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Abstract

This article presents a way to survey catalogued data, here the JVAS1450 catalog of polarized radio QSOs that has been measured, 

collected, catalogued, and made available by others. The polarization directions are spread out haphazard over the Northern Equato-

rial hemisphere. We find five degree radius regions whose sources’ polarization directions converge significantly at points on the 

Celestial Sphere or diverge significantly. Samples are collected for further study. The appendix consists of a computer software 

program that performs the needed calculations. The computer program can be adapted to other choices of region radii and to other 

sets of transverse vectors.
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0. Preface

The pdf version of this notebook is available online from the viXra archive. Search by title and author.

To find the ready-to-run notebook follow one of the links in Ref. 1. 

The notebooks in this series were created using Wolfram Mathematica, Version Number: 12.1, Ref. 2.

Note(s):

(1) Some numerical quantities in the pdf version may differ from the ready-to-run version in Ref. 1 because the ready-to-run 

version may have been run after the pdf was produced. The ready-to-run version and the pdf version may be updated independently of 

one another. 

      (2)  The notation is undergoing a change from “S” indicating significance to “p” standing for significance. Some of the “S” labels 

have most likely survived.
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1. Introduction

Observations of an astronomical object may include quantities such as polarization and jets that can be represented as transverse 

vectors, vectors that are perpendicular to the direction to the object itself. If a set of transverse vectors from many objects are 

correlated, this information may reflect on the objects themselves or of the intervening medium through which the observations are 

made or otherwise. 

Given a set of transverse vectors on the sky, one may ask if their directions are correlated. Possible transverse vectors include the 

polarization direction of electromagnetic radiation and the direction of asymmetries such as jets. Reducing a jumble of transverse 

vectors to regions with interesting correlations is the goal of the present article. 

The data for the QSOs studied in this report are taken from the  JVAS1450, Ref. 3,4, a catalog of 1450 QSOs that was kindly 

communicated to me by one of the authors of Ref. 3. Details of the dataset can be found in Ref. 3. As explained in Ref. 3, the 

JVAS1450 catalog includes data from the earlier large JVAS/CLASS 8.4-GHz catalog, Ref. 4. See Fig. 1 for a display of the data 

treated in this article. 

The test of alignment used in this article, the Hub Test, extends the polarization directions, making Great Circle geodesics on the 

Celestial Sphere. The polarization directions are perfectly aligned if they intersect at some point H on the sphere. The directions are 

well-aligned when they converge in a small area near some point Hmin . The Hub Test can find correlations for samples with hubs 

Hmin that are near the sources as well as the distant Hubs of other alignment tests.
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The Hub Test is equally capable of finding avoidance hubs, Hmax, places where the density of the Great Circle geodesics is low. 

Part I the article focusses on alignment, while Part II the Appendix treats both avoidance and alignment on equal terms.  

The survey discussed herein seeks interesting samples to study. The QSO sources are assigned to 5° radius circular regions 

centered on the grid points of a 2° mesh. To be evaluated, a minimum of seven sources per region is required. The regions are sorted 

by the significance of their alignments according to the Hub Test. Previous articles, Ref. 5 and 6, have evaluated a couple of interest-

ing samples of QSOs that are identified in this survey. 

The Hub Test is briefly presented in Sec. 2. The catalog of QSOs and mapping the data occurs in Sec. 3. Then, Sec. 4 analyzes 

the alignment of 5° radius samples and locates the significantly aligned samples. Maps of the results can be found in Sec. 4. Locating 

neighboring significantly aligned sets of sources is the goal and that is accomplished in Sec. 4. Sec. 5 completes Part I the Article 

with some concluding remarks. 

 

N

Equatorial Coordinate System

Figure 1. A whole-sphere map of the sources and polarization directions of the JVAS1450 catalog. The plot is centered on (RA,dec)  

=  (180°,0). East is to the right.

2. The Hub Test 

The Hub Test, Ref. 7, judges the alignment of transverse vectors with the directions to a point on the Celestial Sphere. By 

involving the direction to another point, the Hub test is indirect. For a single source, the basic quantities are illustrated in Fig. 2. The 

“alignment angle” η  is the acute angle η between two great circles at S,  0° ≤  η  ≤  90° . The alignment angle η measures how well 

the polarization direction  vψ matches the direction vH toward the point H.  Perfect alignment occurs when η  =  0° and the two great 

circles overlap. When these two great circles are perpendicular, η   =  90°, that indicates maximum “avoidance” of the polarization 

direction vψ with the point H on the sphere. The halfway value, η   =  45°,  favors neither alignment nor avoidance.
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Figure 2: The Celestial sphere is pictured on the left and on the right is the plane tangent to the sphere at the source S. The linear 

polarization direction  vψ lies in the tangent plane and determines the purple great circle on the sphere. A point H on the sphere 

together with the point S determine a second great circle, the blue circle drawn on the sphere. Clearly, H and S must be distinct in 

order to determine a unique great circle. The acute angle η measures the alignment of the polarization direction ψ with the point H. 

With N sources Si, i  =  1, ..., N, there are N alignment angles ηiH at each point H . One can calculate an average alignment angle 

η at H,

η(H)  =  1
N
∑i=1

N ηiH , (1) 

where 

cos( ηiH ) = | vψ.vH |  . (2)

Given a positive numerical value for the absolute value of the dot product on the right in (2), the solution for the angle ηiH is taken to 

be the positive acute angle with  0° ≤  ηiH  ≤  90° . Clearly, the average alignment angle η(H) at the point H must also be acute. An 

example of the function  η(H) is presented in Figs. 3 and 4. 

The alignment angle η(H) is a function of position H on the sphere. In general, the function  η(H)  is symmetric across diameters,  

η(H)  =  η(-H), because great circles are symmetric across diameters. 

For random polarization directions, the average  η(H) should be near 45°, since each alignment angle ηiH is acute, 0° ≤ ηiH ≤ 90°, 

and random polarization directions should not favor large values or small values of ηiH, and, therefore, average to about 45°. 

Points H where the average alignment angle  η(H)  is smaller than 45°, the great circles tend to converge and where  the angle 

η(H)  is larger than 45°, the great circles can be said to diverge. The extremes of the function  η(H)  measure extreme convergence and 

extreme divergence of the great circles determined by the polarization directions. We use the term “alignment” for convergence and 

“avoidance” for divergence.

In this article and notebook, we often use “min” to label the smallest alignment angle ηmin, the minimum value of the function 

η(H), Eq. (1). The points on the Celestial Sphere where the minimum occurs are the “hubs” Hmin and -Hmin. Thus “min” is associated 

with convergence of the polarization directions. For divergence, the hubs  Hmax and -Hmax locate places where the polarization 

directions most avoid, as indicated by the largest alignment angle ηmax, the maximum value of the function η(H).  Thus, we very often 

label an avoidance related quantity with “max”.
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Figure 3: For the sample of 13 QSOs called Clump 2 in Fig. 6, the alignment angle function η(H) in (1) is mapped on the Celestial 

Sphere (Aitoff plot, centered on (α,δ)  =  (180°,0) , East to the right). The QSOs are shaded green . The smallest alignment angle, 

ηmin =  10.9°, is located at the hubs Hmin and -Hmin, where the polarization directions converge best. One alignment hub Hmin is 

located very close to the QSOs. The largest alignment angle, ηmax  =  62.7°, occurs at the avoidance hubs  Hmax and -Hmax. See Ref. 6.
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Figure 4: The region near the QSOs in Fig. 3. The QSOs are located at the green dots. The short black lines through the QSOs 

indicate the polarization directions. Measuring polarization directions ψ clockwise from North, one sees that the angles ψ range from 

more than ψ  =  90° for the northern-most QSOs to 45° or so for the southerly QSOs. Most are in the general direction of the align-

ment hub Hmin, but their directions depend on where they are located. The QSOs display parallax.

The significance, p or p-value and sometimes S, of the smallest alignment angle ηmin is defined as the likelihood that randomly 

directed polarization vectors would produce a smaller value of  ηmin . Therefore, by this definition, one way to determine significance 

is to repeat the process of making Great Circles from polarization directions, calculating the alignment function η(H), and finding 

ηmin, all for randomly directed vectors. One such process makes a “random run”.

The most reliable method of determining significance that we consider is called “Direct Method A”. Following the definition of 

significance, one  generates many random runs with randomly directed transverse vectors assigned to the sources. A histogram of the 

random-based results  for ηmin is then approximated by a suitable fitting function. Aside from a scale factor that normalizes the 

distribution, the fitting function of the histogram is the probability distribution of the random results ηmin. Having found a function 

that approximates the probability distribution, one estimates the likelihood that random runs return better results than the observed 
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ηmin
obs and that is the significance of  ηmin

obs. Similar comments apply for avoidance.

It would be terribly inconvenient to apply Direct Method A for all the regions in the survey. Instead we introduce a “Library” of 

data that can be used to reconstitute the probability distributions for a range of samples with various number of sources and with 

various sizes. The Library data is used in two ways, as “Interpolation Method B” and as “Function Method C”, to develop values of 

significance for the alignments of the many regions considered in the survey. The Methods are discussed briefly where they are 

introduced in Sec. A7. For a more complete discussion, see Ref. 8.   

3. Setting up the regions

The Hub Test needs enough information to draw great circles outward from the sources in the directions of the polarization 

vectors. Thus the required data includes the location of the sources as well as the polarization direction at each source. Also, the 

uncertainty in the measured polarization direction is needed to estimate the error bars on the calculated quantities. In this report, the 

uncertainty in the locations is taken to be insignificant. 

The JVAS1450 catalog and the JVAS/CLASS 8.4-GHz catalog gives us all the locations of the sources in J2000.0 equatorial 

coordinates so we can find right ascension and declination of the sources in decimal degrees and the polarization position angle and 

its uncertainty in decimal degrees. The data also includes other interesting quantities such as the redshift. Such extra data is not 

needed here. 

The computer program in Part II the Appendix assumes the needed data is collected in a table, called “data00”, in a prescribed 

order. One hopes the program in the Appendix can serve as a kind of template. If one possesses other data from other sources in 

another experimental campaign, then, by putting the other data in the same form as the data00 table here, one can run the program and 

get alignment and avoidance maps for the other data.

Figure 5. The grid. At a constant declination (latitude), the right ascension (longitude) of the grid points are spaced by 2°. The circles 

of constant declination are separated by 2°. Each of the regions analyzed is centered on one of the grid points.

The program constructs a mesh of grid points. The spacing of points on the grid can be adjusted as one wishes. See Figs. 5 for a 
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plot of the grid for this article. We use a grid spacing of 2°, taking into account the shrinking radii of circles of constant declination as 

they approach the poles.  

The computer program Part II the Appendix has another user-definable quantity, the region radius. Regions in this report have 5° 

radii. Not all the 5° radius regions have sources, only a few sources are in the South. And the number of sources in a region must be at 

least 7 for the significance estimates to be sufficiently valid. 

 The problem is with probability distributions, like Gaussians, that assign nonzero probability to non-acute alignment angles. 

With the distributions in this article and for samples with fewer than 7 sources, the probability of negative alignment angles is non-

negligible. But alignment angles are acute and never negative, so any assignment of likelihood to negative alignment angles is an 

artifact. Similarly, the avoidance angle cannot be larger than 90°, yet the probability distribution continues to infinity with nonzero 

likelihood. We can ignore these effects for samples with more than seven sources, N  ≥  7. 
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Figure 6. Regions with sources that are very significantly aligned are shaded in color. The centers of 5° radius regions that have at 

least 7 sources are plotted as gray points, a total of 1811 regions. The 19 regions whose polarization directions align with a signifi-

cance less than 1%, meaning that p  ≤  0.01, are considered “very significantly aligned” and are shaded in color. The range of 

significance runs from p  =  0.00047   to p  =  0.01 (very significant limit), and, since -Log10 0.00047  =  3.3,  we have  2.0  ≤  

-Log10 p  ≤  3.3 . As shown in Fig. A4, the uncertainty in  -Log10 p is about ±0.4, running from ±0.25 to ±0.5. 

4. The significance of the regions’ alignments 

With the Hub Test, the alignment of a sample is gauged by the smallest average alignment angle ηmin, the minimum value of the 

function η(H), Eq. (1). For example, Fig. 3 plots the function  η(H) for the sample of 13 QSOs in Ref. 6. Similarly, for each of the 

1811 qualifying regions, one finds the function  η(H) and then determine the smallest alignment angle ηmin. Thus, we get 1811 results  

ηmin, one for each region. 

By assuming the significance of the alignment indicated by  ηmin depends mainly on the number of sources N and the root-mean-

radius ρRMS of the region, one can find significance by Interpolation Method B and Function Method C, Ref. 8, based on an 

archived Library. The Library has a collection of parameters to generate probability distributions that can be utilized to obtain the 

significance of the alignment of the sources in a region.  
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 Here, with polarization data from JVAS1450, we find that just 19 regions have very significant alignment. These are plotted in 

color in Fig. 6. Since there are 1811 regions, 19 regions is very close to 1% of the total number of regions. However, the most 

significantly aligned region has a significance of p  =  0.00047 which means its alignment is better than all but one in 2100 regions 

with randomly directed polarizations. The most significantly aligned region lies just above the center of Fig. 6.  

If the most significantly aligned region was the only region aligned better than 2100 randomly directed regions, one could argue 

that the alignment was consistent with pure chance. But there are other well-aligned regions in Fig. 6, so the likelihood that all are 

aligned by chance is much smaller than 1/1811. Furthermore, by collecting the sources in different regions, one can find larger 

collections of well-aligned samples and these may have significances that make the number 1811 of regions seem small. For example, 

by combining the 8 sources in the most significantly aligned region with 19 sources from overlapping very significantly aligned 

regions, one has a sample of 27 sources that has been studied in Ref. 5. There, the sample is shown to be aligned better than one in 

about 70,000 randomly directed samples. Collecting the 13 sources in two regions near (RA,dec)  =  (170°, 50°), one obtains a sample 

that is better aligned than one in 55,000 randomly directed samples. So the alignment of these samples is unlikely to be due to 

randomly oriented polarization directions.  

N
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-Log10p

1.5

2.0

2.5
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Figure 7. Regions with significant alignment are shaded in color. There are 96 colored dots compared with the 19 in Fig. 6. That 

makes sense, because to qualify as “significant” as many as one in twenty randomly directed samples need be better aligned than the 

region in question. For the “very significantly” aligned regions of Fig. 6, only one in a hundred randomly directed regions can be 

better aligned.  

The less selective one is, the more regions are collected. In Fig. 7, the required significance is weakened to p  ≤  5% from the  p  

≤  1%  in Fig. 6. Thus the regions in color in Fig. 7 are aligned ‘significantly’,   p  ≤  5%, but not ‘very significantly’ which would 

require p  =  1% or less. One sees that the very significantly aligned regions displayed in Fig. 6 are surrounded by other regions that 

are merely significantly aligned. 

5. Combining regions to make samples 

We have previously studied two samples of polarized radio QSOs from the JVAS1450 catalog, Refs. 5 and 6. In this section we 

discuss the steps that determine the two samples that were studied and published. For details, see Sec. A9 “Selecting sources to 
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analyze” in Part II the Appendix. The samples studied previously are labeled Clump 1 and Clump 2 in Figs. 6. 

Clump 1 consists of eight overlapping 5° radius regions with alignments that are very significant, p  ≤  0.01  =  1%. The most 

significantly aligned region has eight sources and is aligned with significance p0  =  4.7×10-4. Combining the sources from the eight 

regions yields a sample with N  =  27 QSO sources and a root-mean-square radius ρRMS of  6.8°, which is roughly equivalent to a 

10° radius circular region since taking the root-mean-square introduces a factor of about 0.7.  One finds in Ref. 5, that the smallest 

alignment angle ηmin for the sample is  ηmin  =  21.1° which has a significance of p  =  (0.44 to 4.5)×10-5  ≲  0.1 p0. Thus, by 

combining the eight regions one finds a sample that is better aligned than any of the individual regions.

Clump 2 in Fig. 6 has just two 5° regions with 13 QSOs when combined. The root-mean-square radius is about 5°,  ρRMS  =  

4.7°. The significance of the alignment of the polarization directions of the 13 QSOs is  p  =  (1.7 to 2.3)×10-5 , compared with   p0  

=  2.4×10-3 for one of the two regions. Again, we find that combining the two very significant regions yields a sample with more 

significant alignment than either region separately. 

We found that simply combining neighboring very significantly aligned regions produced samples that were worth studying. One 

supposes that there are other, more careful, ways to find a sample to study. However, the point of making the survey is to find order in 

the jumble and to locate well aligned sources, thereby identifying neighborhoods that may worthy of further research.  

6. Concluding Remarks

When confronted with a jumble of transverse vectors like that in Fig. 1, generating a survey that maps the significance of the 

alignment in regions may help organize the data and identify areas to investigate further. Conducting a survey like that in this report 

can be a first step to finding well-aligned polarization directions of a large catalog.

There are no guarantees, of course. Some overlooked small area may contain sources with interesting alignment properties, 

overlooked because the alignment is diluted in a region that is too big. A 5° radius region survey might be blind to a well-aligned 

collections of sources confined to 1° samples. Conversely, one suspects that a 1° region survey might miss some of the alignments 

that a 5° survey uncovers. Maybe the answer is to conduct more surveys. 

Since finding the smallest alignment angle  ηmin and the largest avoidance angle  ηmax are such similar processes, this article 

treats only alignment in any detail. Yet avoidance may be the more important property of polarization directions for some sets of data. 

What if the polarization direction is perpendicular to some local structure. Then correlations of perpendiculars, i.e. avoidance and  

ηmax, take center stage. Part II the Appendix treats alignment and avoidance equally. 
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A1. Introduction 

The Appendix is the computer program, a “notebook” written in the Wolfram Mathematica language. The inputs to the program 

in Sec. A1 can be changed so the survey can deal with new data. 

The Appendix treats alignment and avoidance equally, what it finds for one, it finds for the other. Avoidance may be important if 

the polarization direction turns out to be perpendicular to some feature such as a jet or some other structure. Then it would be 

important to find correlations of directions that are perpendicular to the polarization vectors and that would be revealed by gauging 

avoidance.

A2. User Input

This notebook may be used as a template to evaluate new data. 

1.  The new data should conform to the format of the table “data00” displayed below. 

2. You may want to furnish a home directory so the program can find and save data files.

3. The grid spacing can be chosen by the user below in this section.
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4. The regions to be analyzed are circular with a radius that can be chosen by the user in this section.

Definitions:

homeDirectory a place on the computer to store and retrieve files.
gridSpacing in degrees, the angular separation of grid points along a circle of constant latitude and the angular separa-
tion of the circles of constant latitude. See Sec. A4 Grid.
rgnRadius    radius of regions in degrees
 
data00  This data table contains the information about the sources that produces the rest of the notebook.  

 1.Object #   2. Ra (rad)   3. Dec (rad)      4. ψ (rad)    5.  σψ (rad)       

In[1]:= homeDirectory =

"C:\\Users\\shurt\\Dropbox\\HOME_DESKTOP-0MRE5OJ\\SendXXX_CJP_CEJPetc\\SendViXra\\

20200715AlignmentMethod\\20211221MapsOfSignificance"

Out[1]= C:\Users\shurt\Dropbox\HOME_DESKTOP-0MRE5OJ\SendXXX_CJP_CEJPetc\

SendViXra\20200715AlignmentMethod\20211221MapsOfSignificance

The following cell has the data00 table with the information about the sources. It is very large and, therefore, it is hidden from view. 

To see it go to “Cell Properties” and click “Open”. 

In[3]:= (*The table data00 can be uploaded from a file.*)

(*SetDirectoryhomeDirectory

data00=Get["20200718data08JVAS1450.dat"];*)

In[4]:= gridSpacing = 2 (*grid spacing in degrees*);

rgnRadius = 5.(*degrees*);

A3. Preliminary

Definitions:

er, eN, eE are unit vectors in a 3D Cartesian coordinate system from Origin to Source, 
(α,δ)  =  RA and Dec of the source. We use degrees for the angles.
er(α,δ)  =  unit vectors from Origin to Source
eN(α,δ)  =  local North at Source
eE(α,δ)  =  local East at Source
αFROMr(er)  =  RA determined by radial unit vector er
δFROMr(er)  =  Dec determined by radial unit vector er

Aitoff Plot Functions
αH(α,δ) ,  xH(α,δ) ,  yH(α,δ),   where xH, yH is centered on α  =  0. 
xH180(α,δ) ,  yH180(α,δ),   where xH is centered on α  =  180°. 
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In[6]:= Print["The date and time that this statement was evaluated: ", Now]

The date and time that this statement was evaluated: Wed 12 Jan 2022 14:05:57 GMT-5.

In[7]:= (*We work with degrees, so define convenient functions.*)

cos[θ_] := Cosθ
2. π

360.
;

sin[θ_] := Sinθ
2. π

360.
;

tan[θ_] := Tanθ
2. π

360.
;

arccos[x_] := ArcCos[x]
360.

2. π
; arcsin[x_] := ArcSin[x]

360.

2. π
;

arctan[x_] := ArcTan[x]
360.

2. π

In[10]:= (* For a Source at (RA,dec) = (α,δ): er, eN,

eE are unit vectors from Origin to Source, local North, local East, resp. *)

er[α_, δ_] := er[α, δ] = cos[α ]×cos[δ ], sin[α ]×cos[δ ], sin[δ ]

eN[α_, δ_] := eN[α, δ] = -cos[α ]×sin[δ ], -sin[α ]×sin[δ ], cos[δ ]

eE[α_, δ_] := eE[α, δ] = -sin[α ], cos[α ], 0

"Check er.er = 1, er.eN = 0, er.eE = 0, eN.eN

= 1, eN.eE = 0,eE.eE = 1, erXeE = eN, eEXeN = er, eNXer = eE: ",

{0}⩵ UnionFlattenSimplify[{er[α, δ].er[α, δ] - 1, er[α, δ].eN[α, δ], er[α, δ].eE[α, δ],

eN[α, δ].eN[α, δ] - 1, eN[α, δ].eE[α, δ], eE[α, δ].eE[α, δ] - 1, Cross[er[α, δ], eE[α, δ]] -

eN[α, δ], Cross[eE[α, δ], eN[α, δ]] - er[α, δ], Cross[eN[α, δ], er[α, δ]] - eE[α, δ]}]

Out[13]= {Check er.er = 1, er.eN = 0, er.eE = 0, eN.eN = 1,

eN.eE = 0,eE.eE = 1, erXeE = eN, eEXeN = er, eNXer = eE: , True}

Get (α,δ) in degrees from radial vector r:

In[14]:= αFROMr[r_] := NarctanAbs
r[[2]]

r[[1]]
 /; (r[[2]] ≥ 0 && r[[1]] > 0)

αFROMr[r_] := N180. - arctanAbs
r[[2]]

r[[1]]
 /; (r[[2]] ≥ 0 && r[[1]] < 0)

αFROMr[r_] := N180. + arctanAbs
r[[2]]

r[[1]]
 /; (r[[2]] < 0 && r[[1]] < 0)

αFROMr[r_] := N360. - arctanAbs
r[[2]]

r[[1]]
 /; (r[[2]] < 0 && r[[1]] > 0)

αFROMr[r_] := (90. /; (r[[2]] ≥ 0 && r[[1]]⩵ 0))

αFROMr[r_] := (270. /; (r[[2]] < 0 && r[[1]]⩵ 0))

In[20]:= δFROMr[r_] := Narctan
r[[3]]

r[[1]]^2 + r[[2]]^2
 /;  r[[1]]^2 + r[[2]]^2 > 0

δFROMr[r_] := Sign[r[[3]]] 90. /;  r[[1]]^2 + r[[2]]^2 == 0

The following Aitoff Plot formulas can be found in,  for example, Ref. 9. 

Imagine the Sources are plotted on the Celestial sphere and we are looking down on the sphere from the outside. 
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In[22]:= αH[α_, δ_] := αH[α, δ] = arccos[cos[δ]×cos[α/2.]]

xH[α_, δ_] := xH[α, δ] =
2. cos[δ]×sin[α/2.]

Sinc[αH[α, δ]]

yH[α_, δ_] := yH[α, δ] =
sin[δ]

Sinc 2. π

360.
 αH[α, δ]

Using the following functions produces an Aitoff Plot that is centered on α  =  180°. 
Imagine the Sources are plotted on the Celestial sphere and we are looking down on the sphere from the outside. 

In[25]:=

xH180[α_, δ_] := xH180[α, δ] =
2. cos[δ]×sin[(α - 180.)/2.]

Sinc 2. π

360.
 αH[(α - 180.), δ]

yH180[α_, δ_] := yH180[α, δ] =
sin[δ]

Sinc 2. π

360.
 αH[(α - 180.), δ]

A4.  Sources
The source data table “data00” was input above in Sec. A2. 

Definitions:

data00  -  This data table contains the information that produces the rest of the notebook.  

data00: 

1.Object #   2. Ra (rad)   3. Dec (rad)      4. ψ (rad)    5.  σψ (rad)  [6. z   7. p (%)   8. σp (%) ]

Items 6,7,8 are not used in this notebook.     

from data00:

rai(i)   RA of ith source (radians)

deci(i)   dec of ith source (radians)

ψi(i)      position angle 

σψi(i) uncertainty in ψ 

calculated:

ri(i) unit vector from Origin to ith Source 

vNi(i) Local North at the ith Source, a 3D unit vector

vEi(i) Local East at the ith Source, a 3D unit vector 

vψi(i) unit vector in direction of PA ψ in tangent plane at the ith Source

nSxψi(i) cross product of  ri(i) and vψi(i) = r × vψ , perpendicular to both, a unit vector in tangent plane at the ith Source

plot

xyAitoffSources source coordinates on Aitoff projection of the Celestial Sphere

crossesOverPlus, Minusthe polarization vectors of some sources cross over the edge of the Aitoff projection  

noCrossing sources with polarization vectors contained in the Aitoff projection

rPlusψ[i,d] endpoints of the polarization vector for the ith source (d positive and negative)

polarLinesNoCrossing[d] polarization vectors for sources with no crossing problem

polarLinesCrossingPlus[d] polarization vectors for sources with d positive crossing beyond 

polarLinesCrossingMinus[d]polarization vectors for sources with d negative crossing beyond 

mapOfSources Aitoff plot of the data, sources and their polarization vectors 
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In[27]:= (*Example of a data00 record.*)data00[[16]]

Out[27]= {16, 0.0502079, 0.016832, 2.99673, 0.0147697, 1.4904, 3.02524, 0.0893572}

In[28]:= (*From data00. CONVERT DATA TO DEGREES*)

raii_ := raii = data00i, 2
360.

2. π
(*RA of ith source*)

decii_ := decii = data00i, 3
360.

2. π
(*dec*)

ψii_ := ψii = data00i, 4
360.

2. π
(*PPA,

polarization position angle: clockwise from North with East to the right. *)

σψii_ := σψii = data00i, 5
360.

2. π

In[32]:= (*Convenient functions*)

rii_ := rii = erraii, decii

(*unit vector from Origin to ith Source on Celestial Sphere*)

vNii_ := vNii = eNraii, decii (*North at ith source*)

vEii_ := vEii = eEraii, decii (*East at ith source*)

vψii_ := vψii = cosψii×vNii + sinψii×vEii (*unit vector in direction of PPA*)

nSxψii_ := nSxψii = sinψii×vNii - cosψii×vEii (* r Cross vψ *)

In[37]:= (*Plot sources*)

xyAitoffSources =

Table[{xH180[ rai[i], deci[i] ], yH180[ rai[i], deci[i] ]}, {i, Length[data00]}];

In[38]:= (*Plot polarization directions*)

rPlusψ[i_, d_] := ri[i] + d vψi[i]  ri[i] + d vψi[i].ri[i] + d vψi[i]1/2

crossesOverPlus = {}; crossesOverMinus = {};

For[i = 1, i ≤ Length[data00], i++,

If[ αFROMr[ rPlusψ[i, 0.05]] - rai[i] < -200, AppendTo[crossesOverPlus, i]];

If[ αFROMr[ rPlusψ[i, -0.05]] - rai[i] > 200, AppendTo[crossesOverMinus, i]]]

noCrossing = Complement[Range[Length[data00]], Union[crossesOverPlus, crossesOverMinus]];

In[42]:= (*Plot polarization directions*)

polarLinesNoCrossing[d_] :=

Table[Line[{{xH180[αFROMr[ rPlusψ[i, d]], δFROMr[ rPlusψ[i, d]]],

yH180[αFROMr[ rPlusψ[i, d]], δFROMr[ rPlusψ[i, d]]]},

{xH180[αFROMr[ rPlusψ[i, -d]], δFROMr[ rPlusψ[i, -d]]],

yH180[αFROMr[ rPlusψ[i, -d]], δFROMr[ rPlusψ[i, -d]]]}}], {i, noCrossing}]

polarLinesCrossingPlus[d_] := Table[Line[{{xH180[rai[i], deci[i]],

yH180[rai[i], deci[i]]}, {xH180[αFROMr[ rPlusψ[i, -d]], δFROMr[ rPlusψ[i, -d]]],

yH180[αFROMr[ rPlusψ[i, -d]], δFROMr[ rPlusψ[i, -d]]]}}], {i, crossesOverPlus}]

polarLinesCrossingMinus[d_] := Table[Line[{{xH180[αFROMr[ rPlusψ[i, d]],

δFROMr[ rPlusψ[i, d]]], yH180[αFROMr[ rPlusψ[i, d]], δFROMr[ rPlusψ[i, d]]]},

{xH180[rai[i], deci[i]], yH180[rai[i], deci[i]]}}],

{i, crossesOverMinus(*noCrossing*)}]
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In[45]:= (*Construct the map of η(H).*)

mapOfSources =

ShowTableParametricPlot{xH180[α, δ], yH180[α, δ]},

{δ, -90, 90}, PlotStyle → Black, Thickness[0.002], PlotPoints → 60,

PlotRange → {-4.0, 3.5},
7.5

11.0
{-3, 3}, Axes -> False, Frame → False, {α, 0, 360, 30},

TableParametricPlot{xH180[α, δ], yH180[α, δ]}, {α, 0, 360},

PlotStyle → Black, Thickness[0.002], PlotPoints → 60, {δ, -60, 60, 30}, Graphics

PointSize[0.004], TextStyleForm"N", FontSize -> 14, FontWeight -> "Plain", {0, 1.85},

TextStyleForm"Equatorial Coordinate System", FontSize -> 14, FontWeight -> "Plain",

{0, -1.85}, Black, (*Thick,*)polarLinesNoCrossing[0.05],

Black, (*Thick,*)polarLinesCrossingPlus[0.05], Black, (*Thick,*)

polarLinesCrossingMinus[0.05], (*Sources S:*)Orange, Point xyAitoffSources 

, ImageSize → 1.2×432

Print"Figure A1. Pine needle plot of the transverse vectors of the sources. There are ",

Length[data00], " sources."

Out[45]=

N

Equatorial Coordinate System

Figure A1. Pine needle plot of the transverse vectors of the sources. There are 1450 sources.

A5. Build a Grid

Make a grid for the Northern hemisphere, then the Southern hemisphere, then combine them.

Definitions:

dθ1   separation in degrees between grid points on a constant latitude circle and separation of constant latitude circles. 

gridN, gridS North and South hemisphere grids

nGrid number of grid points 
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rHj(j) unit radial vector to jth grid point H j

αHj[j], δHj[j] RA and dec of the jth grid point in degrees

vHij(i,j) unit vector tangent to the great circle connecting the ith source with Hj in tangent space of the ith source

nSxHij(i,j) unit vector perpendicular to the plane of the great circle containing the ith source and the jth grid point Hj

ηiHj(i,j) alignment angle between the PPA direction and the great circle toward Hj in the tangent space at the ith source. 

gridN  and  gridS and grid

1. sequential point #  2. RA index  3. dec index  4. RA (range: 0 - 360°) 5. dec (range: -90°  - +90°) 6.  Cartesian coordi-

nates of the point

In[47]:= dθ1 = gridSpacing ;(* grid Spacing in degrees*)

Let’s get the grid. With “gridSpacing” =  2°, it is a  2°x2° grid.

In[48]:= (*KEEP this cell - DO NOT DELETE*)

gridN = {}; idN = 1;

Forδj = 0., δj <
90.

dθ1
, δj++, δpointH = δj dθ1;

For ai = 0., ai < Ceiling
360.

dθ1
cosδpointH + 0.01,

ai++, αpointH = ai dθ1cosδpointH + 0.01;

AppendTogridN, idN, ai, δj, αpointH, δpointH, erαpointH, δpointH;

idN = idN + 1



In[50]:= (*KEEP this cell - DO NOT DELETE*)

gridS = {}; idN = 1;

Forδj = 1., δj <
90.

dθ1
, δj++, δpointH = -δj dθ1;

For ai = 0., ai < Ceiling
360.

dθ1
cosδpointH + 0.01,

ai++, αpointH = ai dθ1cosδpointH + 0.01;

AppendTogridS, idN, ai, δj, αpointH, δpointH, erαpointH, δpointH;

idN = idN + 1



In[52]:= (*KEEP this cell - DO NOT DELETE*)

grid = {}; j = 1;

ForjN = 1, jN ≤ LengthgridN, jN++, AppendTogrid,

j, gridNjN, 2, gridNjN, 3, gridNjN, 4, gridNjN, 5, gridNjN, 6;

j = j + 1

ForjS = 1, jS ≤ LengthgridS, jS++, AppendTogrid,

j, gridSjS, 2, gridSjS, 3, gridSjS, 4, gridSjS, 5, gridSjS, 6;

j = j + 1
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In[55]:= nGrid = Lengthgrid;

rHjj_ := rHjj = gridj, 6 (*unit radial vector to grid point H*)

αHjj_ := αFROMrrHjj

δHjj_ := δFROMrrHjj

In[59]:= (* ith Source and jth grid point*)

(*vHij: unit vector tangent to the great circle connecting

the ith source with Hj in tangent space of the ith source*)

(*nSxHij: unit vector perpendicular to the plane of the

great circle containing the ith source and Hj*)

(*ηiHj: alignment angle between the PPA direction ψ and the great

circle toward Hj in the tangent space at the ith source. See Fig. 2.*)

(* The two unit vectors nSxψi and nSxHij are perpendicular to vψ and vHij,

but the angle between them is the same*)

vHij[i_, j_] := vHij[i, j] = rHj[j] - rHj[j].ri[i] ri[i] 

√rHj[j] - rHj[j].ri[i] ri[i].rHj[j] - rHj[j].ri[i] ri[i]

nSxHij[i_, j_] := nSxHij[i, j] =
Cross[ri[i], rHj[j]]

Cross[ri[i], rHj[j]].Cross[ri[i], rHj[j]]

ηiHj[i_, j_] := ηiHj[i, j] = arccos[Abs[nSxψi[i].nSxHij[i, j]]]

In[62]:= (*Check (α,δ) range for the grid*)

(*ListPlot[{Sort[Table[grid[[j,4]],{j,nGrid}]],Sort[Table[grid[[j,5]],{j,nGrid}]]}];*)

In[63]:= (*See the grid points*)

Show[{Graphics3D[{Sphere[{0, 0, 0}], Thick, Line[{{0, 0, -1.2}, {0, 0, 1.2}}],

Text[Style["N", Bold], {0, 0, 1.25}]}, Boxed → False], ListPointPlot3D[

Table[rHj[j], {j, nGrid}], PlotStyle → {PointSize[0.007]}]}, ImageSize → 72 × 4]

Print["Figure A2. The grid. There are ", nGrid, " grid points."]

Out[63]=

Figure A2. The grid. There are 10 518 grid points.
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A6. Setting up circular regions to analyze

(a) Collect the sources in circular regions centered on the grid points. (b) Drop the regions with too few sources. (c) Some regions 
may have duplicate source lists, meaning two regions have the same sources but different center points. Keep one of the two 
regions.

Definitions:

rgnPOPnumMIN  = minimum number of sources needed for a region to be included in the analysis, “POP” - population

rgnCntrAndSrcId0  A region for every grid point is included. No regions cut.

rgnCntrAndSrcId2 This table has only sufficiently populated regions, N  ≥  rgnPOPnumMIN (minimum)

sortRgnNsrc sort table “rgnCntrAndSrcId2” by number of sources in each region 

1. region ID # 2. number of sources

NsrcMIN Fewest number of sources in any regions (must be at least rgnPOPnumMIN)

NsrcMAX Maximum number of sources in any region 

rgnIDsWithnSrc[n]Id #s in  rgnCntrAndSrcId2 of regions with exactly “n” sources 

duplicatk Pairs of regions {k1,k2} that contain the same sources 

dropDupk list of the second region in each pair in duplicatk. These are to be dropped.

rgnCntrAndSrcId   No two regions have the same sources. Each region has at least the minimum number of sources.

1. sequential Id#  2. grid ID for region’s center point    3. Source data00 id#s for sources contained in the region

nSrck[k] number of sources in the kth region 

nSrcTable list of the number of sources in the regions

srcIDrgnk[k] list of data00 ID #s for sources in the kth region

αSrcRgnk[k] RAs of the sources in the kth region 

δSrcRgnk[k] decs of the sources in the kth region

xyHSrcRgnk[k] Aitoff plot coordinates for the sources in the kth region

rAVEk[k] unit radial vector to average location of the sources in the kth region

αAVEk[k] Right Ascension at the average location of the sources in the kth region

δAVEk[k] Declination at the average location of the sources in the kth region 

ρSrcToAVEk[k] angles between the ith sources and the average location in the kth region

ρRMSk[k] root mean square radius of the kth region

ηBarHkj(k,j) average alignment angle at Hj for the sources in the kth region 

kNjηMinjηMax: 

1.  region ID# in  “rgnCntrAndSrcId” table 2.  N = number of sources in the region 3. {j, ηmin} : j = grid point ID# 

where η is minimum ηmin 4.  {j, ηmax} : j = grid point ID# where η is maximum ηmax

(ηmink(k), ηmaxk(k)) In degrees. The min and max angles η for the sources in the kth region to align with any grid point Hj. 

In[65]:= rgnPOPnumMIN = 7. (*minimum number of sources*);
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In[66]:= (*Identify sources in each region whose center is on the grid. Collect results. *)

rgnCntrAndSrcId0 = {};

Forj = 1, j ≤ Lengthgrid, j++, rgnCntr = gridj, 6;

ρrgn = rgnRadius; (* region radius in degrees*)

rgnSrcId = {};

Fori = 1, i ≤ Length[data00], i++,

Iferraii, decii.rgnCntr ≥ cos[ρrgn], rgnSrcId = AppendTorgnSrcId, i;

AppendTorgnCntrAndSrcId0, j, rgnSrcId 

In[68]:= (*Get a table with only sufficiently populous regions.*)

rgnCntrAndSrcId2 = {};

j = 0;

Forigrid = 1, igrid ≤ Lengthgrid, igrid++,

IfLength rgnCntrAndSrcId0igrid, 2  ≥ rgnPOPnumMIN, j = j + 1;

AppendTorgnCntrAndSrcId2, j, rgnCntrAndSrcId0igrid, 1, rgnCntrAndSrcId0igrid, 2

In[71]:= sortRgnNsrc = Sort[Table[{k, Length[ rgnCntrAndSrcId2[[k, 3]] ]},

{k, Length[rgnCntrAndSrcId2]}], #1[[2]] < #2[[2]] &];

{sortRgnNsrc[[1]], sortRgnNsrc[[-1]]};

NsrcMIN = sortRgnNsrc[[1, 2]];

NsrcMAX = sortRgnNsrc[[-1, 2]];

In[75]:= Forn = 1, n ≤ 2 NsrcMAX, n++, rgnIDsWithnSrc0[n] = {}

rgnIDsWithnSrc0[NsrcMAX];

(*Collect the IDs*)

Fork = 1, k <= Length[rgnCntrAndSrcId2], k++,

AppendTorgnIDsWithnSrc0[ Length[rgnCntrAndSrcId2[[k, 3]]] ], k

In[78]:= duplicatk = {};

Forn = NsrcMIN, n ≤ NsrcMAX, n++, Fork1 = 1, k1 ≤ LengthrgnIDsWithnSrc0[n] - 1,

k1++ , Fork3 = k1 + 1, k3 ≤ LengthrgnIDsWithnSrc0[n], k3++,

If LengthUnionrgnCntrAndSrcId2 rgnIDsWithnSrc0[n][[k1]], 3  -

rgnCntrAndSrcId2rgnIDsWithnSrc0[n][[k3]], 3 ⩵ 1, AppendToduplicatk,

rgnIDsWithnSrc0[n][[k1]], rgnIDsWithnSrc0[n][[k3]]    

In[79]:= (*For example, the regions in duplicatk[[2]]

have the same sources in rgnCntrAndSrcId2[[k,3]] item 3.*)

Print["Region ", duplicatk[[2, 1]], " and region ", duplicatk[[2, 2]],

" have the same sources. The data00 IDs are ",

rgnCntrAndSrcId2[[ duplicatk[[2, 1]], 3 ]], " and ",

rgnCntrAndSrcId2[[ duplicatk[[2, 2]], 3 ]], "." ]

Region 19 and region 20 have the same sources. The data00 IDs are

{198, 203, 204, 205, 206, 208, 209} and {198, 203, 204, 205, 206, 208, 209}.

In[80]:= (*Get the second region in each pair in duplicatk. These will be dropped. *)

dropDupk = UnionTableduplicatk[[d2, 2]], d2, Lengthduplicatk;

Remove duplicate populations.
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In[81]:= rgnCntrAndSrcId = {}; k = 1;

For ka = 1, ka ≤ Length[rgnCntrAndSrcId2], ka++, If[ Not[MemberQ[dropDupk, ka]] ,

(AppendTo[ rgnCntrAndSrcId, {k, rgnCntrAndSrcId2[[ka, 2]], rgnCntrAndSrcId2[[ka, 3]]}];

k = k + 1) ] 

In[83]:= Forn = 1, n ≤ 2 NsrcMAX, n++, rgnIDsWithnSrc[n] = {}

rgnIDsWithnSrc[NsrcMAX];

(*Collect the IDs*)

Fork = 1, k <= Length[rgnCntrAndSrcId], k++,

AppendTorgnIDsWithnSrc[ Length[rgnCntrAndSrcId[[k, 3]]] ], k

In[86]:= ListPlot[Table[{n, Length[rgnIDsWithnSrc[n] ]}, {n, 1, NsrcMAX + 5}],

PlotRange → {{0, NsrcMAX + 5}, All}, PlotLabel → "Number of regions with n sources ",

GridLines → Automatic, Frame → True, FrameLabel → {"n", "Number"}, ImageSize → 72 × 4]

Print["Figure A3. There are ", Length[rgnIDsWithnSrc[NsrcMIN]], " regions with ",

NsrcMIN, " sources, the minimum number. There are ", Length[rgnIDsWithnSrc[NsrcMAX]],

" regions with the maximum number of sources, ", NsrcMAX, "."]

Out[86]=
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Figure A3. There are 377 regions with 7 sources, the minimum number. There are

2 regions with the maximum number of sources, 20.

In[88]:= nSrck[k_] := nSrck[k] = Length[ rgnCntrAndSrcId[[k, 3]] ]

(*number of sources in the kth region*)

nSrcTable = Sort[Table[nSrck[k], {k, Length[ rgnCntrAndSrcId]}]];

srcIDrgnk[k_] := srcIDrgnk[k] = rgnCntrAndSrcId[[k, 3]]

(* data00 id numbers of the sources in the kth region*)

αSrcRgnk[k_] := Tabledata00 id08, 2 *(360./(2. π)), id08, srcIDrgnk[k];

(* RAs in degrees for the sources in the kth region*)

δSrcRgnk[k_] := Tabledata00 id08 , 3 *(360./(2. π)), id08, srcIDrgnk[k]; (* decs *)

xyHSrcRgnk[k_] := Table xH180 αSrcRgnk[k]i, δSrcRgnk[k]i ,

yH180 αSrcRgnk[k]i, δSrcRgnk[k]i  , i, Length[ αSrcRgnk[k] ]  

(*Aitoff coordinates for the locations of the sources in the kth region*)

In[94]:= rAVEk0[k_] := rAVEk0[k] =

Sumri[ rgnCntrAndSrcId[[k, 3, n1]] ], {n1, Length[ rgnCntrAndSrcId[[k, 3]] ]}nSrck[k]

rAVEk[k_] := rAVEk0[k](rAVEk0[k].rAVEk0[k])1/2

(*unit radial vector to average location of the sources in the kth region*)

αAVEk[k_] := αAVEk[k] = αFROMr[rAVEk[k]]

δAVEk[k_] := δAVEk[k] = δFROMr[rAVEk[k]]
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In[98]:= (*We need the RMS radius of the kth region to determine significances.*)

ρSrcToAVEk[k_] := Table[arccos[ ri[ rgnCntrAndSrcId[[k, 3, n1]] ].rAVEk[k] ],

{n1, Length[ rgnCntrAndSrcId[[k, 3]] ]}]

ρRMSk[k_] :=
1

Length[rgnCntrAndSrcId[[k, 3]] ]

SumρSrcToAVEk[k][[i]]2, {i, Length[ ρSrcToAVEk[k] ]}
1/2

In[100]:= (*ηBarHkj: average alignment angle at Hj for the sources in the kth region, Eq. 1.*)

ηBarHkj[k_, j_] :=

ηBarHkj[k, j] = Sum[ηiHj[i, j], {i, srcIDrgnk[k]}]  Length[srcIDrgnk[k]]

The following cell has the kNjηMinjηMax table. It is very large and, therefore, it is hidden from view. To see it go to “Cell Proper-

ties” and click “Open”. 

kNjηMinjηMax  angles in degrees 

1.  region ID# in  “rgnCntrAndSrcId” table 2.  N = number of sources in the region 3. {j, ηmin} : j = grid point ID# where η is 

minimum ηmin 4.  {j, ηmax} : j = grid point ID# where η is maximum ηmax

In[102]:= (*KEEP THIS CELL to generate the kNjηMinjηMax table.*)

(*t1=TimeUsed[]

kNjηMinjηMax={};

Fork=1,k≤Length[rgnCntrAndSrcId],k++,ηBark=Tablej,ηBarHkjk,j,j,Lengthgrid;

sortηBark=Sort[ηBark,#1[[2]]<#2[[2]]&];

jηMin=sortηBark[[1]];

jηMax=sortηBark[[-1]];

AppendTokNjηMinjηMax,k,nSrck[k],jηMin,jηMax

t2=TimeUsed[]

t2-t1*)

(*This cell takes some time. On Dec. 30,2021, it took 1445.39 seconds.*)

In[103]:= (*Save kNjηMinjηMax*)

(*SetDirectoryhomeDirectory

PutkNjηMinjηMax,"20211230kNjEtaMinjEtaMax1450a.dat"

*)

In[104]:= (*Get kNjηMinjηMax, if you've got it.*)

(*SetDirectoryhomeDirectory ;

kNjηMinjηMax=Get"20211226kNjEtaMinjEtaMax1450.dat";

*)

In[105]:= ηmink[k_] := ηmink[k] = kNjηMinjηMax[[k, 3, 2]]

(*In degrees. The smallest alignment angle ηmin determines how well the sources in

the kth region align with any point Hj on the grid, i.e. anywhere on the sphere.*)

ηmaxk[k_] := ηmaxk[k] = kNjηMinjηMax[[k, 4, 2]] (*In degrees. The largest avoidance

angle ηmax gives a measure of avoidance from any point Hj on the sphere*)
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Section Summary

Initially, a total of 10 518

regions are created, each centered on one of the 10518 grid points which are

2 degrees apart. The regions are circular, each with a radius of 5. degrees.

Regions with duplicate lists of sources

are dropped. Regions must have a minimum number of sources.

There are 1811 regions with sufficient populations and duplicates dropped.

The min number of sources in a region is 7 and the max number is 20.

The median number of sources in a region is 9.

The arithmetic average number of sources in a region is 9.

A7. Probability Distributions and Significance of the Regions

The problem of “significance” is to determine the likelihood that random polarizations directions would have better alignment or 

avoidance than the observed polarization directions. Suppose we are given a region with a smallest alignment angle ηmin and a largest 

avoidance angle ηmax. The most reliable method of finding the significance of either value is to  creates many copies of the region but 

assign the sources randomly directed polarizations. Collect the angles ηmin and ηmax for each randomly directed copy and make a 

probability distribution for the collection of  ηmin and a probability distribution for the collection of ηmax. Fit the distributions with 

suitable functions and integrate to find the significances. This process is “Direct Method A”. It takes a lot of time and effort and 

would not be practical for a survey with hundreds, or more, of regions.

To avoid Direct Method A, we apply a combination of Interpolation Method B and Function Method C. Both are based on a 

“Library” of random run data. One finds that the probability distributions for smallest alignment angle ηmin with random runs can be 

fit by a function with just two free parameters, called the location   η0 of the peak and the half-width  σ. Avoidance distributions take 

two more parameters. For details see Ref. 8. 

We assume that just two properties of a region determine its the significance of its values of   ηmin and ηmax. The two properties 

are the number of sources nSrc and the root-mean-square radius ρRMS of the sources about their mean location. Thus the Library has 

tables of the distribution parameters   η0 and σ for many combinations of nSrc and ρRMS. 

Interpolating the Library data to get η0 and σ is called Interpolation Method B. The Library data can be fit with suitable 

functions. Substituting nSrc and ρRMS in those functions to get η0 and σ is called Function Method C. Again, for details, see Ref. 8.

Definitions:

norm a constant used to normalize the distribution so the integral of probability is 1. 

probMIN0, probMAX0 probability distributions for alignment (MIN) and avoidance (MAX), functions of  η, η0, σ

probMIN0[η, η0, σ], probMAX0 probability distributions for probability of η using given values of η0, σ 

signiMIN0[η, η0, σ], signiMAX0 significance of η using given values of η0, σ 
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In[113]:= (* y = η - η0σ; dy = dησ *)

(* The normalization factor "norm" is needed for the probability density *)

norm = 1  2 π1/2 NIntegrate1 + ⅇ4 (y-1)
-1
ⅇ
-
y2

2 , {y, -∞, ∞}
-1

;

norm ;(*Constant needed to make the probability distributions integrate to unity.*)

In[115]:= probMIN0[η_, η0_, σ_] := norm  σ 2 π1/2 1 + ⅇ
4

η-η0-σ

σ

-1

ⅇ
-
1

2

η - η0

σ

2

signiMIN0[η_, η0_, σ_] := NIntegrate[probMIN0[η1, η0, σ], {η1, -∞, η}]

In[117]:= probMAX0[η_, η0_, σ_] := normσ (2 π)1/2 1 + ⅇ-4
(η-η0+σ)

σ 
-1
ⅇ-

1

2

η - η0

σ

2

signiMAX0[η_, η0_, σ_] := NIntegrate[probMAX0[η1, η0, σ], {η1, η, ∞}]

In[119]:= Print"The significance signiMIN0[η,η0,σ] is

the integral of probMIN0, i.e. signiMIN0 = 
-∞

η

PMIN
0(ηi)ⅆηi: "

Print"The significance signiMAX0[η,η0,σ] is the integral of

probMAX0, i.e. signiMAX0 = 
η

∞

PMAX
0(ηi)ⅆηi: " 

The significance signiMIN0[η,η0,σ] is

the integral of probMIN0, i.e. signiMIN0 = 
-∞

η

PMIN
0(ηi)ⅆηi:

The significance signiMAX0[η,η0,σ] is the integral of probMAX0, i.e. signiMAX0 = 
η

∞

PMAX
0(ηi)ⅆηi:

A7a. The Library data

Definitions:

fitData   Parameters of the alignment (min) and avoidance (max) random run distributions. Originally in radians, converted to 

degrees after it is inputted below.

fitData: 

1a. nSrci[i]    Number of sources 1b. ρNomi[i]  Nominal radius, deg. 1c. ρRMSi[i] RMS radius, deg. 

2a. η0mini[i]   peak alignment distribution 2b. dη0mini[i] standard error

3a. σmini[i]    half-width alignment distr. 3b. dσmini[i] standard error

4a. η0maxi[i]   peak alignment distribution 4b. dη0maxi[i] standard error

5a. σmaxi[i]    half-width alignment distr. 5b. dσmaxi[i] standard error

wi[i] inverse square root of the number of sources, w = 1N1/2

τRMSi[i] inverse RMS radius, in deg.-1

In[121]:= fitData = {{{9., 0.004363, 0.0043, 10 000.}, {0.598, 0.0013}, {0.1127, 0.0016},

{0.977, 0.001700}, {0.1128, 0.002}}, {{9., 0.005818, 0.005734, 10 000.},

{0.5885, 0.0016}, {0.1118, 0.0019}, {0.9868, 0.001}, {0.1107, 0.001200}},

{{9., 0.008727, 0.008601, 10 000.}, {0.5707, 0.0011}, {0.1076, 0.0013},
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{1.00503, 0.000860}, {0.1069, 0.001}}, {{9., 0.017453, 0.017202, 10 000.},

{0.52541, 0.00068}, {0.09791, 0.000810}, {1.05165, 0.00079}, {0.09636, 0.000950}},

{{9., 0.02618, 0.025803, 10 000.}, {0.50422, 0.000610}, {0.09425, 0.000730},

{1.07266, 0.000740}, {0.09407, 0.000890}}, {{9., 0.034907, 0.034406, 10000.},

{0.49249, 0.00084}, {0.09335, 0.001}, {1.08406, 0.000770}, {0.09356, 0.000910}},

{{9., 0.05236, 0.051615, 10 000.}, {0.48150, 0.00076}, {0.09325, 0.000910},

{1.09181, 0.00072}, {0.09353, 0.000860}}, {{9., 0.069813, 0.068831, 10 000.},

{0.47716, 0.000600}, {0.09572, 0.00072}, {1.0949, 0.0005}, {0.09324, 0.000600}},

{{9., 0.139626, 0.137827, 10 000.}, {0.47140, 0.00051}, {0.0943, 0.000610},

{1.10081, 0.000610}, {0.09566, 0.000730}}, {{9., 0.733038, 0.758894, 10000.},

{0.46917, 0.00062}, {0.09209, 0.00075}, {1.10139, 0.00043000}, {0.09214, 0.000520}},

{{16., 0.004363, 0.003926, 10 000.}, {0.6493, 0.0011}, {0.0839, 0.0014},

{0.92532, 0.000950}, {0.083, 0.0011}}, {{16., 0.005818, 0.005234, 10 000.},

{0.6436, 0.0011}, {0.0849, 0.0013}, {0.9314, 0.0011}, {0.0836, 0.0013}},

{{16., 0.008727, 0.007851, 10 000.}, {0.6308, 0.001200}, {0.0827, 0.0014},

{0.9443, 0.001}, {0.0829, 0.001200}}, {{16., 0.017453, 0.015703, 10 000.},

{0.59942, 0.000830}, {0.07466, 0.00099}, {0.97587, 0.000810}, {0.07568, 0.00097}},

{{16., 0.02618, 0.023555, 10 000.}, {0.58222, 0.00076}, {0.07263, 0.000900},

{0.99397, 0.00063}, {0.07299, 0.00075}}, {{16., 0.034907, 0.031407, 10 000.},

{0.57108, 0.00033}, {0.07264, 0.0004}, {1.00501, 0.00042}, {0.07128, 0.00051}},

{{16., 0.05236, 0.047116, 10 000.}, {0.56133, 0.00048}, {0.07272, 0.000570},

{1.01146, 0.000600}, {0.07183, 0.00072}}, {{16., 0.069813, 0.06283, 10 000.},

{0.55732, 0.0004}, {0.07328, 0.00047000}, {1.01605, 0.000520}, {0.07326, 0.00062}},

{{16., 0.139626, 0.125785, 10 000.}, {0.55186, 0.00067}, {0.0721, 0.0008},

{1.02026, 0.000490}, {0.07183, 0.00059}}, {{16., 0.733038, 0.686975, 10000.},

{0.55102, 0.000520}, {0.07313, 0.00062}, {1.02006, 0.000490}, {0.07269, 0.00059}},

{{25., 0.004363, 0.003724, 10 000.}, {0.67677, 0.00076}, {0.06753, 0.000910},

{0.89747, 0.000730}, {0.06752, 0.000870}}, {{25., 0.005818, 0.004966, 10000.},

{0.67228, 0.000730}, {0.06735, 0.000870}, {0.90184, 0.00093}, {0.0673, 0.0011}},

{{25., 0.008727, 0.007448, 10 000.}, {0.66404, 0.00088}, {0.0651, 0.0011},

{0.91047, 0.00076}, {0.06528, 0.000910}}, {{25., 0.017453, 0.014897, 10000.},

{0.64101, 0.00037}, {0.06098, 0.00044}, {0.93461, 0.00051}, {0.06021, 0.000610}},

{{25., 0.02618, 0.022346, 10 000.}, {0.62549, 0.000700}, {0.05922, 0.000830},

{0.95097, 0.00045000}, {0.05944, 0.00054}}, {{25., 0.034907, 0.029795, 10000.},

{0.61729, 0.00039}, {0.0589, 0.00046}, {0.95886, 0.00033}, {0.05889, 0.00039}},

{{25., 0.05236, 0.044697, 10 000.}, {0.60836, 0.00045000}, {0.05886, 0.000530},

{0.96488, 0.00031}, {0.05889, 0.00037}}, {{25., 0.069813, 0.059604, 10 000.},

{0.60328, 0.00048}, {0.05880, 0.00058}, {0.96728, 0.00046}, {0.05893, 0.00055}},

{{25., 0.139626, 0.119314, 10 000.}, {0.60034, 0.00025}, {0.06006, 0.00030000},

{0.97273, 0.00035}, {0.060610, 0.00042}}, {{25., 0.733038, 0.648932, 10000.},

{0.59794, 0.0005}, {0.05811, 0.000600}, {0.97322, 0.00036}, {0.0584, 0.00043000}},

{{36., 0.004363, 0.003598, 10 000.}, {0.69775, 0.000820}, {0.055510, 0.00098000},

{0.8761, 0.00088}, {0.055600, 0.001}}, {{36., 0.005818, 0.004797, 10 000.},

{0.69363, 0.000830}, {0.0555, 0.001}, {0.8804, 0.000860}, {0.0557, 0.001}},

{{36., 0.008727, 0.007196, 10 000.}, {0.68712, 0.000730}, {0.05454, 0.000870},

{0.8879, 0.00058}, {0.05439, 0.000690}}, {{36., 0.017453, 0.014392, 10 000.},

{0.66756, 0.0004}, {0.05093, 0.00047000}, {0.90807, 0.00035}, {0.05152, 0.00041}},

{{36., 0.02618, 0.021588, 10 000.}, {0.65519, 0.00041}, {0.04926, 0.000490},

{0.92136, 0.00037}, {0.05009, 0.00044}}, {{36., 0.034907, 0.028785, 10 000.},

{0.64719, 0.00039}, {0.04839, 0.00046}, {0.92823, 0.00037}, {0.04884, 0.00044}},

{{36., 0.05236, 0.043181, 10 000.}, {0.63967, 0.00033}, {0.04904, 0.0004},
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{0.93442, 0.00044}, {0.04867, 0.000530}}, {{36., 0.069813, 0.057582, 10000.},

{0.63554, 0.00030000}, {0.05024, 0.00035}, {0.93769, 0.00033}, {0.049210, 0.0004}},

{{36., 0.139626, 0.115259, 10 000.}, {0.63112, 0.0004}, {0.04907, 0.00048},

{0.94043, 0.00059}, {0.0495, 0.000700}}, {{36., 0.733038, 0.625307, 10 000.},

{0.62905, 0.00036}, {0.04914, 0.00043000}, {0.94269, 0.00043000}, {0.04859, 0.00051}},

{{49., 0.004363, 0.003511, 10 000.}, {0.71156, 0.000730}, {0.04788, 0.00088},

{0.86253, 0.00072}, {0.04732, 0.000860}}, {{49., 0.005818, 0.004682, 10000.},

{0.70811, 0.00079}, {0.04807, 0.000940}, {0.86667, 0.00076}, {0.04843, 0.000910}},

{{49., 0.008727, 0.007022, 10 000.}, {0.70161, 0.000530}, {0.04623, 0.00063},

{0.87291, 0.00055}, {0.04655, 0.000660}}, {{49., 0.017453, 0.014045, 10000.},

{0.68587, 0.00035}, {0.04424, 0.00042}, {0.890, 0.00035}, {0.04376, 0.00042}},

{{49., 0.02618, 0.021068, 10 000.}, {0.67439, 0.00027}, {0.043160, 0.00032},

{0.90159, 0.00026000}, {0.0427, 0.00031}}, {{49., 0.034907, 0.028091, 10000.},

{0.66799, 0.00024000}, {0.04188, 0.00029}, {0.90758, 0.00038}, {0.04168, 0.00046}},

{{49., 0.05236, 0.04214, 10 000.}, {0.66113, 0.00023}, {0.04173, 0.00027},

{0.91225, 0.00029}, {0.042210, 0.00035}}, {{49., 0.069813, 0.056193, 10000.},

{0.65771, 0.00019}, {0.04249, 0.00022}, {0.91411, 0.00028000}, {0.041890, 0.00034}},

{{49., 0.139626, 0.112476, 10 000.}, {0.65365, 0.00022}, {0.04396, 0.00026000},

{0.91819, 0.00022}, {0.04322, 0.00026000}}, {{49., 0.733038, 0.609183, 10000.},

{0.65169, 0.00022}, {0.04206, 0.00027}, {0.91821, 0.00032}, {0.04166, 0.00038}},

{{64., 0.004363, 0.003448, 10 000.}, {0.72042, 0.000700}, {0.042660, 0.00084},

{0.85352, 0.00071}, {0.04226, 0.000850}}, {{64., 0.005818, 0.004597, 10000.},

{0.71742, 0.00051}, {0.04232, 0.000610}, {0.857, 0.000530}, {0.04168, 0.00064}},

{{64., 0.008727, 0.006896, 10 000.}, {0.71212, 0.00059}, {0.04115, 0.00071},

{0.8622, 0.000530}, {0.040940, 0.00063}}, {{64., 0.017453, 0.013792, 10000.},

{0.69893, 0.00034}, {0.03817, 0.00041}, {0.87707, 0.00034}, {0.0381, 0.00041}},

{{64., 0.02618, 0.020688, 10 000.}, {0.68991, 0.00039}, {0.03791, 0.00047000},

{0.88662, 0.00031}, {0.03707, 0.00037}}, {{64., 0.034907, 0.027585, 10 000.},

{0.68318, 0.00030000}, {0.03715, 0.00036}, {0.89217, 0.00027}, {0.03706, 0.00032}},

{{64., 0.05236, 0.041381, 10 000.}, {0.67673, 0.00022}, {0.03751, 0.00026000},

{0.89693, 0.00029}, {0.03724, 0.00035}}, {{64., 0.069813, 0.05518, 10 000.},

{0.67481, 0.00031}, {0.03732, 0.00037}, {0.89809, 0.00033}, {0.03743, 0.00039}},

{{64., 0.139626, 0.110445, 10 000.}, {0.67003, 0.00034}, {0.03716, 0.00041},

{0.90149, 0.00031}, {0.03727, 0.00037}}, {{64., 0.733038, 0.597467, 10 000.},

{0.66813, 0.00024000}, {0.03774, 0.00029}, {0.9024, 0.00028000}, {0.03726, 0.00033}},

{{81., 0.004363, 0.0034, 10 000.}, {0.72763, 0.000560}, {0.03752, 0.00067},

{0.84644, 0.000560}, {0.03725, 0.00067}}, {{81., 0.005818, 0.004533, 10000.},

{0.7255, 0.0005}, {0.037540, 0.000600}, {0.84895, 0.00045000}, {0.03713, 0.00054}},

{{81., 0.008727, 0.006799, 10 000.}, {0.72054, 0.000490}, {0.03712, 0.00058},

{0.85379, 0.00044}, {0.036250, 0.000530}}, {{81., 0.017453, 0.013599, 10000.},

{0.709, 0.00034}, {0.034910, 0.00041}, {0.86674, 0.00018}, {0.03409, 0.00022}},

{{81., 0.02618, 0.020399, 10 000.}, {0.70134, 0.00030000}, {0.03357, 0.00035},

{0.87493, 0.00024000}, {0.033030, 0.00028000}}, {{81., 0.034907, 0.027199, 10 000.},

{0.6956, 0.0001500}, {0.03345, 0.00018}, {0.88028, 0.00023}, {0.03265, 0.00028000}},

{{81., 0.05236, 0.040802, 10 000.}, {0.68945, 0.00023}, {0.03349, 0.00028000},

{0.88405, 0.00033}, {0.03343, 0.00039}}, {{81., 0.069813, 0.054408, 10 000.},

{0.68641, 0.00019}, {0.03356, 0.00023}, {0.88641, 0.00031}, {0.03351, 0.00037}},

{{81., 0.139626, 0.108897, 10 000.}, {0.68338, 0.00025}, {0.03265, 0.00030000},

{0.88795, 0.00041}, {0.03366, 0.00048}}, {{81., 0.733038, 0.588565, 10 000.},

{0.68158, 0.00028000}, {0.032850, 0.00034}, {0.88922, 0.00025}, {0.03259, 0.00030000}},

{{121., 0.004363, 0.003331, 10 000.}, {0.7385, 0.0004}, {0.030840, 0.00048},
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{0.8356, 0.00036}, {0.030590, 0.00042}}, {{121., 0.005818, 0.004441, 10000.},

{0.73652, 0.00041}, {0.0308600, 0.000490}, {0.83759, 0.00038}, {0.03021, 0.00046}},

{{121., 0.008727, 0.006662, 10 000.}, {0.73305, 0.00035}, {0.03037, 0.00042},

{0.84113, 0.00038}, {0.029820, 0.00045000}}, {{121., 0.017453, 0.013324, 10 000.},

{0.72346, 0.00029}, {0.028620, 0.00034}, {0.852, 0.00030000}, {0.02825, 0.00036}},

{{121., 0.02618, 0.019987, 10 000.}, {0.71662, 0.00027}, {0.027750, 0.00032},

{0.85972, 0.00016}, {0.027670, 0.00019}}, {{121., 0.034907, 0.026649, 10000.},

{0.71241, 0.00026000}, {0.02706, 0.00031}, {0.86292, 0.00018}, {0.027080, 0.00021}},

{{121., 0.05236, 0.039977, 10 000.}, {0.708, 0.00018}, {0.02723, 0.00022},

{0.86635, 0.0001500}, {0.027420, 0.00018}}, {{121., 0.069813, 0.053308, 10000.},

{0.70508, 0.00023}, {0.027260, 0.00028000}, {0.86744, 0.00022}, {0.02772, 0.00026000}},

{{121., 0.139626, 0.106692, 10 000.}, {0.70191, 0.00029}, {0.02704, 0.00034},

{0.86976, 0.0001500}, {0.027500, 0.00018}}, {{121., 0.733038, 0.575927, 10000.},

{0.70062, 0.00025}, {0.0267700, 0.00030000}, {0.87027, 0.00019}, {0.02739, 0.00023}},

{{225., 0.004363, 0.003251, 10 000.}, {0.75118, 0.00031}, {0.022740, 0.00038},

{0.82256, 0.00034}, {0.02254, 0.0004}}, {{225., 0.005818, 0.004334, 10 000.},

{0.75016, 0.00029}, {0.022140, 0.00035}, {0.8238, 0.00038}, {0.021730, 0.00045000}},

{{225., 0.008727, 0.006501, 10 000.}, {0.74756, 0.00030000}, {0.022410, 0.00035},

{0.82659, 0.00029}, {0.021630, 0.00034}}, {{225., 0.017453, 0.013003, 10000.},

{0.74086, 0.00018}, {0.021040, 0.00022}, {0.83388, 0.00022}, {0.0206400, 0.00027}},

{{225., 0.02618, 0.019505, 10 000.}, {0.73588, 0.00022}, {0.0201300, 0.00026000},

{0.83963, 0.00018}, {0.0198, 0.00021}}, {{225., 0.034907, 0.026007, 10 000.},

{0.73308, 0.00013}, {0.02008, 0.0001500}, {0.84245, 0.0002}, {0.01983, 0.00023}},

{{225., 0.05236, 0.039013, 10 000.}, {0.728744, 0.000090}, {0.02014, 0.00011},

{0.84508, 0.00013}, {0.019770, 0.00016}}, {{225., 0.069813, 0.052023, 10000.},

{0.727354, 0.000099}, {0.0199, 0.00012}, {0.84565, 0.00013}, {0.0200400, 0.00016}},

{{225., 0.139626, 0.104116, 10 000.}, {0.72498, 0.00013}, {0.020100, 0.00016},

{0.84702, 0.0001500}, {0.0202100, 0.00018}}, {{225., 0.733038, 0.561218, 10 000.},

{0.72336, 0.00016}, {0.019770, 0.00019}, {0.84781, 0.0001400}, {0.02023, 0.00017}}};

In[122]:= (*Identify the items in the fitData table with functions

having recognizable names. Convert fitData radians to DEGREES:*)

nSrci[i_] := fitData[[i, 1, 1]]

In[123]:= ρNomi[i_] := fitData[[i, 1, 2]]
360.

2. π
(*The nominal radius in degrees*)

ρRMSi[i_] := fitData[[i, 1, 3]]
360.

2. π
(*The RMS radius *)

In[125]:= η0mini[i_] := fitData[[i, 2, 1]]
360.

2. π

dη0mini[i_] := fitData[[i, 2, 2]]
360.

2. π

In[127]:= σmini[i_] := fitData[[i, 3, 1]]
360.

2. π

dσmini[i_] := fitData[[i, 3, 2]]
360.

2. π
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In[129]:= η0maxi[i_] := fitData[[i, 4, 1]]
360.

2. π

dη0maxi[i_] := fitData[[i, 4, 2]]
360.

2. π

In[131]:= σmaxi[i_] := fitData[[i, 5, 1]]
360.

2. π

dσmaxi[i_] := fitData[[i, 5, 2]]
360.

2. π

In[133]:= wi[i_] :=
1

nSrci[i]1/2
(*w = 1N1/2*)

τRMSi[i_] :=
1

ρRMSi[i]
(* inverse RMS radius in inverse degrees*)

A7b. Interpolation Method B

The Library constructed for Method B in Sec. A2 is essentially a table of the values of the four parameters,  η0
min, σmin,   η0

max, 

and σmax, needed to determine the probability distributions and significances in Eqs. (A1-A4).  

Instead of the variables  N and ρRMS, the number of sources and the root-mean-square radius, we choose to consider the four 

parameters as functions of  w and τRMS, the inverse square root of N and the inverse of the radius ρRMS, 

w  =  N-1/2   and   τRMS  =  ρRMS-1. (A5)

A change of variables from (N , ρRMS)  to  (w , τRMS).

Definitions:

Tables: wτη0minLib, wτdη0minLib, wτη0maxLib, wτdη0maxLib, wτσminLib, wτdσminLib, wτσmaxLib, wτdσmaxLib

The tables  wτη0minLib ...  have  Library data in the form [(w, τRMS), quantity] were “quantity” is one of the parameters or their 

standard errors: η0
min, dη0

min, σmin,   dσmin, η0
max, dη0

max,  σmax , dσmax     

The associated interpolation functions are η0minBint, dη0minBint , η0maxBint , dη0maxBint, σminBint, dσminBint, σmaxBint , 

dσmaxBint 

Setting up the interpolations takes two steps. First a tables of the data are constructed. Each table has the form {w, τRMS, 

parameter}. Second, the interpolation for each parameter is defined. There are four parameters  η0
min, σmin,   η0

max, and σmax and each 

one has a standard error  dη0
min, dσmin,   dη0

max, and dσmax developed in the fitting process that gives fitData from random run data.

In[135]:= wτη0minLib = Table[{{wi[i], τRMSi[i]}, η0mini[i]}, {i, Length[fitData]}];

wτdη0minLib = Table[{wi[i], τRMSi[i], dη0mini[i]}, {i, Length[fitData]}];

wτη0maxLib = Table[{wi[i], τRMSi[i], η0maxi[i]}, {i, Length[fitData]}];

wτdη0maxLib = Table[{wi[i], τRMSi[i], dη0maxi[i]}, {i, Length[fitData]}];

wτσminLib = Table[{wi[i], τRMSi[i], σmini[i]}, {i, Length[fitData]}];

wτdσminLib = Table[{wi[i], τRMSi[i], dσmini[i]}, {i, Length[fitData]}];

wτσmaxLib = Table[{wi[i], τRMSi[i], σmaxi[i]}, {i, Length[fitData]}];

wτdσmaxLib = Table[{wi[i], τRMSi[i], dσmaxi[i]}, {i, Length[fitData]}];
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In[143]:= η0minBint = Interpolation[wτη0minLib];(* int - interpolation function*)

dη0minBint = Interpolation[wτdη0minLib];

η0maxBint = Interpolation[wτη0maxLib];

dη0maxBint = Interpolation[wτdη0maxLib];

σminBint = Interpolation[wτσminLib];

dσminBint = Interpolation[wτdσminLib];

σmaxBint = Interpolation[wτσmaxLib];

dσmaxBint = Interpolation[wτdσmaxLib];

Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or

InterpolationOrder->All. Order will be reduced to 1.

Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or

InterpolationOrder->All. Order will be reduced to 1.

Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or

InterpolationOrder->All. Order will be reduced to 1.

Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or

InterpolationOrder->All. Order will be reduced to 1.

Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or

InterpolationOrder->All. Order will be reduced to 1.

Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or

InterpolationOrder->All. Order will be reduced to 1.

Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or

InterpolationOrder->All. Order will be reduced to 1.

Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or

InterpolationOrder->All. Order will be reduced to 1.

By the rules of interpolations, when the variables w and τ are in the range of the Library data, then Mathematica finds an average 

value from the surrounding Library data points. In terms of the variables w and τRMS, the ranges are  

1
15

 ≤ w ≤ 1
3

   and    0.024 deg-1  ≲ τRMS ≲ 4 deg-1  (Ranges of Interpolation Variables )  (A6)

Note: The values for τRMS are only approximate because the limits shown are values of 1/ρNominal and the nominal values 

ρNominal only approximate the root-mean-square values ρRMS,  ρNominal ≈ ρRMS .

 

A7c. Fit the Library Data with Functions, Function Method C

Applying Interpolation Method B when one or both sample’s variables are outside the Library data set, results in extrapolation, 

not interpolation. Instead of interpolating Library data points that surround the sample’s variables, Mathematica guesses what lies 

beyond the Library’s boundaries. In such a case or for other situations that arise, one can apply the following alternative Formula 

Method C to find the distribution parameters   η0
min, σmin,   η0

max, and σmax and , with Eqs. (A4, A5), the significances desired.

 Formula Method C finds formulas to fit the four distribution parameters   η0
min(w, τRMS), σmin(w, τRMS),   η0

max(w, τRMS), 
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and σmax(w, τRMS). Best, Big and Small are just copied from 20211112InterpolateAndFormula2a which are copied from 

20211116AlternateRandomRunStatsDegrees.nb

Definitions:

Alignment:

Library data fitting functions: 

eta0minFit[w,τ], eta0minFitbig[w,τ], eta0minFitsmall[w,τ], deta0minFit[w,τ]

sigmaminFit[w,τ], sigminFitBig[w,τ], sigminFitSmall[w,τ], dsigmaminFit[w,τ]

Plots of the Library data fitting function for the iNth value of w: 

plotTauEtamin[iN], plotTauEtaminbig[iN], plotTauEtaminsmall[iN], 

plotTausigmamin[iN], ...

Display of the fitting functions for all values of w:  

eta0MinVSTauFit (Big, Best, Small) and eta0MinVSTauFit0 (Best only)

sortPercentDiffEta0minfit  percent differences between the Library data and the relevant fitting function, here for η0
min. 

sortPercentDiffSigmaminfit Same, but for σmin

Avoidance:

REPEAT ALL OF THE ABOVE AGAIN, BUT THIS TIME WITH “MAX”, NOT “MIN”, i.e. eta0maxFit[w,τ], ..., sortPercentDif-

fSigmamaxfit 

In[151]:= (*Equation (A7), 20211112InterpolateAndFormula2a.nb *)

eta0minFit[w_, τ_] :=

45.0269 - w 47.386 + 7.32 w - 17.789 Tanh0.7096 - 0.3488 w -0.5348 + τ

In[152]:= (*Equation A8*)eta0minFitbig[w_, τ_] :=

45.0434 - w 47.031 + 6.83 w + -17.789 + 0.302 Sign-0.7096 + 0.3488 w -0.5348 + τ

Tanh-0.5348 + τ + 0.0254 Sign[0.7096 - 0.3488 w]

0.7096 + w -0.3488 + 0.0321 Sign[-0.5348 + τ] + 0.0137 Sign[-0.5348 + τ]

In[153]:= (*Equation A9*)eta0minFitsmall[w_, τ_] :=

45.0103 - w 47.741 + 7.81 w + -17.789 - 0.302 Sign-0.7096 + 0.3488 w -0.5348 + τ

Tanh-0.5348 + τ - 0.0254 Sign[0.7096 - 0.3488 w]

0.7096 + w -0.3488 - 0.0321 Sign[-0.5348 + τ] - 0.0137 Sign[-0.5348 + τ]

In[154]:= deta0minFit[w_, τ_] := eta0minFitbig[w, τ] - eta0minFit[w, τ]

In[155]:= (*Equation A10*)

sigmaminFit[w_, τ_] := 0.25 w 73.570 - 8.29 w + 3.093 + 10.658 w Tanh1.2161 -1.6072 + τ

In[156]:= (*Equation A11*)

sigminFitBig[w_, τ_] := 0.25 w

73.679 - 7.86 w + 3.093 + w 10.658 + 0.508 Sign[-1.6072 + τ] + 0.126 Sign[-1.6072 + τ]

Tanh-1.6072 + τ + 0.0202 Sign[3.093 + 10.658 w] 1.2161 + 0.0441 Sign[-1.6072 + τ]
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In[157]:= (*Equation A12*)

sigminFitSmall[w_, τ_] := 0.25 w

73.460 - 8.73 w + 3.093 + w 10.658 - 0.508 Sign[-1.6072 + τ] - 0.126 Sign[-1.6072 + τ]

Tanh-1.6072 + τ - 0.0202 Sign[3.093 + 10.658 w] 1.2161 - 0.0441 Sign[-1.6072 + τ]

In[158]:= dsigmaminFit[w_, τ_] := sigminFitBig[w, τ] - sigmaminFit[w, τ]

In[159]:= (*Equation A13*)

eta0maxFit[w_, τ_] := 45.1455 + w 44.230 + 8.35 w - 14.632 Tanh0.6808 -0.8608 + τ

In[160]:= (*Equation A14*)

eta0maxFitbig[w_, τ_] := 45.1632 + w 44.483 + 8.85 w + -14.632 + 0.179 Sign[-0.8608 + τ]

Tanh-0.8777 + τ 0.6808 + 0.0106 Sign[0.8608 - τ]

In[161]:= (*Equation A15*)

eta0maxFitsmall[w_, τ_] := 45.1279 + w 43.977 + 7.85 w + -14.632 - 0.179 Sign[-0.8608 + τ]

Tanh-0.8439 + τ 0.6808 - 0.0106 Sign[0.8608 - τ]

In[162]:= deta0maxFit[w_, τ_] := eta0maxFitbig[w, τ] - eta0maxFit[w, τ]

In[163]:= (*Equation A16*)

sigmamaxFit[w_, τ_] := 0.25 w 73.287 - 8.11 w + 2.773 + 11.126 w Tanh1.2850 -1.6242 + τ

In[164]:= (*Equation A17*)

sigmaxFitBig[w_, τ_] := 0.25 w

73.400 - 7.66 w + 2.773 + w 11.126 + 0.521 Sign[-1.6242 + τ] + 0.129 Sign[-1.6242 + τ]

Tanh-1.6242 + τ + 0.0210 Sign[2.773 + 11.126 w] 1.2850 + 0.0494 Sign[-1.6242 + τ]

In[165]:= (*Equation A18*)

sigmaxFitSmall[w_, τ_] := 0.25 w

73.174 - 8.567 w + 2.773 + w 11.126 - 0.521 Sign[-1.6242 + τ] - 0.129 Sign[-1.6242 + τ]

Tanh-1.6242 + τ - 0.0210 Sign[2.773 + 11.126 w] 1.2850 - 0.0494 Sign[-1.6242 + τ]

In[166]:= dsigmamaxFit[w_, τ_] := sigmaxFitBig[w, τ] - sigmamaxFit[w, τ]

A7d. Combine Interpolation Method B and Function Method C

Apply Interpolation Method B when both sample’s variables are within the range of the Library data set. Otherwise, one can 

apply the following alternative Formula Method C to find the distribution parameters   η0
min, σmin,   η0

max, and σmax .

Definitions:

Alignment:

Methods B,C combination parameter functions: 

η0min[w,τ], dη0min[w,τ]   peak alignment distribution, standard error

σmin[w,τ], dσmin[w,τ]      half-width alignment distr., standard error

η0max[w,τ], dη0max[w,τ]   peak avoidance distribution, standard error
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σmax[w,τ], dσmax[w,τ]      half-width avoidance distr., standard error

probMIN[η, nSrc, ρRMS], probMAX probability distributions for probability of η using a sample’s values of N, ρRMS 

signiMIN[η,nSrc,ρRMS], signiMAX significance of η using a sample’s values of N, ρRMS  

In[167]:= η0min[w_, τ_] := If
1

15.
≤ w ≤

1

3.
&& 0.025 ≤ τ ≤ 3.9, η0minBint [w, τ], eta0minFit[w, τ];

dη0min[w_, τ_] :=

If
1

15.
≤ w ≤

1

3.
&& 0.025 ≤ τ ≤ 3.9, dη0minBint [w, τ], deta0minFit[w, τ];

η0max[w_, τ_] := If
1

15.
≤ w ≤

1

3.
&& 0.025 ≤ τ ≤ 3.9, η0maxBint [w, τ], eta0maxFit[w, τ];

dη0max[w_, τ_] :=

If
1

15.
≤ w ≤

1

3.
&& 0.025 ≤ τ ≤ 3.9, dη0maxBint [w, τ], deta0maxFit[w, τ];

σmin[w_, τ_] := If
1

15.
≤ w ≤

1

3.
&& 0.025 ≤ τ ≤ 3.9, σminBint [w, τ], sigmaminFit[w, τ];

dσmin[w_, τ_] :=

If
1

15.
≤ w ≤

1

3.
&& 0.025 ≤ τ ≤ 3.9, dσminBint [w, τ], dsigmaminFit[w, τ];

σmax[w_, τ_] := If
1

15.
≤ w ≤

1

3.
&& 0.025 ≤ τ ≤ 3.9, σmaxBint [w, τ], sigmamaxFit[w, τ];

dσmax[w_, τ_] :=

If
1

15.
≤ w ≤

1

3.
&& 0.025 ≤ τ ≤ 3.9, dσmaxBint [w, τ], dsigmamaxFit[w, τ];

In[175]:= probMIN[η_, nSrc_, ρRMS_] := probMIN0 η, η0minnSrc-1/2, ρRMS-1, σminnSrc-1/2, ρRMS-1 

signiMIN[η_, nSrc_, ρRMS_] := signiMIN0η, η0minnSrc-1/2, ρRMS-1, σminnSrc-1/2, ρRMS-1

probMAX[η_, nSrc_, ρRMS_] := probMAX0 η, η0maxnSrc-1/2, ρRMS-1, σmaxnSrc-1/2, ρRMS-1 

signiMAX[η_, nSrc_, ρRMS_] := signiMAX0η, η0maxnSrc-1/2, ρRMS-1, σmaxnSrc-1/2, ρRMS-1

A7e. Significance of alignment and avoidance for the regions

To get significance formulas for each region, we use the number of sources and the  ρRMS  for each region, i.e.  nSrck[k]  and   

ρRMSk[k] for the kthregion. One has

In[179]:= sigMINk[k_] := signiMIN[ ηmink[k], nSrck[k], ρRMSk[k] ]

sigMAXk[k_] := signiMAX[ηmaxk[k], nSrck[k], ρRMSk[k] ]
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In[181]:= (*Get the ID#s k for Regions with very significant alignment.*)

ηMINVerySigkList = {};

Fork = 1, k ≤ LengthkNjηMinjηMax, k++,

If0.01 ≥ sigMINk[k], AppendToηMINVerySigkList, k, sigMINk[k]

ηMINVerySigkList;

LengthηMINVerySigkList;

In[185]:= sortηMINVerySigkList = Sort[ηMINVerySigkList, #1[[2]] < #2[[2]] &];

Table[sortηMINVerySigkList[[i]], {i, 10}];

Length[sortηMINVerySigkList];

In[188]:= (*Get the ID#s k for Regions with ( 5%, NOT Very) significant alignment.*)

ηMINSigkList = {};

Fork = 1, k ≤ LengthkNjηMinjηMax, k++,

If0.05 ≥ sigMINk[k], AppendToηMINSigkList, k, sigMINk[k]

ηMINSigkList;

LengthηMINSigkList;

In[192]:= (*Regions with  5%, NOT Very significant alignment.*)

sortηMINSigkList = Sort[ηMINSigkList, #1[[2]] < #2[[2]] &];

Table[sortηMINSigkList[[i]], {i, 10}];

Length[sortηMINSigkList];

In[195]:= (*Get the ID#s k for Regions with very significant avoidance.*)

ηMAXVerySigkList = {};

Fork = 1, k ≤ LengthkNjηMinjηMax, k++,

If0.01 ≥ sigMAXk[k], AppendToηMAXVerySigkList, k, sigMAXk[k]

ηMAXVerySigkList;

LengthηMAXVerySigkList;

In[199]:= sortηMAXVerySigkList = Sort[ηMAXVerySigkList, #1[[2]] < #2[[2]] &];

Table[sortηMAXVerySigkList[[i]], {i, Length[ηMAXVerySigkList]}];

Length[sortηMAXVerySigkList];

In[202]:= (*Regions with ( 5%, NOT Very) significant alignment.*)

ηMAXSigkList = {};

Fork = 1, k ≤ LengthkNjηMinjηMax, k++,

If0.05 ≥ sigMAXk[k], AppendToηMAXSigkList, k, sigMAXk[k]

ηMAXSigkList;

LengthηMAXSigkList;

In[206]:= (*Regions with  5%, NOT Very significant alignment.*)

sortηMAXSigkList = Sort[ηMAXSigkList, #1[[2]] < #2[[2]] &];

Table[sortηMAXSigkList[[i]], {i, Length[ηMAXSigkList]}];

Length[sortηMAXSigkList];
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In[209]:= (*Uncertainty of -Log10S for ηmink with uncertainty for ηmink = ±1° . *)

negLogSigηminBest[k_] := -Log10,

signiMIN0 ηmink[k], η0minnSrck[k]-1/2, ρRMSk[k]-1, σminnSrck[k]-1/2, ρRMSk[k]-1

negLogSigηminBig[k_] := -Log10, signiMIN0 ηmink[k] - 1,

η0minnSrck[k]-1/2, ρRMSk[k]-1 + dη0minnSrck[k]-1/2, ρRMSk[k]-1,

σminnSrck[k]-1/2, ρRMSk[k]-1 - dσminnSrck[k]-1/2, ρRMSk[k]-1

negLogSigηminSmall[k_] := -Log10, signiMIN0 ηmink[k] + 1,

η0minnSrck[k]-1/2, ρRMSk[k]-1 - dη0minnSrck[k]-1/2, ρRMSk[k]-1,

σminnSrck[k]-1/2, ρRMSk[k]-1 + dσminnSrck[k]-1/2, ρRMSk[k]-1

In[212]:= (*Uncertainty of -Log10S for ηmaxk with uncertainty for ηmaxk = ±1° . *)

negLogSigηmaxBest[k_] := -Log10,

signiMAX0 ηmaxk[k], η0maxnSrck[k]-1/2, ρRMSk[k]-1, σmaxnSrck[k]-1/2, ρRMSk[k]-1

negLogSigηmaxBig[k_] := -Log10, signiMAX0 ηmaxk[k] + 1,

η0maxnSrck[k]-1/2, ρRMSk[k]-1 - dη0maxnSrck[k]-1/2, ρRMSk[k]-1,

σmaxnSrck[k]-1/2, ρRMSk[k]-1 - dσmaxnSrck[k]-1/2, ρRMSk[k]-1

negLogSigηmaxSmall[k_] := -Log10, signiMAX0 ηmaxk[k] - 1,

η0maxnSrck[k]-1/2, ρRMSk[k]-1 + dη0maxnSrck[k]-1/2, ρRMSk[k]-1,

σmaxnSrck[k]-1/2, ρRMSk[k]-1 + dσmaxnSrck[k]-1/2, ρRMSk[k]-1

In[215]:= negLogVerySigηmin =

Table[Around[negLogSigηminBest[k], {negLogSigηminBest[k] - negLogSigηminSmall[k],

negLogSigηminBig[k] - negLogSigηminBest[k]}],

{k, Table[sortηMINVerySigkList[[i, 1]], {i, Length[sortηMINVerySigkList]}]}];

Print"For the very significantly aligned regions, S = p ⩽ 10-2, the -Log10S values are"

negLogVerySigηmin

For the very significantly aligned regions, S = p ⩽ 10-2, the -Log10S values are

Out[217]= 3.3-0.4
+0.4, 2.92-0.34

+0.4 , 2.62-0.29
+0.31, 2.53-0.34

+0.4 , 2.48-0.32
+0.4 , 2.30-0.27

+0.29, 2.26-0.32
+0.35, 2.20-0.30

+0.33, 2.18-0.31
+0.34, 2.17-0.25

+0.28,

2.17-0.26
+0.29, 2.13-0.30

+0.34, 2.12-0.28
+0.31, 2.12-0.30

+0.34, 2.09-0.29
+0.32, 2.08-0.30

+0.33, 2.06-0.30
+0.33, 2.03-0.28

+0.31, 2.03-0.25
+0.27

In[218]:= negLogVerySigηmax =

Table[Around[negLogSigηmaxBest[k], {negLogSigηmaxBest[k] - negLogSigηmaxSmall[k],

negLogSigηmaxBig[k] - negLogSigηmaxBest[k]}],

{k, Table[sortηMAXVerySigkList[[i, 1]], {i, Length[sortηMAXVerySigkList]}]}];

Print"For the regions with very significant avoidance,

S = p ⩽ 10-2, the -Log10S values are"

negLogVerySigηmax

For the regions with very significant avoidance, S = p ⩽ 10-2, the -Log10S values are

Out[220]= 4.7-0.5
+0.5, 3.6-0.4

+0.4, 2.96-0.32
+0.35, 2.94-0.31

+0.34, 2.9-0.4
+0.4, 2.49-0.31

+0.34, 2.49-0.28
+0.31, 2.43-0.32

+0.35, 2.43-0.27
+0.30, 2.36-0.31

+0.34,

2.22-0.30
+0.33, 2.19-0.28

+0.31, 2.18-0.30
+0.33, 2.14-0.29

+0.32, 2.05-0.25
+0.27, 2.03-0.26

+0.28, 2.02-0.28
+0.31, 2.01-0.26

+0.29, 2.01-0.28
+0.31, 2.01-0.28

+0.31

In[221]:= lpNegLogVerySigAlign = ListPlot[negLogVerySigηmin, PlotRange → {{0, 20}, {0, 5.5}},

PlotLabel → " -Log10p, Alignment ", GridLines → Automatic,

Frame → True, FrameLabel → {"Rank", "-Logp"}, ImageSize → 72 × 4];
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In[222]:= lpNegLogVerySigAvoid =

ListPlot[negLogVerySigηmax, PlotRange → All, PlotLabel → " -Log10p, Avoidance ",

GridLines → Automatic, Frame → True, FrameLabel → {"Rank", "-Logp"}, ImageSize → 72 × 4];

In[223]:= GraphicsRow[{lpNegLogVerySigAlign, lpNegLogVerySigAvoid}]

Print[

"Figure A4. The negative log of the significance p for regions with very significant

alignment (left) and avoidance (right). The most significant region has rank

1, the next most significant has rank 2, etc. Most of the uncertainty is

due to the experimental uncertainty in the polarization position angles ψ."]

Out[223]=

0 5 10 15 20
0

1

2

3

4

5

Rank

-
Lo
gp

-Log10p, Alignment

5 10 15 20
0

1

2

3

4

5

Rank

-
Lo
gp

-Log10p, Avoidance

Figure A4. The negative log of the significance p for regions with very

significant alignment (left) and avoidance (right). The most significant region

has rank 1, the next most significant has rank 2, etc. Most of the uncertainty

is due to the experimental uncertainty in the polarization position angles ψ.

The number of regions with very significant alignment is 19 regions, i.e. S = p ≤ 10-2 = 0.01 .

The number of regions with significant alignment is 96 regions, i.e. S = p ≤ 10-2 = 0.05 .

The number of regions with very significant avoidance is 20 regions, i.e. S = p ≤ 10-2 = 0.01 .

The number of regions with significant avoidance is 88 regions, i.e. S = p ≤ 10-2 = 0.05 .

The region with the most significant alignment is region number

393, which has S = p = 0.000467833.

The region with the most significant avoidance is region number

260, which has S = p = 0.000019276.

 

A8. Mapping the significance of the regions

In[232]:= raDEClogSigForAllVerySigMin =

Table[{αHj[rgnCntrAndSrcId[[sortηMINVerySigkList [[j, 1]], 2]]],

δHj[rgnCntrAndSrcId[[sortηMINVerySigkList [[j, 1]], 2]] ] ,

-Log[10, sortηMINVerySigkList [[j, 2]]]}, {j, Length[sortηMINVerySigkList]}];

In[233]:= sortraDEClogSigForAllVerySigMin = Sort[raDEClogSigForAllVerySigMin, #1[[3]] > #2[[3]] &];
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In[234]:= lp1 = ListPlot

Table[Style[{xH180[ αAVEk[k], δAVEk[k] ], yH180[ αAVEk[k], δAVEk[k] ]}, LightGray],

{k, Length[rgnCntrAndSrcId]}],

TableStyle{xH180[sortraDEClogSigForAllVerySigMin[[-j]][[1]],

sortraDEClogSigForAllVerySigMin[[-j]][[2]]],

yH180[sortraDEClogSigForAllVerySigMin[[-j]][[1]],

sortraDEClogSigForAllVerySigMin[[-j]][[2]]]},

ColorData["Rainbow"]sortraDEClogSigForAllVerySigMin[[-j]][[3]] - 2. 

sortraDEClogSigForAllVerySigMin[[1]][[3]] - 2.,

{j, Length[sortraDEClogSigForAllVerySigMin]},

PlotRange → {{-4., 4.}, {-2.2, 2.2}}, PlotStyle → PointSize[Medium],

PlotLegends → BarLegend[{"Rainbow", {2.0, sortraDEClogSigForAllVerySigMin[[1]][[3]]}},

LegendLabel → "-Log10p"], Axes → False;

In[235]:= lp2 = Show[{lp1, Table[ParametricPlot[{xH180[α, δ], yH180[α, δ]}, {δ, -90, 90},

PlotStyle → {Black, Thickness[0.002]}, PlotPoints → 60], {α, 0, 360, 30}],

Table[ParametricPlot[{xH180[α, δ], yH180[α, δ]}, {α, 0, 360},

PlotStyle → {Black, Thickness[0.002]}, PlotPoints → 60], {δ, -60, 60, 30}],

Graphics[{PointSize[0.004], Text[StyleForm["N", FontSize -> 14, FontWeight -> "Plain"],

{0, 1.85}], Text[StyleForm["Very Significantly Aligned Regions (S = p ≤ 1%)",

FontSize -> 14, FontWeight -> "Plain"], {0, -1.85}],

Text[StyleForm["Clump 1", FontSize → 12, FontWeight -> "Bold"], {-3.3, 1.0}],

{Arrow[BezierCurve[{{-3.3, 1.2}, {-1.3, 2.5}, {xH180[170, 20], yH180[170, 20]}}]]},

Text[StyleForm["Clump 2", FontSize → 12, FontWeight -> "Bold"], {3.3, 1.0}],

{Arrow[BezierCurve[{{3.3, 1.2}, {1.3, 2.5}, {xH180[175, 53], yH180[175, 53]}}]]},

Text[StyleForm["Clump 3", FontSize → 12, FontWeight -> "Bold"], {+3.3, -1.0}], {Arrow[

BezierCurve[{{+3.3, -1.2}, {+0.3, -1.5}, {xH180[235, 28], yH180[235, 28]}}]]},

Text[StyleForm["Clump 4", FontSize → 12, FontWeight -> "Bold"], {-3.3, -1.0}],

{Arrow[BezierCurve[{{-3.3, -1.2}, {-1.3, -1.5},

{xH180[118, 18], yH180[118, 18]}}]]}}]}, ImageSize → 432]

Print["Figure A5. The very significantly aligned regions are shaded in color.

The regions in grey have sources that are not very significantly aligned."]

Out[235]=
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Figure A5. The very significantly aligned regions are shaded in color.

The regions in grey have sources that are not very significantly aligned.
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In[237]:= (*Regions with  5%, NOT Very significant alignment.*)

raDEClogSigForAllSigMin = Table[{αHj[rgnCntrAndSrcId[[sortηMINSigkList [[j, 1]], 2]]],

δHj[rgnCntrAndSrcId[[sortηMINSigkList [[j, 1]], 2]] ] ,

-Log[10, sortηMINSigkList [[j, 2]]]}, {j, Length[sortηMINSigkList]}];

In[238]:= sortraDEClogSigForAllSigMin = Sort[raDEClogSigForAllSigMin, #1[[3]] > #2[[3]] &];

In[239]:= lp3 = ListPlot

Table[Style[{xH180[ αAVEk[k], δAVEk[k] ], yH180[ αAVEk[k], δAVEk[k] ]}, LightGray],

{k, Length[rgnCntrAndSrcId]}],

TableStyle{xH180[sortraDEClogSigForAllSigMin[[-j]][[1]],

sortraDEClogSigForAllSigMin[[-j]][[2]]], yH180[sortraDEClogSigForAllSigMin[[

-j]][[1]], sortraDEClogSigForAllSigMin[[-j]][[2]]]},

ColorData["Rainbow"]sortraDEClogSigForAllSigMin[[-j]][[3]] - 2. 

sortraDEClogSigForAllSigMin[[1]][[3]] - 2.,

{j, Length[sortraDEClogSigForAllSigMin]}, PlotRange → {{-4., 4.}, {-2.2, 2.2}},

PlotStyle → PointSize[Medium], PlotLegends →

BarLegend[{"Rainbow", {-Log[10, 0.05], sortraDEClogSigForAllSigMin[[1]][[3]]}},

LegendLabel → "-Log10p"], Axes → False;

In[240]:= (*Regions with  5%, NOT Very significant alignment.*)

lp4 = Show[{lp3, Table[ParametricPlot[{xH180[α, δ], yH180[α, δ]}, {δ, -90, 90},

PlotStyle → {Black, Thickness[0.002]}, PlotPoints → 60], {α, 0, 360, 30}],

Table[ParametricPlot[{xH180[α, δ], yH180[α, δ]}, {α, 0, 360},

PlotStyle → {Black, Thickness[0.002]}, PlotPoints → 60], {δ, -60, 60, 30}],

Graphics[{PointSize[0.004], Text[StyleForm["N", FontSize -> 14, FontWeight -> "Plain"],

{0, 1.85}], Text[StyleForm["Significantly Aligned Regions (p ≤ 5%)",

FontSize -> 14, FontWeight -> "Plain"], {0, -1.85}]}]}, ImageSize → 432]

Print["Figure A6. Significantly aligned regions, this map has 96 significantly

aligned regions, compared to 19 very significantly aligned regions in Fig. A5."]

Out[240]=
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Figure A6. Significantly aligned regions, this map has 96 significantly

aligned regions, compared to 19 very significantly aligned regions in Fig. A5.
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In[242]:= raDEClogSigForAllVerySigMax =

Table[{αHj[rgnCntrAndSrcId[[sortηMAXVerySigkList [[j, 1]], 2]]],

δHj[rgnCntrAndSrcId[[sortηMAXVerySigkList [[j, 1]], 2]] ] ,

-Log[10, sortηMAXVerySigkList [[j, 2]]]}, {j, Length[sortηMAXVerySigkList]}];

sortraDEClogSigForAllVerySigMax = Sort[raDEClogSigForAllVerySigMax, #1[[3]] > #2[[3]] &];

lp5 = ListPlot

Table[Style[{xH180[ αAVEk[k], δAVEk[k] ], yH180[ αAVEk[k], δAVEk[k] ]}, LightGray],

{k, Length[rgnCntrAndSrcId]}],

TableStyle{xH180[sortraDEClogSigForAllVerySigMax[[-j]][[1]],

sortraDEClogSigForAllVerySigMax[[-j]][[2]]],

yH180[sortraDEClogSigForAllVerySigMax[[-j]][[1]],

sortraDEClogSigForAllVerySigMax[[-j]][[2]]]},

ColorData["Rainbow"]sortraDEClogSigForAllVerySigMax[[-j]][[3]] - 2. 

sortraDEClogSigForAllVerySigMax[[1]][[3]] - 2.,

{j, Length[sortraDEClogSigForAllVerySigMax]},

PlotRange → {{-4., 4.}, {-2.2, 2.2}}, PlotStyle → PointSize[Medium],

PlotLegends → BarLegend[{"Rainbow", {2.0, sortraDEClogSigForAllVerySigMax[[1]][[3]]}},

LegendLabel → "-Log10p"], Axes → False;

In[245]:= lp6 = Show[{lp1, Table[ParametricPlot[{xH180[α, δ], yH180[α, δ]}, {δ, -90, 90},

PlotStyle → {Black, Thickness[0.002]}, PlotPoints → 60], {α, 0, 360, 30}],

Table[ParametricPlot[{xH180[α, δ], yH180[α, δ]}, {α, 0, 360},

PlotStyle → {Black, Thickness[0.002]}, PlotPoints → 60], {δ, -60, 60, 30}],

Graphics[{PointSize[0.004], Text[StyleForm["N", FontSize -> 14, FontWeight -> "Plain"],

{0, 1.85}], Text[StyleForm["Regions with Very Significant Avoidance (p ≤ 1%) ",

FontSize -> 14, FontWeight -> "Plain"], {0, -1.85}]}]}, ImageSize → 432]

Print["Figure A7. Regions whose polarization directions very

significantly avoid some place on the Celestial Sphere."]

Out[245]=
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Figure A7. Regions whose polarization directions

very significantly avoid some place on the Celestial Sphere.
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In[247]:= (*Regions with  5%, NOT Very significant avoidance.*)

raDEClogSigForAllSigMax = Table[{αHj[rgnCntrAndSrcId[[sortηMAXSigkList [[j, 1]], 2]]],

δHj[rgnCntrAndSrcId[[sortηMAXSigkList [[j, 1]], 2]] ] ,

-Log[10, sortηMAXSigkList [[j, 2]]]}, {j, Length[sortηMAXSigkList]}];

sortraDEClogSigForAllSigMax = Sort[raDEClogSigForAllSigMax, #1[[3]] > #2[[3]] &];

lp7 = ListPlot

Table[Style[{xH180[ αAVEk[k], δAVEk[k] ], yH180[ αAVEk[k], δAVEk[k] ]}, LightGray],

{k, Length[rgnCntrAndSrcId]}],

TableStyle{xH180[sortraDEClogSigForAllSigMax[[-j]][[1]],

sortraDEClogSigForAllSigMax[[-j]][[2]]], yH180[sortraDEClogSigForAllSigMax[[

-j]][[1]], sortraDEClogSigForAllSigMax[[-j]][[2]]]},

ColorData["Rainbow"]sortraDEClogSigForAllSigMax[[-j]][[3]] - 2. 

sortraDEClogSigForAllSigMax[[1]][[3]] - 2.,

{j, Length[sortraDEClogSigForAllSigMax]}, PlotRange → {{-4., 4.}, {-2.2, 2.2}},

PlotStyle → PointSize[Medium], PlotLegends →

BarLegend[{"Rainbow", {-Log[10, 0.05], sortraDEClogSigForAllSigMax[[1]][[3]]}},

LegendLabel → "-Log10p"], Axes → False;

In[250]:= (*Regions with  5%, NOT Very significant avoidance.*)

lp8 = Show[{lp3, Table[ParametricPlot[{xH180[α, δ], yH180[α, δ]}, {δ, -90, 90},

PlotStyle → {Black, Thickness[0.002]}, PlotPoints → 60], {α, 0, 360, 30}],

Table[ParametricPlot[{xH180[α, δ], yH180[α, δ]}, {α, 0, 360},

PlotStyle → {Black, Thickness[0.002]}, PlotPoints → 60], {δ, -60, 60, 30}],

Graphics[{PointSize[0.004], Text[StyleForm["N", FontSize -> 14, FontWeight -> "Plain"],

{0, 1.85}], Text[StyleForm["Regions with Significant Avoidance (p ≤ 5%)",

FontSize -> 14, FontWeight -> "Plain"], {0, -1.85}]}]}, ImageSize → 432]

Print["Figure A8. Regions whose polarization directions significantly avoid

some place on the Celestial Sphere. This map has 88 regions with significant

avoidance, compared to 20 regions with very significant avoidance in Fig. A7."]

Out[250]=
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Figure A8. Regions whose polarization directions significantly avoid

some place on the Celestial Sphere. This map has 88 regions with significant

avoidance, compared to 20 regions with very significant avoidance in Fig. A7.
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A9. Selecting sources to analyze

Definitions:

firstClumpjsForSortηMINVerySigkList1450 List of item #s in table “sortηMINVerySigkList” in this clump

raDEClogSigForVery1stClump1450 Table of  1. RA    2. dec 3. significance of the smallest alignment angle ηmin

firstVeryClumpksForRgnCntrAndSrcId1450 List of region ID #s in this clump. Most region data is in the table “rgnCntrAndSrcId”

firstVeryClumpQsosIDinData001450 List of source ID #s in the table “data00”

Replace first and 1st by second and 2nd, third and 3rd, etc for the other clumps.

Clump 1

In[252]:= firstClumpjsForSortηMINVerySigkList1450 = {};

TableIf165. ≤ raDEClogSigForAllVerySigMin[[i, 1]] ≤ 200. &&

0 ≤ raDEClogSigForAllVerySigMin[[i, 2]] ≤ 30.,

AppendTo[firstClumpjsForSortηMINVerySigkList1450, i],

{i, Length[raDEClogSigForAllVerySigMin]};

Length[firstClumpjsForSortηMINVerySigkList1450];

In[255]:= raDEClogSigForVery1stClump1450 =

Table[{αHj[rgnCntrAndSrcId[[sortηMINVerySigkList [[j, 1]], 2]]],

δHj[rgnCntrAndSrcId[[sortηMINVerySigkList [[j, 1]], 2]] ] ,

-Log[10, sortηMINVerySigkList [[j, 2]]]},

{j, firstClumpjsForSortηMINVerySigkList1450}];

firstVeryClumpksForRgnCntrAndSrcId1450 = Table[rgnCntrAndSrcId[[

sortηMINVerySigkList [[j, 1]], 1]], {j, firstClumpjsForSortηMINVerySigkList1450}];

In[257]:= firstVeryClumpQsosIDinData001450 =

Union[Flatten[Table[rgnCntrAndSrcId[[sortηMINSigkList [[j, 1]], 3]],

{j, firstClumpjsForSortηMINVerySigkList1450}]]]

Length[firstVeryClumpQsosIDinData001450];

Print["Clump 1 combines the sources in ",

Length[firstClumpjsForSortηMINVerySigkList1450], " regions, for a total of ",

Length[firstVeryClumpQsosIDinData001450], " sources."]

Out[257]= {659, 660, 663, 667, 674, 680, 682, 690, 695, 696, 698, 707, 712,

714, 718, 720, 721, 727, 728, 731, 734, 744, 746, 751, 752, 762, 764}

Clump 1 combines the sources in 8 regions, for a total of 27 sources.

Clump 2
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In[260]:= secondClumpjsForSortηMINVerySigkList1450 = {};

TableIf150. ≤ raDEClogSigForAllVerySigMin[[i, 1]] ≤ 190. &&

30 ≤ raDEClogSigForAllVerySigMin[[i, 2]] ≤ 60.,

AppendTo[secondClumpjsForSortηMINVerySigkList1450, i],

{i, Length[raDEClogSigForAllVerySigMin]};

In[262]:= raDEClogSigForVery2ndClump1450 =

Table[{αHj[rgnCntrAndSrcId[[sortηMINVerySigkList [[j, 1]], 2]]],

δHj[rgnCntrAndSrcId[[sortηMINVerySigkList [[j, 1]], 2]] ],

-Log[10, sortηMINVerySigkList [[j, 2]]]},

{j, secondClumpjsForSortηMINVerySigkList1450}];

secondVeryClumpksForRgnCntrAndSrcId1450 = Table[rgnCntrAndSrcId[[

sortηMINVerySigkList [[j, 1]], 1]], {j, secondClumpjsForSortηMINVerySigkList1450}];

In[264]:= secondVeryClumpQsosIDinData001450 =

Union[Flatten[Table[rgnCntrAndSrcId[[sortηMINVerySigkList [[j, 1]], 3]],

{j, secondClumpjsForSortηMINVerySigkList1450}]]]

Length[secondClumpjsForSortηMINVerySigkList1450];

Length[secondVeryClumpQsosIDinData001450];

Print["Clump 2 combines the sources in ",

Length[secondClumpjsForSortηMINVerySigkList1450], " regions, for a total of ",

Length[secondVeryClumpQsosIDinData001450], " sources."]

Out[264]= {618, 624, 638, 657, 661, 666, 668, 672, 697, 699, 708, 713, 719}

Clump 2 combines the sources in 2 regions, for a total of 13 sources.

Clump 3

In[268]:= thirdClumpjsForSortηMINVerySigkList1450 = {};

TableIf230. ≤ raDEClogSigForAllVerySigMin[[i, 1]] ≤ 250. &&

25. ≤ raDEClogSigForAllVerySigMin[[i, 2]] ≤ 40.,

AppendTo[thirdClumpjsForSortηMINVerySigkList1450, i],

{i, Length[raDEClogSigForAllVerySigMin]};

In[270]:= raDEClogSigForVery3rdClump1450 =

Table[{αHj[rgnCntrAndSrcId[[sortηMINSigkList [[j, 1]], 2]]],

δHj[rgnCntrAndSrcId[[sortηMINSigkList [[j, 1]], 2]] ] ,

-Log[10, sortηMINSigkList [[j, 2]]]}, {j, thirdClumpjsForSortηMINVerySigkList1450}];

thirdVeryClumpksForRgnCntrAndSrcId1450 = Table[rgnCntrAndSrcId[[

sortηMINVerySigkList [[j, 1]], 1]], {j, thirdClumpjsForSortηMINVerySigkList1450}];
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In[272]:= thirdVeryClumpQsosIDinData001450 =

Union[Flatten[Table[rgnCntrAndSrcId[[sortηMINSigkList [[j, 1]], 3]],

{j, thirdClumpjsForSortηMINVerySigkList1450}]]]

Length[thirdClumpjsForSortηMINVerySigkList1450];

Length[thirdVeryClumpQsosIDinData001450];

Print["Clump 3 combines the sources in ",

Length[thirdClumpjsForSortηMINVerySigkList1450], " regions, for a total of ",

Length[thirdVeryClumpQsosIDinData001450], " sources."]

Out[272]= {1063, 1070, 1081, 1093, 1094, 1098, 1106, 1113, 1133}

Clump 3 combines the sources in 2 regions, for a total of 9 sources.

Clump 4

In[276]:= fourthClumpjsForSortηMINVerySigkList1450 = {};

TableIf105. ≤ raDEClogSigForAllVerySigMin[[i, 1]] ≤ 125. &&

10. ≤ raDEClogSigForAllVerySigMin[[i, 2]] ≤ 30.,

AppendTo[fourthClumpjsForSortηMINVerySigkList1450, i],

{i, Length[raDEClogSigForAllVerySigMin]};

In[278]:= raDEClogSigForVery4thClump1450 =

Table[{αHj[rgnCntrAndSrcId[[sortηMINSigkList [[j, 1]], 2]]],

δHj[rgnCntrAndSrcId[[sortηMINSigkList [[j, 1]], 2]] ] ,

-Log[10, sortηMINSigkList [[j, 2]]]}, {j, fourthClumpjsForSortηMINVerySigkList1450}];

fourthVeryClumpksForRgnCntrAndSrcId1450 = Table[rgnCntrAndSrcId[[

sortηMINVerySigkList [[j, 1]], 1]], {j, fourthClumpjsForSortηMINVerySigkList1450}];

In[280]:= fourthVeryClumpQsosIDinData001450 =

Union[Flatten[Table[rgnCntrAndSrcId[[sortηMINSigkList [[j, 1]], 3]],

{j, fourthClumpjsForSortηMINVerySigkList1450}]]]

Length[fourthClumpjsForSortηMINVerySigkList1450];

Length[fourthVeryClumpQsosIDinData001450];

Print["Clump 4 consists of the sources in ",

Length[fourthClumpjsForSortηMINVerySigkList1450], " region, for a total of ",

Length[fourthVeryClumpQsosIDinData001450], " sources."]

Out[280]= {275, 284, 289, 292, 295, 311, 314, 315}

Clump 4 consists of the sources in 1 region, for a total of 8 sources.

URLs: 

https://www.wolframcloud.com/obj/shurtleffr/Published/20211221Survey1450QSOsMapb.nb

https://www.dropbox.com/s/6bqy56vazlfuuu6/20211221Survey1450QSOsMapb.nb?dl=0
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