direct Method A". It takes a lot of time and effort and would not be practical for a survey with hundreds, or more, of regions.

To avoid Direct Method A, we apply a combination of Interpolation Method B and Function Method C. Both are based on a "Library" of random run data. One finds that the probability distributions for smallest alignment angle $\bar{\eta}_{\min }$ with random runs can be fit by a function with just two free parameters, called the location $\eta 0$ of the peak and the half-width σ. Avoidance distributions take two more parameters. For details see Ref. 8.

We assume that just two properties of a region determine its the significance of its values of $\bar{\eta}_{\min }$ and $\bar{\eta}_{\max }$. The two properties are the number of sources nSrc and the root-mean-square radius ρ RMS of the sources about their mean location. Thus the Library has tables of the distribution parameters $\eta 0$ and σ for many combinations of nSrc and ρ RMS.

Interpolating the Library data to get $\eta 0$ and σ is called Interpolation Method B. The Library data can be fit with suitable functions. Substituting nSrc and ρ RMS in those functions to get $\eta 0$ and σ is called Function Method C. Again, for details, see Ref. 8 .

Definitions:
norm
a constant used to normalize the distribution so the integral of probability is 1 .
probMIN0, probMAX0
probability distributions for alignment (MIN) and avoidance (MAX), functions of η, η_{0}, σ
probMIN0 $[\eta, \eta 0, \sigma]$, probMAX0
signiMIN0[$\eta, \eta 0, \sigma]$, signiMAX0
probability distributions for probability of η using given values of η_{0}, σ
significance of η using given values of η_{0}, σ
$\ln [113]:=(* y=((\eta-\eta 0) / \sigma) ; \mathbf{d y}=\mathrm{d} \eta / \sigma *)$
(* The normalization factor "norm" is needed for the probability density *)
norm $=\left(\left(1 /(2 \pi)^{1 / 2}\right) \text { NIntegrate }\left[\left(1+e^{4(y-1)}\right)^{-1} e^{-\frac{y^{2}}{2}},\{y,-\infty, \infty\}\right]\right)^{-1} ;$
norm; (*Constant needed to make the probability distributions integrate to unity.*)
$\ln [115]:=\operatorname{probMIN} 0\left[\eta_{-}, \eta 0_{-}, \sigma_{-}\right]:=\left(\right.$norm $\left./\left(\sigma(2 \pi)^{1 / 2}\right)\right)\left(1+e^{4 \frac{(\eta-n \theta-\sigma)}{\sigma}}\right)^{-1} e^{-\frac{1}{2}\left(\frac{\eta-n \theta}{\sigma}\right)^{2}}$
signiMIN0[$\left.\eta_{-}, \eta 0_{-}, \sigma_{-}\right]:=\operatorname{NIntegrate[probMIN0[\eta 1,\eta 0,\sigma],\{ \eta 1,-\infty ,\eta \}]}$
$\operatorname{probMAX} 0\left[\eta_{-}, \eta \theta_{-}, \sigma_{-}\right]:=\left(\right.$norm $\left./\left(\sigma(2 \pi)^{1 / 2}\right)\right)\left(1+e^{-4 \frac{(n-n+\sigma)}{\sigma}}\right)^{-1} e^{-\frac{1}{2}\left(\frac{n-\eta \theta}{\sigma}\right)^{2}}$
signiMAX0[$\left.\eta_{-}, \eta 0_{-}, \sigma_{-}\right]:=$NIntegrate[probMAX0[$\left.\left.\eta 1, \eta 0, \sigma\right],\{\eta 1, \eta, \infty\}\right]$
Print["The significance signiMIN0[$\eta, \eta \theta, \sigma$] is
the integral of probMIN0, i.e. signiMIN0 $=\int_{-\infty}^{\eta} \mathrm{P}_{\text {MIN }}{ }^{\theta}\left(\eta_{\mathrm{i}}\right) d \eta_{\mathrm{i}}:$ "]
Print["The significance signimax $0[\eta, \eta \theta, \sigma]$ is the integral of
probMAX0, i.e. signiMAX0 $\left.=\int_{\eta}^{\infty} \mathrm{P}_{\text {MAX }}{ }^{\theta}\left(\eta_{i}\right) d \eta_{i}: ~ "\right]$
The significance signiMIN0 $[\eta, \eta \theta, \sigma]$ is
the integral of probMINe, i.e. signimine $=\int_{-\infty}^{\eta} \mathrm{P}_{\text {MIN }}{ }^{\theta}\left(\eta_{\mathrm{i}}\right) \mathrm{d} \eta_{\mathrm{i}}$:
The significance signimaXe $[\eta, \eta \theta, \sigma]$ is the integral of probMAX0, i.e. signimaX $\theta=\int_{\eta}^{\infty} \mathrm{P}_{\operatorname{MAX}}{ }^{\theta}\left(\eta_{\mathrm{i}}\right) \mathrm{d} \eta_{\mathrm{i}}$:

A7a. The Library data

Definitions:
fitData Parameters of the alignment (min) and avoidance (max) random run distributions. Originally in radians, converted to degrees after it is inputted below.
fitData:
1a. nSrci[i] Number of sources 1b. ρ Nomi[i] Nominal radius, deg. 1c. ρ RMSi[i] RMS radius, deg.
2a. $\eta 0 \operatorname{mini}[\mathrm{i}]$ peak alignment distribution 2 b . $\mathrm{d} \eta 0 \mathrm{mini}[\mathrm{i}]$ standard error
3a. σ mini $[\mathrm{i}] \quad$ half-width alignment distr. 3b. d σ mini $[\mathrm{i}]$ standard error
4a. $\eta 0$ maxi[i] peak alignment distribution 4 b . $\mathrm{d} \eta 0$ maxi[i] standard error
5a. σ maxi[i] half-width alignment distr. 5b. d σ maxi[i] standard error
wi[i] inverse square root of the number of sources, $\mathrm{w}=1 / \mathrm{N}^{1 / 2}$
τ RMSi[i] inverse RMS radius, in deg. ${ }^{-1}$
$\ln [121]:=\mathrm{fitData}=\{\{\{9 ., 0.004363,0.0043,10000\},.\{0.598,0.0013\},\{0.1127,0.0016\}$, $\{0.977,0.001700\},\{0.1128,0.002\}\},\{\{9 ., 0.005818,0.005734,10000$.$\} ,$ $\{0.5885,0.0016\},\{0.1118,0.0019\},\{0.9868,0.001\},\{0.1107,0.001200\}\}$, $\{\{9 ., 0.008727,0.008601,10000\},.\{0.5707,0.0011\},\{0.1076,0.0013\}$,
$\{1.00503,0.000860\},\{0.1069,0.001\}\},\{\{9 ., 0.017453,0.017202,10000$.$\} ,$ $\{0.52541,0.00068\},\{0.09791,0.000810\},\{1.05165,0.00079\},\{0.09636,0.000950\}\}$, $\{\{9 ., 0.02618,0.025803,10000\},.\{0.50422,0.000610\},\{0.09425,0.000730\}$, $\{1.07266,0.000740\},\{0.09407,0.000890\}\},\{\{9 ., 0.034907,0.034406,10000$.$\} ,$ $\{0.49249,0.00084\},\{0.09335,0.001\},\{1.08406,0.000770\},\{0.09356,0.000910\}\}$, $\{\{9 ., 0.05236,0.051615,10000\},.\{0.48150,0.00076\},\{0.09325,0.000910\}$, $\{1.09181,0.00072\},\{0.09353,0.000860\}\},\{\{9 ., 0.069813,0.068831,10000$.$\} ,$ $\{0.47716,0.000600\},\{0.09572,0.00072\},\{1.0949,0.0005\},\{0.09324,0.000600\}\}$, $\{\{9 ., 0.139626,0.137827,10000\},.\{0.47140,0.00051\},\{0.0943,0.000610\}$, $\{1.10081,0.000610\},\{0.09566,0.000730\}\},\{\{9 ., 0.733038,0.758894,10000$.$\} ,$ $\{0.46917,0.00062\},\{0.09209,0.00075\},\{1.10139,0.00043000\},\{0.09214,0.000520\}\}$, $\{\{16 ., 0.004363,0.003926,10000\},.\{0.6493,0.0011\},\{0.0839,0.0014\}$, $\{0.92532,0.000950\},\{0.083,0.0011\}\},\{\{16 ., 0.005818,0.005234,10000$.$\} ,$ $\{0.6436,0.0011\},\{0.0849,0.0013\},\{0.9314,0.0011\},\{0.0836,0.0013\}\}$, $\{\{16 ., 0.008727,0.007851,10000\},.\{0.6308,0.001200\},\{0.0827,0.0014\}$, $\{0.9443,0.001\},\{0.0829,0.001200\}\},\{\{16 ., 0.017453,0.015703,10000$.$\} ,$ $\{0.59942,0.000830\},\{0.07466,0.00099\},\{0.97587,0.000810\},\{0.07568,0.00097\}\}$, $\{\{16 ., 0.02618,0.023555,10000\},.\{0.58222,0.00076\},\{0.07263,0.000900\}$, $\{0.99397,0.00063\},\{0.07299,0.00075\}\},\{\{16 ., 0.034907,0.031407,10000$.$\} ,$ $\{0.57108,0.00033\},\{0.07264,0.0004\},\{1.00501,0.00042\},\{0.07128,0.00051\}\}$, $\{\{16 ., 0.05236,0.047116,10000\},.\{0.56133,0.00048\},\{0.07272,0.000570\}$, $\{1.01146,0.000600\},\{0.07183,0.00072\}\},\{\{16 ., 0.069813,0.06283,10000$.$\} ,$ $\{0.55732,0.0004\},\{0.07328,0.00047000\},\{1.01605,0.000520\},\{0.07326,0.00062\}$, $\{\{16 ., 0.139626,0.125785,10000\},.\{0.55186,0.00067\},\{0.0721,0.0008\}$, $\{1.02026,0.000490\},\{0.07183,0.00059\}\},\{\{16 ., 0.733038,0.686975,10000$.$\} ,$ $\{0.55102,0.000520\},\{0.07313,0.00062\},\{1.02006,0.000490\},\{0.07269,0.00059\}\}$, $\{\{25 ., 0.004363,0.003724,10000\},.\{0.67677,0.00076\},\{0.06753,0.000910\}$, $\{0.89747,0.000730\},\{0.06752,0.000870\}\},\{\{25 ., 0.005818,0.004966,10000$.$\} ,$ $\{0.67228,0.000730\},\{0.06735,0.000870\},\{0.90184,0.00093\},\{0.0673,0.0011\}\}$, $\{\{25 ., 0.008727,0.007448,10000\},.\{0.66404,0.00088\},\{0.0651,0.0011\}$, $\{0.91047,0.00076\},\{0.06528,0.000910\}\},\{\{25 ., 0.017453,0.014897,10000$.$\} ,$ $\{0.64101,0.00037\},\{0.06098,0.00044\},\{0.93461,0.00051\},\{0.06021,0.000610\}\}$, $\{\{25 ., 0.02618,0.022346,10000\},.\{0.62549,0.000700\},\{0.05922,0.000830\}$, $\{0.95097,0.00045000\},\{0.05944,0.00054\}\},\{\{25 ., 0.034907,0.029795,10000$.$\} ,$ $\{0.61729,0.00039\},\{0.0589,0.00046\},\{0.95886,0.00033\},\{0.05889,0.00039\}\}$, $\{\{25 ., 0.05236,0.044697,10000\},.\{0.60836,0.00045000\},\{0.05886,0.000530\}$, $\{0.96488,0.00031\},\{0.05889,0.00037\}\},\{\{25 ., 0.069813,0.059604,10000$.$\} ,$ $\{0.60328,0.00048\},\{0.05880,0.00058\},\{0.96728,0.00046\},\{0.05893,0.00055\}\}$, $\{\{25 ., 0.139626,0.119314,10000\},.\{0.60034,0.00025\},\{0.06006,0.00030000\}$, $\{0.97273,0.00035\},\{0.060610,0.00042\}\},\{\{25 ., 0.733038,0.648932,10000$.$\} ,$ $\{0.59794,0.0005\},\{0.05811,0.000600\},\{0.97322,0.00036\},\{0.0584,0.00043000\}\}$, $\{\{36 ., 0.004363,0.003598,10000\},.\{0.69775,0.000820\},\{0.055510,0.00098000\}$, $\{0.8761,0.00088\},\{0.055600,0.001\}\},\{\{36 ., 0.005818,0.004797,10000$.$\} ,$ $\{0.69363,0.000830\},\{0.0555,0.001\},\{0.8804,0.000860\},\{0.0557,0.001\}\}$, $\{\{36 ., 0.008727,0.007196,10000\},.\{0.68712,0.000730\},\{0.05454,0.000870\}$, $\{0.8879,0.00058\},\{0.05439,0.000690\}\},\{\{36 ., 0.017453,0.014392,10000$.$\} ,$ $\{0.66756,0.0004\},\{0.05093,0.00047000\},\{0.90807,0.00035\},\{0.05152,0.00041\}\}$, $\{\{36 ., 0.02618,0.021588,10000\},.\{0.65519,0.00041\},\{0.04926,0.000490\}$, $\{0.92136,0.00037\},\{0.05009,0.00044\}\},\{\{36 ., 0.034907,0.028785,10000$.$\} ,$ $\{0.64719,0.00039\},\{0.04839,0.00046\},\{0.92823,0.00037\},\{0.04884,0.00044\}\}$, $\{\{36 ., 0.05236,0.043181,10000\},.\{0.63967,0.00033\},\{0.04904,0.0004\}$,

```
{0.93442, 0.00044}, {0.04867, 0.000530}}, {{36., 0.069813, 0.057582, 10000.},
{0.63554, 0.00030000}, {0.05024, 0.00035}, {0.93769, 0.00033}, {0.049210, 0.0004}},
{{36., 0.139626, 0.115259, 10000.}, {0.63112, 0.0004}, {0.04907, 0.00048},
{0.94043, 0.00059}, {0.0495, 0.000700}}, {{36., 0.733038, 0.625307, 10000.},
{0.62905, 0.00036}, {0.04914, 0.00043000}, {0.94269, 0.00043000}, {0.04859, 0.00051}},
{{49., 0.004363, 0.003511, 10000.}, {0.71156, 0.000730}, {0.04788, 0.00088},
{0.86253, 0.00072}, {0.04732, 0.000860}}, {{49., 0.005818, 0.004682, 10000.},
{0.70811, 0.00079}, {0.04807, 0.000940}, {0.86667, 0.00076}, {0.04843, 0.000910}},
{{49., 0.008727, 0.007022, 10000.}, {0.70161, 0.000530}, {0.04623, 0.00063},
{0.87291, 0.00055}, {0.04655, 0.000660}}, {{49., 0.017453, 0.014045, 10000.},
{0.68587, 0.00035}, {0.04424, 0.00042}, {0.890, 0.00035}, {0.04376, 0.00042}},
{{49., 0.02618, 0.021068, 10000.}, {0.67439, 0.00027}, {0.043160, 0.00032},
{0.90159, 0.00026000}, {0.0427, 0.00031}}, {{49., 0.034907, 0.028091, 10000.},
{0.66799, 0.00024000}, {0.04188, 0.00029}, {0.90758, 0.00038}, {0.04168, 0.00046}},
{{49., 0.05236, 0.04214, 10000.}, {0.66113, 0.00023}, {0.04173, 0.00027},
{0.91225, 0.00029}, {0.042210, 0.00035}}, {{49., 0.069813, 0.056193, 10000.},
{0.65771, 0.00019}, {0.04249, 0.00022}, {0.91411, 0.00028000}, {0.041890, 0.00034}},
{{49., 0.139626, 0.112476, 10000.}, {0.65365, 0.00022}, {0.04396, 0.00026000},
    {0.91819, 0.00022}, {0.04322, 0.00026000}}, {{49., 0.733038, 0.609183, 10000.},
    {0.65169, 0.00022}, {0.04206, 0.00027}, {0.91821, 0.00032}, {0.04166, 0.00038}},
{{64., 0.004363, 0.003448, 10000.}, {0.72042, 0.000700}, {0.042660, 0.00084},
    {0.85352, 0.00071}, {0.04226, 0.000850}}, {{64., 0.005818, 0.004597, 10000.},
    {0.71742, 0.00051}, {0.04232, 0.000610}, {0.857, 0.000530}, {0.04168, 0.00064}},
{{64., 0.008727, 0.006896, 10000.}, {0.71212, 0.00059}, {0.04115, 0.00071},
    {0.8622, 0.000530}, {0.040940, 0.00063}}, {{64., 0.017453, 0.013792, 10000.},
    {0.69893, 0.00034}, {0.03817, 0.00041}, {0.87707, 0.00034}, {0.0381, 0.00041}},
    {{64., 0.02618, 0.020688, 10000.}, {0.68991, 0.00039}, {0.03791, 0.00047000},
    {0.88662, 0.00031}, {0.03707, 0.00037}}, {{64., 0.034907, 0.027585, 10000.},
    {0.68318, 0.00030000}, {0.03715, 0.00036}, {0.89217, 0.00027}, {0.03706, 0.00032}},
    {{64., 0.05236, 0.041381, 10000.}, {0.67673, 0.00022}, {0.03751, 0.00026000},
    {0.89693, 0.00029}, {0.03724, 0.00035}}, {{64., 0.069813, 0.05518, 10000.},
    {0.67481, 0.00031}, {0.03732, 0.00037}, {0.89809, 0.00033}, {0.03743, 0.00039}},
    {{64., 0.139626, 0.110445, 10000.}, {0.67003, 0.00034}, {0.03716, 0.00041},
    {0.90149, 0.00031}, {0.03727, 0.00037}}, {{64., 0.733038, 0.597467, 10000.},
    {0.66813, 0.00024000}, {0.03774, 0.00029}, {0.9024, 0.00028000}, {0.03726, 0.00033}},
    {{81., 0.004363, 0.0034, 10000.}, {0.72763, 0.000560}, {0.03752, 0.00067},
    {0.84644, 0.000560}, {0.03725, 0.00067}}, {{81., 0.005818, 0.004533, 10000.},
    {0.7255, 0.0005}, {0.037540, 0.000600}, {0.84895, 0.00045000}, {0.03713, 0.00054}},
    {{81., 0.008727, 0.006799, 10000.}, {0.72054, 0.000490}, {0.03712, 0.00058},
    {0.85379, 0.00044}, {0.036250, 0.000530}}, {{81., 0.017453, 0.013599, 10000.},
    {0.709, 0.00034}, {0.034910, 0.00041}, {0.86674, 0.00018}, {0.03409, 0.00022}},
    {{81., 0.02618, 0.020399, 10000.}, {0.70134, 0.00030000}, {0.03357, 0.00035},
    {0.87493, 0.00024000}, {0.033030, 0.00028000}}, {{81., 0.034907, 0.027199, 10000.},
    {0.6956, 0.0001500}, {0.03345, 0.00018}, {0.88028, 0.00023}, {0.03265, 0.00028000}},
    {{81., 0.05236, 0.040802, 10000.}, {0.68945, 0.00023}, {0.03349, 0.00028000},
    {0.88405, 0.00033}, {0.03343, 0.00039}}, {{81., 0.069813, 0.054408, 10000.},
    {0.68641, 0.00019}, {0.03356, 0.00023}, {0.88641, 0.00031}, {0.03351, 0.00037}},
    {{81., 0.139626, 0.108897, 10000.}, {0.68338, 0.00025}, {0.03265, 0.00030000},
    {0.88795, 0.00041}, {0.03366, 0.00048}}, {{81., 0.733038, 0.588565, 10000.},
    {0.68158, 0.00028000}, {0.032850, 0.00034}, {0.88922, 0.00025}, {0.03259, 0.00030000}},
    {{121., 0.004363, 0.003331, 10000.}, {0.7385, 0.0004}, {0.030840, 0.00048},
```

$\{0.8356,0.00036\},\{0.030590,0.00042\}\},\{\{121 ., 0.005818,0.004441,10000$.$\} ,$ $\{0.73652,0.00041\},\{0.0308600,0.000490\},\{0.83759,0.00038\},\{0.03021,0.00046\}\}$, $\{\{121 ., 0.008727,0.006662,10000\},.\{0.73305,0.00035\},\{0.03037,0.00042\}$, $\{0.84113,0.00038\},\{0.029820,0.00045000\}\},\{\{121 ., 0.017453,0.013324,10000$.$\} ,$ $\{0.72346,0.00029\},\{0.028620,0.00034\},\{0.852,0.00030000\},\{0.02825,0.00036\}\}$, $\{\{121 ., 0.02618,0.019987,10000\},.\{0.71662,0.00027\},\{0.027750,0.00032\}$, $\{0.85972,0.00016\},\{0.027670,0.00019\}\},\{\{121 ., 0.034907,0.026649,10000$.$\} ,$ $\{0.71241,0.00026000\},\{0.02706,0.00031\},\{0.86292,0.00018\},\{0.027080,0.00021\}\}$, $\{\{121 ., 0.05236,0.039977,10000\},.\{0.708,0.00018\},\{0.02723,0.00022\}$, $\{0.86635,0.0001500\},\{0.027420,0.00018\}\},\{\{121 ., 0.069813,0.053308,10000$.$\} ,$ $\{0.70508,0.00023\},\{0.027260,0.00028000\},\{0.86744,0.00022\},\{0.02772,0.00026000\}\}$, $\{\{121 ., 0.139626,0.106692,10000\},.\{0.70191,0.00029\},\{0.02704,0.00034\}$, $\{0.86976,0.0001500\},\{0.027500,0.00018\}\},\{\{121 ., 0.733038,0.575927,10000$.$\} ,$ $\{0.70062,0.00025\},\{0.0267700,0.00030000\},\{0.87027,0.00019\},\{0.02739,0.00023\}\}$, $\{\{225 ., 0.004363,0.003251,10000\},.\{0.75118,0.00031\},\{0.022740,0.00038\}$, $\{0.82256,0.00034\},\{0.02254,0.0004\}\},\{\{225 ., 0.005818,0.004334,10000$.$\} ,$ $\{0.75016,0.00029\},\{0.022140,0.00035\},\{0.8238,0.00038\},\{0.021730,0.00045000\}\}$, $\{\{225 ., 0.008727,0.006501,10000\},.\{0.74756,0.00030000\},\{0.022410,0.00035\}$, $\{0.82659,0.00029\},\{0.021630,0.00034\}\},\{\{225 ., 0.017453,0.013003,10000$.$\} ,$ $\{0.74086,0.00018\},\{0.021040,0.00022\},\{0.83388,0.00022\},\{0.0206400,0.00027\}$, $\{\{225 ., 0.02618,0.019505,10000\},.\{0.73588,0.00022\},\{0.0201300,0.00026000\}$, $\{0.83963,0.00018\},\{0.0198,0.00021\}\},\{\{225 ., 0.034907,0.026007,10000$.$\} ,$ $\{0.73308,0.00013\},\{0.02008,0.0001500\},\{0.84245,0.0002\},\{0.01983,0.00023\}\}$, $\{\{225 ., 0.05236,0.039013,10000\},.\{0.728744,0.000090\},\{0.02014,0.00011\}$, $\{0.84508,0.00013\},\{0.019770,0.00016\}\},\{\{225 ., 0.069813,0.052023,10000$.$\} ,$ $\{0.727354,0.000099\},\{0.0199,0.00012\},\{0.84565,0.00013\},\{0.0200400,0.00016\}\}$, $\{\{225 ., 0.139626,0.104116,10000\},.\{0.72498,0.00013\},\{0.020100,0.00016\}$, $\{0.84702,0.0001500\},\{0.0202100,0.00018\}\},\{\{225 ., 0.733038,0.561218,10000$.$\} ,$ $\{0.72336,0.00016\},\{0.019770,0.00019\},\{0.84781,0.0001400\},\{0.02023,0.00017\}\}\} ;$
$\ln [122]:=$ (*Identify the items in the fitData table with functions having recognizable names. Convert fitData radians to DEGREES:*)
nSrci[i_] := fitData[[i, 1, 1]]
$\ln [123]:=\rho \operatorname{Nomi}\left[i_{-}\right]:=$fitData $\left.[\mathrm{i}, 1,2]\right]\left(\frac{360 .}{2 . \pi}\right)(*$ The nominal radius in degrees*)
ρ RMSi[i_] $:=$ fitData $[$ [$, 1,3]]\left(\frac{360 .}{2 . \pi}\right)(*$ The RMS radius *)
$\ln [125]:=\eta 0 \operatorname{mini}\left[i_{-}\right]:=\operatorname{fitData}[[i, 2,1]]\left(\frac{360 .}{2 . \pi}\right)$
d η Omini [i_] $:=$ fitData $\left[\begin{array}{l}i, 2,2]\end{array}\left(\frac{360 .}{2 . \pi}\right)\right.$
$\ln [127]:=\operatorname{omini}\left[i_{-}\right]:=\operatorname{fitData}[[i, 3,1]]\left(\frac{360 .}{2 . \pi}\right)$
d σ mini [i_] $:=$ fitData [$[i, 3,2]]\left(\frac{360 .}{2 . \pi}\right)$

```
\(\ln [129]=\eta 0 \operatorname{maxi}\left[\mathbf{i}_{-}\right]:=\)fitData \([[i, 4,1]]\left(\frac{360 .}{2 . \pi}\right)\)
d \(\eta\) 0maxi [i_] \(:=\) fitData \([\) i, 4, 2] \(]\left(\frac{360 .}{2 . \pi}\right)\)
\(\ln [131]\) : \(=\operatorname{omaxi}\left[i_{-}\right]:=\operatorname{fitData}[[i, 5,1]]\left(\frac{360 .}{2 . \pi}\right)\)
domaxi[i_] := fitData[ [i, 5, 2]] \(\left(\frac{360 .}{2 . \pi}\right)\)
\(\ln [133]:=w i\left[i_{-}\right]:=\frac{1}{n S r c i[i]^{1 / 2}}\left(* W=1 / N^{1 / 2} *\right)\)
\(\tau R M S i\left[i_{-}\right]:=\frac{1}{\rho R M S i[i]}(*\) inverse RMS radius in inverse degrees*)
```


A7b. Interpolation Method B

The Library constructed for Method B in Sec. A2 is essentially a table of the values of the four parameters, $\eta_{0}{ }^{\min }, \sigma^{\min }, \eta_{0}{ }^{\max }$, and $\sigma^{\text {max }}$, needed to determine the probability distributions and significances in Eqs. (A1-A4).

Instead of the variables N and ρ RMS, the number of sources and the root-mean-square radius, we choose to consider the four parameters as functions of w and $\tau \mathrm{RMS}$, the inverse square root of N and the inverse of the radius ρ RMS,

$$
\begin{equation*}
w=N^{-1 / 2} \text { and } \tau \mathrm{RMS}=\rho \mathrm{RMS}^{-1} . \tag{A5}
\end{equation*}
$$

A change of variables from ($N, \rho \mathrm{RMS}$) to ($w, \tau \mathrm{RMS}$).

Definitions:

Tables: $\mathrm{w} \tau \eta 0 \operatorname{minLib}, \mathrm{w} \tau \mathrm{d} \eta 0 \operatorname{minLib}, \mathrm{w} \tau \eta 0 \operatorname{maxLib}, \mathrm{w} \tau \mathrm{d} \eta 0 \operatorname{maxLib}, \mathrm{w} \tau \sigma \operatorname{minLib}, \mathrm{w} \tau \mathrm{d} \sigma \operatorname{minLib}, \mathrm{w} \tau \sigma$ maxLib, $\mathrm{w} \tau \mathrm{d} \sigma \operatorname{maxLib}$ The tables $w \tau \eta 0 \operatorname{minLib} . .$. have Library data in the form [$(w, \tau \mathrm{RMS})$, quantity] were "quantity" is one of the parameters or their standard errors: $\eta_{0}{ }^{\min }, \mathrm{d} \eta_{0}{ }^{\min }, \sigma^{\min }, \mathrm{d} \sigma^{\min }, \eta_{0}{ }^{\max }, \mathrm{d} \eta_{0}{ }^{\max }, \sigma^{\max }, \mathrm{d} \sigma^{\max }$

The associated interpolation functions are $\eta 0 \operatorname{minBint}, \mathrm{~d} \eta 0 \operatorname{minBint}, ~ \eta 0 \operatorname{maxBint}, \mathrm{~d} \eta 0 \operatorname{maxBint}, \sigma \operatorname{minBint}, \mathrm{~d} \sigma \operatorname{minBint}, \sigma$ maxBint , $\mathrm{d} \sigma$ maxBint

Setting up the interpolations takes two steps. First a tables of the data are constructed. Each table has the form $\{w, \tau \mathrm{RMS}$, parameter $\}$. Second, the interpolation for each parameter is defined. There are four parameters $\eta_{0}{ }^{\min }, \sigma^{\min }, \eta_{0}{ }^{\max }$, and $\sigma^{\text {max }}$ and each one has a standard error $\mathrm{d} \eta_{0}{ }^{\min }, \mathrm{d} \sigma^{\min }, \mathrm{d} \eta_{0}{ }^{\max }$, and $\mathrm{d} \sigma^{\max }$ developed in the fitting process that gives fitData from random run data.

```
ln[135]:= W\tau\eta0minLib = Table[{{wi[i], \tauRMSi[i]}, \eta0mini[i]}, {i, Length[fitData]}];
w\taud\eta0minLib = Table[{wi[i], \tauRMSi[i], d\eta0mini[i]}, {i, Length[fitData]}];
w\tau\etaӨmaxLib = Table[{wi[i], \tauRMSi[i], \etaӨmaxi[i]}, {i, Length[fitData]}];
w\taud\eta0maxLib = Table[{wi[i], \tauRMSi[i], d\eta0maxi[i]},{i, Length[fitData]}];
w\tau\sigmaminLib = Table[{wi[i], \tauRMSi[i], omini[i]}, {i, Length[fitData]}];
w\taud\sigmaminLib = Table[{wi[i], \tauRMSi[i], d\sigmamini[i]}, {i, Length[fitData]}];
w\tau\sigmamaxLib = Table[{wi[i], \tauRMSi[i], omaxi[i]}, {i, Length[fitData]}];
w\taud\sigmamaxLib = Table[{wi[i], \tauRMSi[i], d\sigmamaxi[i]}, {i, Length[fitData]}];
```

```
In[143]:= \eta0minBint = Interpolation[W\tau\eta0minLib];(* int - interpolation function*)
d\eta0minBint = Interpolation [w\taud\eta0minLib];
\eta0maxBint = Interpolation [W\tau\etaӨmaxLib];
d\eta0maxBint = Interpolation [w\taud\eta0maxLib];
ominBint = Interpolation[w\tau\sigmaminLib];
d\sigmaminBint = Interpolation[w\taud\sigmaminLib];
omaxBint = Interpolation[w\tau\sigmamaxLib];
d\sigmamaxBint = Interpolation[W\taud\sigmamaxLib];
```

... Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or InterpolationOrder->All. Order will be reduced to 1.
... Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or InterpolationOrder->All. Order will be reduced to 1 .
... Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or InterpolationOrder->All. Order will be reduced to 1.
... Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or InterpolationOrder->All. Order will be reduced to 1.
... Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or InterpolationOrder->All. Order will be reduced to 1 .
... Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or InterpolationOrder->All. Order will be reduced to 1 .
... Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or InterpolationOrder->All. Order will be reduced to 1 .
... Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or InterpolationOrder->All. Order will be reduced to 1.

By the rules of interpolations, when the variables w and τ are in the range of the Library data, then Mathematica finds an average value from the surrounding Library data points. In terms of the variables w and $\tau \mathrm{RMS}$, the ranges are

$$
\begin{equation*}
\frac{1}{15} \leq w \leq \frac{1}{3} \text { and } \quad 0.024 \mathrm{deg}^{-1} \lesssim \tau \mathrm{RMS} \lesssim 4 \mathrm{deg}^{-1} \quad \text { (Ranges of Interpolation Variables) } \tag{A6}
\end{equation*}
$$

Note: The values for τ RMS are only approximate because the limits shown are values of $1 / \rho$ Nominal and the nominal values ρ Nominal only approximate the root-mean-square values ρ RMS, ρ Nominal $\approx \rho$ RMS .

A7c. Fit the Library Data with Functions, Function Method C

Applying Interpolation Method B when one or both sample's variables are outside the Library data set, results in extrapolation, not interpolation. Instead of interpolating Library data points that surround the sample's variables, Mathematica guesses what lies beyond the Library's boundaries. In such a case or for other situations that arise, one can apply the following alternative Formula Method C to find the distribution parameters $\eta_{0}{ }^{\min }, \sigma^{\min }, \eta_{0}{ }^{\max }$, and $\sigma^{\max }$ and, with Eqs. (A4, A5), the significances desired. Formula Method C finds formulas to fit the four distribution parameters $\eta_{0}{ }^{\min }(w, \tau \mathrm{RMS}), \sigma^{\min }(w, \tau \mathrm{RMS}), \quad \eta_{0}{ }^{\max }(w, \tau \mathrm{RMS})$,
and $\sigma^{\max }(w, \tau \mathrm{RMS})$. Best, Big and Small are just copied from 20211112InterpolateAndFormula2a which are copied from 20211116AlternateRandomRunStatsDegrees.nb

Definitions:

Alignment:

Library data fitting functions:
eta0minFit[$w, \tau]$, eta0minFitbig $[w, \tau]$, eta0minFitsmall $[w, \tau]$, deta0minFit[$w, \tau]$
sigmaminFit[w, $\tau]$, sigminFitBig $[\mathrm{w}, \tau]$, sigminFitSmall $[\mathrm{w}, \tau]$, dsigmaminFit $[\mathrm{w}, \tau]$
Plots of the Library data fitting function for the i^{th} value of w :
plotTauEtamin[iN], plotTauEtaminbig[iN], plotTauEtaminsmall[iN],
plotTausigmamin[iN], ...
Display of the fitting functions for all values of w:
eta0MinVSTauFit (Big, Best, Small) and eta0MinVSTauFit0 (Best only)
sortPercentDiffEta0minfit percent differences between the Library data and the relevant fitting function, here for $\eta_{0}{ }^{\min }$.
sortPercentDiffSigmaminfit \quad Same, but for $\sigma^{\text {min }}$

Avoidance:
REPEAT ALL OF THE ABOVE AGAIN, BUT THIS TIME WITH "MAX", NOT "MIN", i.e. eta0maxFit[w, $\tau]$, ..., sortPercentDif-
fSigmamaxfit
$\ln [151]$]=
(*Equation (A7), 20211112InterpolateAndFormula2a.nb *)
eta0minFit[w_, $\left.\tau_{-}\right]:=$
$45.0269-w(47.386+7.32 w-17.789 \operatorname{Tanh}[(0.7096-0.3488 w)(-0.5348+\tau)])$

$$
\begin{aligned}
& 45.0434-w(47.031+6.83 w+(-17.789+0.302 \operatorname{Sign}[(-0.7096+0.3488 w)(-0.5348+\tau)]) \\
& \operatorname{Tanh}[(-0.5348+\tau+0.0254 \operatorname{Sign}[0.7096-0.3488 w]) \\
& (0.7096+w(-0.3488+0.0321 \operatorname{Sign}[-0.5348+\tau])+0.0137 \operatorname{Sign}[-0.5348+\tau])])
\end{aligned}
$$

(*Equation (A9) *) eta0minFitsmall [w, $\left.\tau_{-}\right]:=$
$45.0103-w(47.741+7.81 w+(-17.789-0.302 \operatorname{Sign}[(-0.7096+0.3488 w)(-0.5348+\tau)])$
$\operatorname{Tanh}[(-0.5348+\tau-0.0254 \operatorname{Sign}[0.7096-0.3488 w])$

$$
\left.\left.\left(0.7096+w(-0.3488-0.0321 \operatorname{Sign}[-0.5348+\tau])^{\prime}-0.0137 \operatorname{Sign}[-0.5348+\tau]\right)\right]\right)
$$

$\ln [154]=$
deta0minFit[w_, $\left.\tau_{-}\right]:=$eta0minFitbig[w, $\left.\tau\right]$-eta0minFit [w, $\left.\tau\right]$
$\ln [155]$]=
(*Equation (A10)*)
sigmaminFit $\left[w_{-}, \tau_{-}\right]:=0.25 w(73.570-8.29 w+(3.093+10.658 w) \operatorname{Tanh}[1.2161(-1.6072+\tau)])$
$\ln [156]:=$ (*Equation (A11) *)
sigminFitBig[w_, $\left.\tau_{-}\right]:=0.25$ w
$(73.679-7.86 w+(3.093+w(10.658+0.508 \operatorname{Sign}[-1.6072+\tau])+0.126 \operatorname{Sign}[-1.6072+\tau])$
$\operatorname{Tanh}[(-1.6072+\tau+0.0202 \operatorname{Sign}[3.093+10.658 \mathrm{w}])(1.2161+0.0441 \operatorname{Sign}[-1.6072+\tau])])$

```
\(\ln [157]:=\) (*Equation (A12) *)
    sigminFitSmall[w_, \(\left.\tau_{-}\right]:=0.25 \mathrm{w}\)
    \((73.460-8.73 w+(\overline{3} .093+w(10.658-0.508 \operatorname{Sign}[-1.6072+\tau])-0.126 \operatorname{Sign}[-1.6072+\tau])\)
        \(\operatorname{Tanh}[(-1.6072+\tau-0.0202 \operatorname{Sign}[3.093+10.658 \mathrm{w}])(1.2161-0.0441 \operatorname{Sign}[-1.6072+\tau])])\)
    dsigmaminFit[w_, \(\left.\tau_{-}\right]:=\operatorname{sigminFitBig[w,~\tau ]-sigmaminFit[w,~\tau ]~}\)
    (*Equation (A13)*)
    eta0maxFit \(\left[w_{-}, \tau_{-}\right]:=45.1455+w(44.230+8.35 w-14.632 \operatorname{Tanh}[0.6808(-0.8608+\tau)])\)
    (*Equation (A14)*)
    eta0maxFitbig[w_, \(\left.\tau_{-}\right]:=45.1632+w(44.483+8.85 w+(-14.632+0.179 \operatorname{Sign}[-0.8608+\tau])\)
        \(\operatorname{Tanh}[(-0.8777+\tau)(0.6808+0.0106 \operatorname{Sign}[0.8608-\tau])])\)
    (*Equation (A15)*)
    eta0maxFitsmall[w_, \(\left.\tau_{-}\right]:=45.1279+w(43.977+7.85 w+(-14.632-0.179 \operatorname{Sign}[-0.8608+\tau])\)
        \(\operatorname{Tanh}[(-0.8439+\tau)(0.6808-0.0106 \operatorname{Sign}[0.8608-\tau])])\)
    deta0maxFit[w_, \(\left.\tau_{-}\right]:=\)eta0maxFitbig[w, \(\tau\) ] - eta0maxFit [w, \(\left.\tau\right]\)
    (*Equation (A16) *)
    sigmamaxFit[w_, \(\left.\tau_{-}\right]:=0.25 \mathrm{w}(73.287-8.11 \mathrm{w}+(2.773+11.126 \mathrm{w}) \operatorname{Tanh}[1.2850(-1.6242+\tau)])\)
    (*Equation (A17)*)
    sigmaxFitBig[w_, \(\left.\tau_{-}\right]:=0.25 \mathrm{w}\)
    \((73.400-7.66 w+(2.773+w(11.126+0.521\) Sign \([-1.6242+\tau])+0.129 \operatorname{Sign}[-1.6242+\tau])\)
        \(\operatorname{Tanh}[(-1.6242+\tau+0.0210 \operatorname{Sign}[2.773+11.126 \mathrm{w}])(1.2850+0.0494 \operatorname{Sign}[-1.6242+\tau])])\)
    (*Equation (A18)*)
    sigmaxFitSmall[w_, \(\left.\tau_{-}\right]:=0.25 \mathrm{w}\)
    \((73.174-8.567 w+(2.773+w(11.126-0.521 \operatorname{Sign}[-1.6242+\tau])-0.129 \operatorname{Sign}[-1.6242+\tau])\)
        \(\operatorname{Tanh}[(-1.6242+\tau-0.0210 \operatorname{Sign}[2.773+11.126 \mathrm{w}])(1.2850-0.0494 \operatorname{Sign}[-1.6242+\tau])])\)
    dsigmamaxFit[w_, \(\left.\tau_{-}\right]:=\operatorname{sigmaxFitBig}[w, \tau]-\operatorname{sigmamaxFit}[w, \tau]\)
```

A7d. Combine Interpolation Method B and Function Method C

Apply Interpolation Method B when both sample's variables are within the range of the Library data set. Otherwise, one can apply the following alternative Formula Method C to find the distribution parameters $\eta_{0}{ }^{\min }, \sigma^{\min }, \quad \eta_{0}{ }^{\max }$, and $\sigma^{\max }$.

Definitions:

Alignment:

Methods B,C combination parameter functions:
$\eta 0 \min [\mathrm{w}, \tau], \mathrm{d} \eta 0 \min [\mathrm{w}, \tau]$ peak alignment distribution, standard error $\sigma \min [\mathrm{w}, \tau], \mathrm{d} \sigma \min [\mathrm{w}, \tau] \quad$ half-width alignment distr., standard error $\eta 0 \max [\mathrm{w}, \tau], \mathrm{d} \eta 0 \max [\mathrm{w}, \tau]$ peak avoidance distribution, standard error
$\sigma \max [\mathrm{w}, \tau], \mathrm{d} \sigma \max [\mathrm{w}, \tau] \quad$ half-width avoidance distr., standard error
$\operatorname{probMIN}[\eta, \mathrm{nSrc}, \rho$ RMS $]$, probMAX signiMIN $[\eta, \mathrm{nSrc}, \rho$ RMS $]$, signiMAX
probability distributions for probability of η using a sample's values of N, ρ RMS significance of η using a sample's values of $N, \rho \mathrm{RMS}$

$$
\begin{aligned}
& \eta \text { @min }\left[w_{-}, \tau_{-}\right]:=\operatorname{If}\left[\left(\frac{1}{15 .} \leq w \leq \frac{1}{3 .}\right) \& \&(0.025 \leq \tau \leq 3.9), \eta \Theta \operatorname{minBint}[w, \tau] \text {, eta@minFit }[w, \tau]\right] ; \\
& \text { dn0min[w_, } \left.\tau_{-}\right]:= \\
& \operatorname{If}\left[\left(\frac{1}{15 .} \leq w \leq \frac{1}{3 .}\right) \& \&(0.025 \leq \tau \leq 3.9), \text { d } \eta \notin \text { minBint }[w, \tau] \text {, deta@minFit }[w, \tau]\right] ; \\
& \eta \theta \max \left[w_{-}, \tau_{-}\right]:=\operatorname{If}\left[\left(\frac{1}{15 .} \leq w \leq \frac{1}{3 .}\right) \& \&(0.025 \leq \tau \leq 3.9), \eta \Theta \operatorname{maxBint}[w, \tau], \text { eta@maxFit }[w, \tau]\right. \text {; } \\
& \text { d } \eta \text { 0max }\left[w_{-}, \tau_{-}\right]:= \\
& \operatorname{If}\left[\left(\frac{1}{15 .} \leq w \leq \frac{1}{3 .}\right) \& \&(0.025 \leq \tau \leq 3.9) \text {, d } \eta \text { @maxBint }[w, \tau] \text {, deta@maxFit }[w, \tau]\right. \text {; } \\
& \operatorname{amin}\left[w_{-}, \tau_{-}\right]:=\operatorname{If}\left[\left(\frac{1}{15 .} \leq w \leq \frac{1}{3 .}\right) \& \&(0.025 \leq \tau \leq 3.9) \text {, ominBint }[w, \tau], \operatorname{sigmaminFit}[w, \tau]\right] ; \\
& \text { domin[w, } \left.\tau_{-}\right]:= \\
& \operatorname{If}\left[\left(\frac{1}{15 .} \leq w \leq \frac{1}{3 .}\right) \& \&(0.025 \leq \tau \leq 3.9) \text {, dominBint }[w, \tau] \text {, dsigmaminFit }[w, \tau]\right] ; \\
& \operatorname{\sigma max}\left[w_{-}, \tau_{-}\right]:=\operatorname{If}\left[\left(\frac{1}{15 .} \leq w \leq \frac{1}{3 .}\right) \& \&(0.025 \leq \tau \leq 3.9) \text {, omaxBint }[w, \tau], \operatorname{sigmamaxFit}[w, \tau]\right] ; \\
& \text { domax[w, } \left.\tau_{-}\right]:= \\
& \operatorname{If}\left[\left(\frac{1}{15 .} \leq w \leq \frac{1}{3 .}\right) \& \&(0.025 \leq \tau \leq 3.9) \text {, domaxBint }[w, \tau] \text {, dsigmamaxFit }[w, \tau]\right. \text {]; } \\
& \operatorname{probMIN}\left[\eta_{-}, \operatorname{nSrc}, \rho \text { RMS_] }:=\operatorname{probMINe}\left[\eta, \eta 0 \min \left[\mathrm{nSrc}^{-1 / 2}, \rho \mathrm{RMS}^{-1}\right], \operatorname{\sigma min}\left[\mathrm{nSrc}^{-1 / 2}, \rho \text { RMS }^{-1}\right]\right]\right. \\
& \operatorname{signiMIN}\left[\eta_{-}, \text {nSrc_, } \rho \text { RMS_] }:=\operatorname{signiMINQ}\left[\eta, \eta \Theta \min \left[\mathrm{nSrc}^{-1 / 2}, \rho \mathrm{RMS}^{-1}\right], \sigma \min \left[\mathrm{nSrc}^{-1 / 2}, \rho \mathrm{RMS}^{-1}\right]\right]\right. \\
& \operatorname{probMAX}\left[\eta_{-}, \text {nSrc_, } \rho \text { RMS_] }:=\operatorname{probMAX} 0\left[\eta, \eta \Theta \max \left[\mathrm{nSrc}^{-1 / 2}, \rho \mathrm{RMS}^{-1}\right], \sigma \max \left[\mathrm{nSrc}^{-1 / 2}, \rho \mathrm{RMS}^{-1}\right]\right.\right. \\
& \operatorname{signiMAX}\left[\eta_{-}, \text {nSrc_, } \rho \text { RMS_] }:=\operatorname{signiMAXQ}\left[\eta, \eta \Theta \max \left[\mathrm{nSrc}^{-1 / 2}, \rho \mathrm{RMS}^{-1}\right], \sigma \max \left[\mathrm{nScc}^{-1 / 2}, \rho \mathrm{RMS}^{-1}\right]\right]\right.
\end{aligned}
$$

A7e. Significance of alignment and avoidance for the regions

To get significance formulas for each region, we use the number of sources and the ρ RMS for each region, i.e. nSrck $[\mathrm{k}]$ and $\rho \mathrm{RMSk}[\mathrm{k}]$ for the $k^{\text {th }}$ region. One has
$\ln [179]:=\operatorname{sigMINk}\left[\mathrm{k}_{-}\right]:=\operatorname{signiMIN}[\eta \operatorname{mink}[\mathrm{k}], \operatorname{nSrck}[\mathrm{k}], \rho \operatorname{RMSk}[\mathrm{k}]]$ $\operatorname{sigMAXk}\left[\mathrm{k}_{-}\right]:=\operatorname{signiMAX}[\eta \operatorname{maxk}[\mathrm{k}], \operatorname{nSrck}[\mathrm{k}], \rho \mathrm{RMSk}[\mathrm{k}]]$

```
\(\ln [181]:=\) (*Get the ID\#s \(k\) for Regions with very significant alignment.*)
    \(\eta\) MINVerySigkList = \{\};
    For \([k=1, k \leq\) Length \([k N j \eta M i n j \eta M a x], k++\),
        If [0.01 \(\geq\) sigMINk[k], AppendTo[ \(\eta\) MINVerySigkList, \(\{k\), sigMINk[k] \(\}]]]\)
    \(\eta\) MINVerySigkList;
    Length[ \(\eta\) MINVerySigkList];
\(\ln [185]:=\)
    [ MINVerySigkList, \#1[[2]] < \#2[[2]] \&]
    Table[sort \(\eta\) MINVerySigkList[[i]], \(\{i, 10\}] ;\)
    Length [sort \(\eta\) MINVerySigkList];
\(\ln [188]:=\) (*Get the ID\#S \(k\) for Regions with ( \(5 \%\), NOT Very) significant alignment.*)
    \(\eta\) MINSigkList \(=\{ \} ;\)
    For \([k=1, k \leq \operatorname{Length}[k N j \eta M i n j \eta M a x], k++\),
        If \([0.05 \geq\) sigMINk [k], AppendTo[ \(\eta\) MINSigkList, \(\{k\), sigMINk[k] \(\}]]]\)
    \(\eta\) MINSigkList;
    Length[ \(\eta\) MINSigkList];
\(\ln [192]:=\) (*Regions with ( \(5 \%\), NOT Very) significant alignment.*)
    sort \(\eta\) MINSigkList \(=\) Sort[ \(\eta\) MINSigkList, \#1[[2]] < \#2[[2]] \&];
    Table[sort \(\eta\) MINSigkList[[i]], \{i, 10\}];
    Length [sort \(\eta\) MINSigkList];
\(\ln [195]:=\) (*Get the ID\#s \(k\) for Regions with very significant avoidance.*)
    \(\eta\) MAXVerySigkList = \{\};
    For \([k=1, k \leq \operatorname{Length}[k N j \eta M i n j \eta M a x], k++\),
        \(\operatorname{If}[0.01 \geq \operatorname{sigMAXk}[k]\), AppendTo[ \(\eta\) MAXVerySigkList, \(\{k, \operatorname{sigMAXk}[k]\}]]]\)
    \(\eta\) MAXVerySigkList;
    Length[ \(\eta\) MAXVerySigkList];
In[199]:= sort \(\eta\) MAXVerySigkList = Sort[ \(\eta\) MAXVerySigkList, \#1[[2] ] < \#2 [ [2] ] \&] ;
    Table[sort \(\eta\) MAXVerySigkList [ [i]], \{i, Length[ \(\eta\) MAXVerySigkList] \}];
    Length [sort \(\eta\) MAXVerySigkList];
\(\operatorname{In}[202]:=\) (*Regions with ( 5\%, NOT Very) significant alignment.*)
    \(\eta\) MAXSigkList = \{\};
    For \([k=1, k \leq \operatorname{Length}[k N j \eta M i n j \eta M a x], k++\),
    \(\operatorname{If}[0.05 \geq \operatorname{sigMAXk}[k]\), AppendTo[ \(\eta\) MAXSigkList, \(\{k, \operatorname{sigMAXk}[k]\}]]]\)
    \(\eta\) MAXSigkList;
    Length[ \(\eta\) MAXSigkList];
\(\ln [206]:=\) (*Regions with ( \(5 \%\), NOT Very) significant alignment.*)
    sort \(\eta\) MAXSigkList \(=\) Sort[ \(\eta\) MAXSigkList, \#1[[2]] < \#2[[2]] \&];
    Table[sort \(\eta\) MAXSigkList[ [i]], \{i, Length[ \(\eta\) MAXSigkList] \}];
    Length [sort \(\eta\) MAXSigkList];
```

 (*Uncertainty of \(-\log _{10} \mathrm{~S}\) for \(\eta\) mink with uncertainty for \(\eta\) mink \(= \pm 1^{\circ}\). *)
 negLogSignminBest[k_] :=-Log[10,
signiMIN0 [η mink [k], η Omin [nSrck [k] $\left.\left.\left.]^{-1 / 2}, \rho \operatorname{RMSk}[k]^{-1}\right], \sigma \min \left[n S r c k[k]^{-1 / 2}, \rho \operatorname{RMSk}[k]^{-1}\right]\right]\right]$
negLogSig η minBig [k_] := - Log [10, signiMIN0 [η mink [k] - (1),
η Omin [nSrck[k] $\left.{ }^{-1 / 2}, \rho \operatorname{RMSk}[k]^{-1}\right]+\operatorname{d\eta } \min \left[n S r c k[k]^{-1 / 2}, \rho \operatorname{RMSk}[k]^{-1}\right]$,
omin [nSrck[k] $\left.{ }^{-1 / 2}, \rho \operatorname{RMSk}[k]^{-1}\right]$ - d $\left.\left.\sigma \min \left[n S r c k[k]^{-1 / 2}, \rho \operatorname{RMSk}[k]^{-1}\right]\right]\right]$
negLogSig η minSmall [k_] :=-Log[10, signiMIN0[η mink [k] + (1),
$\eta 0 \min \left[n S r c k[k]^{-1 / 2}, \rho \operatorname{RMSk}[k]^{-1}\right]-\operatorname{dn} 0 \min \left[n S r c k[k]^{-1 / 2}, \rho \operatorname{RMSk}[k]^{-1}\right]$,
omin $\left[\right.$ nSrck $\left.\left.\left.[k]^{-1 / 2}, \rho \operatorname{RMSk}[k]^{-1}\right]+\operatorname{domin}\left[\operatorname{nSrck}[k]^{-1 / 2}, \rho \operatorname{RMSk}[k]^{-1}\right]\right]\right]$
$\ln [212]:=$ (*Uncertainty of $-\log _{10} S$ for η maxk with uncertainty for η maxk $= \pm 1^{\circ}$. *)
negLogSig η maxBest[k_] := - Log[10,
signiMAX0 [η maxk [k], η 0max[nSrck [k] $\left.\left.\left.]^{-1 / 2}, \rho \operatorname{RMSk}[k]^{-1}\right], \sigma \max \left[n S r c k[k]^{-1 / 2}, \rho \operatorname{RMSk}[k]^{-1}\right]\right]\right]$
negLogSig η maxBig [k_] $:=-\log [10, \operatorname{signiMAX0[\eta \text {maxk}[k]+(1),~}$
$\eta 0 \max \left[\mathrm{nSrck}[k]^{-1 / 2}, \rho \operatorname{RMSk}[k]^{-1}\right]-\mathrm{d} \eta \operatorname{Omax}\left[\mathrm{nSrck}[k]^{-1 / 2}, \rho \operatorname{RMSk}[k]^{-1}\right]$,
$\sigma \max \left[n S r c k[k]^{-1 / 2}, \rho \operatorname{RMSk}[k]^{-1}\right]$ - d $\left.\left.\sigma \max \left[n S r c k[k]^{-1 / 2}, \rho R M S k[k]^{-1}\right]\right]\right]$
negLogSig η maxSmall [k_] :=-Log[10, signiMAX0[η maxk[k]-(1),
$\eta 0 \max \left[\mathrm{nSrck}[k]^{-1 / 2}, \rho \operatorname{RMSk}[k]^{-1}\right]+\mathrm{d} \eta \operatorname{Omax}\left[\operatorname{nSrck}[k]^{-1 / 2}, \rho \operatorname{RMSk}[k]^{-1}\right]$,
$\left.\left.\sigma \max \left[\mathrm{nSrck}[k]^{-1 / 2}, \rho \operatorname{RMSk}[k]^{-1}\right]+\operatorname{d} \sigma \max \left[\operatorname{nSrck}[k]^{-1 / 2}, \rho \operatorname{RMSk}[k]^{-1}\right]\right]\right]$
negLogVerySig η min $=$
Table[Around[negLogSig η minBest [k], \{negLogSig η minBest[k] - negLogSig η minSmall [k], negLogSig η minBig [k] - negLogSig η minBest [k]\}],
\{k, Table[sort η MINVerySigkList[[i, 1]], \{i, Length[sort η MINVerySigkList]\}]\}]; Print["For the very significantly aligned regions, $S=p \leqslant 10^{-2}$, the - $\log _{10} S$ values are"] negLogVerySig η min
For the very significantly aligned regions, $\mathrm{S}=p \leqslant 10^{-2}$, the $-\log _{10} \mathrm{~S}$ values are

$\ln [218]=$ negLogVerySig η max $=$
Table[Around[negLogSig η maxBest [k], \{negLogSig η maxBest[k] - negLogSig η maxSmall[k], negLogSig η maxBig [k] - negLogSig η maxBest [k]\}],
\{k, Table[sort η MAXVerySigkList[[i, 1]], \{i, Length[sort η MAXVerySigkList]\}]\}];
Print["For the regions with very significant avoidance,
$\mathrm{S}=p \leqslant 10^{-2}$, the $-\log _{10} \mathrm{~S}$ values are"]
negLogVerySig η max
For the regions with very significant avoidance, $S=p \leqslant 10^{-2}$, the $-\log _{10} S$ values are
Out[220]=

In[221]:= lpNegLogVerySigAlign = ListPlot[negLogVerySig η min, PlotRange $\rightarrow\{\{0,20\},\{0,5.5\}\}$, PlotLabel \rightarrow " - Log ${ }_{1 \theta} p$, Alignment $"$, GridLines \rightarrow Automatic, Frame \rightarrow True, FrameLabel \rightarrow \{"Rank", "-Logp"\}, ImageSize $\rightarrow 72 \times 4$];
$\ln [222]:=$
lpNegLogVerySigAvoid $=$
ListPlot[negLogVerySig η max, PlotRange \rightarrow All, PlotLabel \rightarrow " $-\log _{10} p$, Avoidance ",
GridLines \rightarrow Automatic, Frame \rightarrow True, FrameLabel $\rightarrow\{$ "Rank", "-Log p " $\}$, ImageSize $\rightarrow 72 \times 4] ;$
GraphicsRow [\{lpNegLogVerySigAlign, lpNegLogVerySigAvoid\}]
Print [
"Figure A4. The negative log of the significance p for regions with very significant alignment (left) and avoidance (right). The most significant region has rank 1, the next most significant has rank 2, etc. Most of the uncertainty is due to the experimental uncertainty in the polarization position angles ψ."]
$-\log _{10} p$, Alignment

- $\log _{10} p$, Avoidance

Figure A4. The negative log of the significance p for regions with very significant alignment (left) and avoidance (right). The most significant region has rank 1, the next most significant has rank 2, etc. Most of the uncertainty is due to the experimental uncertainty in the polarization position angles ψ.

The number of regions with very significant alignment is 19 regions, i.e. $S=p \leq 10^{-2}=0.01$.
The number of regions with significant alignment is 96 regions, i.e. $S=p \leq 10^{-2}=0.05$.
The number of regions with very significant avoidance is 20 regions, i.e. $S=p \leq 10^{-2}=0.01$.
The number of regions with significant avoidance is 88 regions, i.e. $\mathrm{S}=p \leq 10^{-2}=0.05$.

The region with the most significant alignment is region number 393, which has $S=p=0.000467833$.

The region with the most significant avoidance is region number 260, which has $S=p=0.000019276$.

A8. Mapping the significance of the regions
$\ln [232]:=\quad$ raDEClogSigForAllVerySigMin =
Table[\{ α Hj[rgnCntrAndSrcId[[sort η MINVerySigkList [[j, 1]], 2]]], סHj[rgnCntrAndSrcId[[sort η MINVerySigkList [[j, 1]], 2]]], -Log[10, sort η MINVerySigkList [[j, 2]]]\}, \{j, Length[sort η MINVerySigkList]\}];

```
ln[234]:= lp1 = ListPlot[
    {Table[Style[{xH180[ \alphaAVEk[k], \deltaAVEk[k] ], yH180[ \alphaAVEk[k], \deltaAVEk[k] ]}, LightGray],
        {k, Length[rgnCntrAndSrcId]}],
        Table[Style[{xH180[sortraDEClogSigForAllVerySigMin[[-j]][[1]],
                sortraDEClogSigForAllVerySigMin[[-j]][[2]]],
                yH180[sortraDEClogSigForAllVerySigMin[[-j]][[1]],
                sortraDEClogSigForAllVerySigMin[[-j]][[2]]]},
        ColorData["Rainbow"][(sortraDEClogSigForAllVerySigMin[[-j]][[3]] - 2.) /
                (sortraDEClogSigForAllVerySigMin[[1]][[3]] - 2.)]],
        {j, Length[sortraDEClogSigForAllVerySigMin]}]},
    PlotRange }->\mathrm{ {{-4., 4.}, {-2.2, 2.2}}, PlotStyle }->\mathrm{ PointSize[Medium],
    PlotLegends }->\mathrm{ BarLegend[{"Rainbow", {2.0, sortraDEClogSigForAllVerySigMin[[1]][[3]]}},
        LegendLabel }->\mathrm{ "-- (og}10р"], Axes -> False]
ln[235]:=
    lp2 = Show [{lp1, Table [ParametricPlot [{xH180 [\alpha, \delta], yH180 [\alpha, \delta] }, {\delta, - 90, 90},
        PlotStyle }->\mathrm{ {Black, Thickness[0.002]}, PlotPoints }->60],{\alpha,0,360, 30}] 
    Table [ParametricPlot [{xH180 [\alpha, \delta] , yH180 [\alpha, \delta] }, {\alpha, 0, 360},
            PlotStyle }->\mathrm{ {Black, Thickness[0.002]}, PlotPoints }->\mathrm{ 60], {ס, -60, 60, 30}] ,
        Graphics[{PointSize[0.004], Text[StyleForm["N", FontSize -> 14, FontWeight -> "Plain"] ,
            {0, 1.85}], Text[StyleForm["Very Significantly Aligned Regions (S = p \leq 1%)",
            FontSize -> 14, FontWeight -> "Plain"], {0, -1.85}],
        Text[StyleForm["Clump 1", FontSize m 12, FontWeight -> "Bold"], {-3.3, 1.0}],
        {Arrow[BezierCurve[{{-3.3, 1. 2}, {-1.3, 2.5}, {xH180[170, 20], yH180 [170, 20] }}]]},
        Text[StyleForm["Clump 2", FontSize m 12, FontWeight -> "Bold"], {3.3, 1.0}],
        {Arrow[BezierCurve[{{3.3, 1.2}, {1.3, 2.5}, {xH180[175, 53], yH180[175, 53]}}]]} ,
        Text[StyleForm["Clump 3", FontSize }->\mathrm{ 12, FontWeight -> "Bold"], {+3.3, -1.0}], {Arrow[
            BezierCurve[{{+3.3, -1.2}, {+0.3, -1.5}, {xH180[235, 28], yH180 [235, 28] }}]]},
        Text[StyleForm["Clump 4", FontSize }->\mathrm{ 12, FontWeight -> "Bold"], {-3.3, -1.0}],
        {Arrow[BezierCurve[{ {-3.3, -1.2}, {-1.3, -1.5},
            {xH180[118, 18], yH180[118, 18] } ] ] }}]}, ImageSize }->\mathrm{ 432]
Print["Figure A5. The very significantly aligned regions are shaded in color.
    The regions in grey have sources that are not very significantly aligned."]
```

Out[235]=

Very Significantly Aligned Regions ($\mathrm{S}=p \leq 1 \%$)

Figure A5. The very significantly aligned regions are shaded in color. The regions in grey have sources that are not very significantly aligned.
$\ln [237]:=$
(*Regions with (5%, NOT Very) significant alignment.*)
raDEClogSigForAllSigMin = Table[\{ $\alpha \mathrm{Hj}[$ rgnCntrAndSrcId[[sort η MINSigkList [[j, 1]], 2]]], $\delta \mathrm{Hj}[$ rgnCntrAndSrcId[[sort η MINSigkList [[j, 1]], 2]]],
-Log[10, sort η MINSigkList [[j, 2]]]\}, \{j, Length[sort η MINSigkList]\}];
sortraDEClogSigForAllSigMin = Sort [raDEClogSigForAllSigMin, \#1[[3]] > \#2[[3]] \&];
lp3 = ListPlot[
\{Table[Style[\{xH180[α AVEk[k], $\delta A V E k[k]$], yH180[α AVEk[k], $\delta A V E k[k]$]\}, LightGray],
\{k, Length[rgnCntrAndSrcId] \}],
Table[Style[\{xH180[sortraDEClogSigForAllSigMin[[-j]][[1]],
sortraDEClogSigForAllSigMin[[-j]][[2]]], yH180[sortraDEClogSigForAllSigMin [[-j]][[1]], sortraDEClogSigForAllSigMin[[-j]][[2]]]\},
ColorData["Rainbow"] [(sortraDEClogSigForAllSigMin[[-j]][[3]]-2.) /
(sortraDEClogSigForAllSigMin[[1]][[3]]-2.)]],
\{j, Length[sortraDEClogSigForAllSigMin]\}]\}, PlotRange $\rightarrow\{\{-4 ., 4\},.\{-2.2,2.2\}$,
PlotStyle \rightarrow PointSize [Medium], PlotLegends \rightarrow
BarLegend[\{"Rainbow", \{-Log[10, 0.05], sortraDEClogSigForAllSigMin[[1]][[3]]\}\}, LegendLabel \rightarrow "-Log ${ }_{10}$ P"], Axes \rightarrow False];
(*Regions with (5\%, NOT Very) significant alignment.*)
lp4 = Show[\{lp3, Table[ParametricPlot[\{xH180[$\alpha, \delta], \mathrm{yH} 180[\alpha, \delta]\},\{\delta,-90,90\}$, PlotStyle \rightarrow \{Black, Thickness [0.002]\}, PlotPoints \rightarrow 60], \{ $\alpha, 0,360,30\}]$,
Table[ParametricPlot [\{xH180[$\alpha, \delta], y H 180[\alpha, \delta]\},\{\alpha, 0,360\}$,
PlotStyle \rightarrow \{Black, Thickness [0.002]\}, PlotPoints $\rightarrow 60$, $\{\delta,-60,60,30\}]$,
Graphics [\{PointSize[0.004], Text[StyleForm["N", FontSize -> 14, FontWeight -> "Plain"], \{0, 1.85\}], Text[StyleForm["Significantly Aligned Regions ($p \leq 5 \%$) ", FontSize -> 14, FontWeight -> "Plain"], \{0, -1.85\}]\}]\}, ImageSize \rightarrow 432]
Print["Figure A6. Significantly aligned regions, this map has 96 significantly aligned regions, compared to 19 very significantly aligned regions in Fig. A5."]

Significantly Aligned Regions ($p \leq 5 \%$)

Figure A6. Significantly aligned regions, this map has 96 significantly aligned regions, compared to 19 very significantly aligned regions in Fig. A5.

```
In[242]:= raDEClogSigForAllVerySigMax =
        Table[{\alphaHj[rgnCntrAndSrcId[[sortmMAXVerySigkList [[j, 1]], 2]]],
            \deltaHj[rgnCntrAndSrcId[[sort\etaMAXVerySigkList [[j, 1]], 2]]],
            - Log[10, sort\etaMAXVerySigkList [[j, 2]]]}, {j, Length[sort\etaMAXVerySigkList]}];
sortraDEClogSigForAllVerySigMax = Sort[raDEClogSigForAllVerySigMax, #1[[3]] > #2[[3]] &];
lp5 = ListPlot[
            {Table[Style[{xH180[ \alphaAVEk[k], \deltaAVEk[k] ], yH180[ \alphaAVEk[k], \deltaAVEk[k] ]}, LightGray],
            {k, Length[rgnCntrAndSrcId]}],
            Table[Style[{xH180[sortraDEClogSigForAllVerySigMax[[-j]][[1]],
                sortraDEClogSigForAllVerySigMax[[-j]][[2]]],
                yH180[sortraDEClogSigForAllVerySigMax[[-j]][[1]],
                sortraDEClogSigForAllVerySigMax[[-j]][[2]]]},
                ColorData["Rainbow"][(sortraDEClogSigForAllVerySigMax[[-j]][[3]] - 2.) /
                (sortraDEClogSigForAllVerySigMax[[1]][[3]] - 2.)]],
            {j, Length[sortraDEClogSigForAllVerySigMax]}]},
        PlotRange }->\mathrm{ {{-4., 4.}, {-2.2, 2.2}}, PlotStyle }->\mathrm{ PointSize[Medium],
        PlotLegends }->\mathrm{ BarLegend[{"Rainbow", {2.0, sortraDEClogSigForAllVerySigMax[[1]][[3]]}},
            LegendLabel }->\mathrm{ "-- -og
    lp6 = Show[{lp1, Table[ParametricPlot[{xH180[\alpha, \delta], yH180[\alpha, \delta]}, {\delta, -90, 90},
        PlotStyle }->\mathrm{ {Black, Thickness[0.002]}, PlotPoints }->\mathrm{ 60], { , 0, 360, 30}],
        Table[ParametricPlot[{xH180[\alpha, \delta], yH180[\alpha, \delta]}, {\alpha, 0, 360},
            PlotStyle }->\mathrm{ {Black, Thickness[0.002]}, PlotPoints }->\mathrm{ 60], { (, -60, 60, 30}],
        Graphics[{PointSize[0.004], Text[StyleForm["N", FontSize -> 14, FontWeight -> "Plain"],
            {0, 1.85}], Text[StyleForm["Regions with Very Significant Avoidance (p s 1%) ",
            FontSize -> 14, FontWeight -> "Plain"], {0, -1.85}]}]}, ImageSize -> 432]
Print["Figure A7. Regions whose polarization directions very
    significantly avoid some place on the Celestial Sphere."]
```


Regions with Very Significant Avoidance ($p \leq 1 \%$)

Figure A7. Regions whose polarization directions very significantly avoid some place on the Celestial Sphere.

$\ln [247]:=$

(*Regions with (5%, NOT Very) significant avoidance.*)
raDEClogSigForAllSigMax = Table[$\{\alpha \mathrm{Hj}[r g n C n t r A n d S r c I d[[s o r t \eta M A X S i g k L i s t ~[[j, ~ 1]], ~ 2]]], ~$ $\delta \mathrm{Hj}[\mathrm{rgnCntrAndSrcId}[$ [sort η MAXSigkList [[j, 1]], 2]]],
-Log[10, sort η MAXSigkList [[j, 2]]]\}, \{j, Length[sort η MAXSigkList]\}];
sortraDEClogSigForAllSigMax = Sort[raDEClogSigForAllSigMax, \#1[[3]] > \#2[[3]] \&];
lp7 = ListPlot[
\{Table[Style[\{xH180[α AVEk[k], $\delta A V E k[k]$], yH180[α AVEk[k], $\delta A V E k[k]$] $\}$, LightGray],
\{k, Length[rgnCntrAndSrcId]\}],
Table[Style[\{xH180[sortraDEClogSigForAllSigMax[[-j]][[1]], sortraDEClogSigForAllSigMax[[-j]][[2]]], yH180[sortraDEClogSigForAllSigMax[[
-j]][[1]], sortraDEClogSigForAllSigMax[[-j]][[2]]]\},
ColorData["Rainbow"][(sortraDEClogSigForAllSigMax[[-j]][[3]]-2.) /
(sortraDEClogSigForAllSigMax[[1]][[3]]-2.)]],
$\{j$, Length[sortraDEClogSigForAllSigMax] \}]\}, PlotRange $\rightarrow\{\{-4 ., 4\},.\{-2.2,2.2\}$, PlotStyle \rightarrow PointSize[Medium], PlotLegends \rightarrow BarLegend [\{"Rainbow", \{-Log[10, 0.05], sortraDEClogSigForAllSigMax[[1]][[3]]\}\}, LegendLabel \rightarrow "-Log ${ }_{10}$ P"], Axes \rightarrow False];
(*Regions with (5%, NOT Very) significant avoidance.*)
lp8 = Show[\{lp3, Table[ParametricPlot[\{xH180[$\alpha, \delta], \mathrm{yH} 180[\alpha, \delta]\},\{\delta,-90,90\}$,
PlotStyle \rightarrow \{Black, Thickness [0.002]\}, PlotPoints \rightarrow 60], $\{\alpha, 0,360,30\}]$, Table [ParametricPlot [\{xH180[$\alpha, \delta], \mathrm{yH} 180[\alpha, \delta]\},\{\alpha, 0,360\}$,

PlotStyle \rightarrow \{Black, Thickness [0.002]\}, PlotPoints $\rightarrow 60$], \{ $\delta,-60,60,30\}]$, Graphics [\{PointSize[0.004], Text[StyleForm["N", FontSize -> 14, FontWeight -> "Plain"], $\{0,1.85\}]$, Text[StyleForm["Regions with Significant Avoidance ($p \leq 5 \%$)", FontSize -> 14, FontWeight -> "Plain"], \{0, -1.85\}]\}]\}, ImageSize \rightarrow 432]
Print["Figure A8. Regions whose polarization directions significantly avoid
some place on the Celestial Sphere. This map has 88 regions with significant avoidance, compared to 20 regions with very significant avoidance in Fig. A7."]

Regions with Significant Avoidance ($p \leq 5 \%$)

Figure A8. Regions whose polarization directions significantly avoid some place on the Celestial Sphere. This map has 88 regions with significant avoidance, compared to 20 regions with very significant avoidance in Fig. A7.

A9. Selecting sources to analyze

Definitions:

firstClumpjsForSort η MINVerySigkList1450	List of item \#s in table "sort η MINVerySigkList" in this clump	
raDEClogSigForVery1stClump1450	Table of 1.RA \quad 2. dec	3. significance of the smallest alignment angle $\bar{\eta}_{\text {min }}$
firstVeryClumpksForRgnCntrAndSrcId1450	List of region ID \#s in this clump. Most region data is in the table "rgnCntrAndSrcId"	
firstVeryClumpQsosIDinData001450	List of source ID \#s in the table "data00""	

Replace first and 1st by second and 2nd, third and 3rd, etc for the other clumps.

Clump 1

```
ln[252]:=
    firstClumpjsForSort\etaMINVerySigkList1450 = {};
    Table[If[(165. s raDEClogSigForAllVerySigMin[[i, 1]] \leq 200.) &&
        (0\leq raDEClogSigForAllVerySigMin[[i, 2]] \leq 30.),
        AppendTo[firstClumpjsForSort \etaMINVerySigkList1450, i]],
        {i, Length[raDEClogSigForAllVerySigMin]}];
    Length[firstClumpjsForSort\etaMINVerySigkList1450];
ln[255]:= raDEClogSigForVery1stClump1450 =
        Table[{\alphaHj[rgnCntrAndSrcId[[sort\etaMINVerySigkList [[j, 1]], 2]]],
        \deltaHj[rgnCntrAndSrcId[[sort\etaMINVerySigkList [[j, 1]], 2]]],
        - Log[10, sort\etaMINVerySigkList [[j, 2]]]},
        {j, firstClumpjsForSort\etaMINVerySigkList1450}];
    firstVeryClumpksForRgnCntrAndSrcId1450 = Table[rgnCntrAndSrcId[[
        sort\etaMINVerySigkList [[j, 1]], 1]], {j, firstClumpjsForSort\etaMINVerySigkList1450}];
In[257]:= firstVeryClumpQsosIDinData001450 =
    Union[Flatten[Table[rgnCntrAndSrcId[[sort\etaMINSigkList [[j, 1]], 3]],
        {j, firstClumpjsForSort\etaMINVerySigkList1450}]]]
    Length[firstVeryClumpQsosIDinData001450];
    Print["Clump 1 combines the sources in ",
    Length[firstClumpjsForSort\etaMINVerySigkList1450]," regions, for a total of ",
    Length[firstVeryClumpQsosIDinData001450], " sources."]
Out[257]= {659, 660, 663, 667, 674, 680, 682, 690, 695, 696, 698, 707, 712,
    714, 718, 720, 721, 727, 728, 731, 734, 744, 746, 751, 752, 762, 764}
```

 Clump 1 combines the sources in 8 regions, for a total of 27 sources.
    ```
In[260]:= secondClumpjsForSort \(\eta\) MINVerySigkList1450 = \{\};
    Table[If[(150. s raDEClogSigForAllVerySigMin [ \(\mathrm{i}, 1]\) ] \(\leq 190\).) \&\&
        (30 \(\leq\) raDEClogSigForAllVerySigMin [ \([\mathrm{i}, 2]\) ] \(\leq 60\).) ,
        AppendTo[secondClumpjsForSort \(\eta\) MINVerySigkList1450, i] ],
        \{i, Length[raDEClogSigForAllVerySigMin] \}];
\(\ln [262]:=\)
raDEClogSigForVery2ndClump1450 =
        Table[\{ \(\alpha \mathrm{Hj}[\) rgnCntrAndSrcId[[sort \(\eta\) MINVerySigkList [[j, 1]], 2]]],
        \(\delta \mathrm{Hj}[r g n C n t r A n d S r c I d[[s o r t \eta M I N V e r y S i g k L i s t[[j, ~ 1]], ~ 2]]]\),
        - Log[10, sort \(\eta\) MINVerySigkList [[j, 2]]]\},
        \{j, secondClumpjsForSort \(\eta\) MINVerySigkList1450\}];
secondVeryClumpksForRgnCntrAndSrcId1450 = Table[rgnCntrAndSrcId[[
        sort \(\eta\) MINVerySigkList [[j, 1]], 1]], \{j, secondClumpjsForSort \(\eta\) MINVerySigkList1450\}];
\(\ln [264]:=\)
secondVeryClumpQsosIDinData001450 =
    Union [Flatten [Table[rgnCntrAndSrcId[[sort \(\eta\) MINVerySigkList [[j, 1]], 3]],
        \{j, secondClumpjsForSort \(\eta\) MINVerySigkList1450\}]]]
Length [secondClumpjsForSort \(\eta\) MINVerySigkList1450];
Length [secondVeryClumpQsosIDinData001450];
Print["Clump 2 combines the sources in ",
    Length[secondClumpjsForSort \(\eta\) MINVerySigkList1450], " regions, for a total of ",
    Length[secondVeryClumpQsosIDinData001450], " sources."]
Out[264]= \(\{618,624,638,657,661,666,668,672,697,699,708,713,719\}\)
```

Clump 2 combines the sources in 2 regions, for a total of 13 sources.

Clump 3

thirdClumpjsForSort η MINVerySigkList1450 = \{\};
Table[If[(230. $\leq \operatorname{raDEClogSigForAllVerySigMin}[$ [i, 1]] $\leq 250) \&$.
(25. \leq raDEClogSigForAllVerySigMin [[i, 2]] ≤ 40.$) ,$

AppendTo[thirdClumpjsForSort η MINVerySigkList1450, i]],
\{i, Length[raDEClogSigForAllVerySigMin]\}];
$\ln [270]:=$ raDEClogSigForVery3rdClump1450 =
Table[\{ $\alpha \mathrm{Hj}[$ rgnCntrAndSrcId[[sort η MINSigkList [[j, 1]], 2]]], $\delta \mathrm{Hj}[\mathrm{rgnCntrAndSrcId}[[\operatorname{sort} \eta \mathrm{MINSigkList}[[j, 1]], 2]]]$, - Log[10, sort η MINSigkList [[j, 2]]]\}, \{j, thirdClumpjsForSort η MINVerySigkList1450\}];
thirdVeryClumpksForRgnCntrAndSrcId1450 = Table[rgnCntrAndSrcId[[sort η MINVerySigkList [[j, 1]], 1]], \{j, thirdClumpjsForSort η MINVerySigkList1450\}];
thirdVeryClumpQsosIDinData001450 = Union [Flatten [Table[rgnCntrAndSrcId[[sort η MINSigkList [[j, 1]], 3]], \{j, thirdClumpjsForSort η MINVerySigkList1450\}]]]
Length [thirdClumpjsForSort η MINVerySigkList1450];
Length [thirdVeryClumpQsosIDinData001450];
Print["Clump 3 combines the sources in ", Length[thirdClumpjsForSort n MINVerySigkList1450], " regions, for a total of ", Length[thirdVeryClumpQsosIDinData001450], " sources."]

Out[272]= \{1063, 1070, 1081, 1093, 1094, 1098, 1106, 1113, 1133\}
Clump 3 combines the sources in 2 regions, for a total of 9 sources.

Clump 4

$\ln [276]:$

fourthClumpjsForSort η MINVerySigkList1450 = \{\};
Table[If[(105. s raDEClogSigForAllVerySigMin[[i, 1]] $\leq 125) \&$.
(10. \leq raDEClogSigForAllVerySigMin [$\mathrm{i}, 2]$] ≤ 30.) ,

AppendTo[fourthClumpjsForSort η MINVerySigkList1450, i]], \{i, Length[raDEClogSigForAllVerySigMin]\}];
raDEClogSigForVery4thClump1450 =
Table[\{ $\alpha \mathrm{Hj}[$ rgnCntrAndSrcId[[sort η MINSigkList [[j, 1]], 2]]], $\delta \mathrm{Hj}[$ rgnCntrAndSrcId[[sort η MINSigkList [[j, 1]], 2]]], - Log[10, sort η MINSigkList [[j, 2]]]\}, \{j, fourthClumpjsForSort η MINVerySigkList1450\}];
fourthVeryClumpksForRgnCntrAndSrcId1450 = Table[rgnCntrAndSrcId[[sort η MINVerySigkList [[j, 1]], 1]], \{j, fourthClumpjsForSort η MINVerySigkList1450\}];
fourthVeryClumpQsosIDinData001450 =
Union [Flatten [Table[rgnCntrAndSrcId[[sort η MINSigkList [[j, 1]], 3]],
\{j, fourthClumpjsForSort η MINVerySigkList1450\}]]]
Length [fourthClumpjsForSort η MINVerySigkList1450];
Length [fourthVeryClumpQsosIDinData001450];
Print ["Clump 4 consists of the sources in ",
Length[fourthClumpjsForSort η MINVerySigkList1450], " region, for a total of ", Length[fourthVeryClumpQsosIDinData001450], " sources."]

Out[280]= \{275, 284, 289, 292, 295, 311, 314, 315\}
Clump 4 consists of the sources in 1 region, for a total of 8 sources.
URLs:
https://www.wolframcloud.com/obj/shurtleffr/Published/20211221Survey1450QSOsMapb.nb
https://www.dropbox.com/s/6bqy56vazlfuuu6/20211221Survey1450QSOsMapb.nb?dl=0

