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Abstract

This article presents a way to survey catalogued data, here the JVAS1450 catalog of polarized radio QSOs that has been measured,
collected, catalogued, and made available by others. The polarization directions are spread out haphazard over the Northern Equato-
rial hemisphere. We find five degree radius regions whose sources’ polarization directions converge significantly at points on the
Celestial Sphere or diverge significantly. Samples are collected for further study. The appendix consists of a computer software
program that performs the needed calculations. The computer program can be adapted to other choices of region radii and to other

sets of transverse vectors.
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0. Preface

The pdf version of this notebook is available online from the viXra archive. Search by title and author.
To find the ready-to-run notebook follow one of the links in Ref. 1.

The notebooks in this series were created using Wolfram Mathematica, Version Number: 12.1, Ref. 2.

Note(s):

(1) Some numerical quantities in the pdf version may differ from the ready-to-run version in Ref. 1 because the ready-to-run
version may have been run after the pdf was produced. The ready-to-run version and the pdf version may be updated independently of
one another.

(2) The notation is undergoing a change from “S” indicating significance to “p” standing for significance. Some of the “S” labels

have most likely survived.
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1. Introduction

Observations of an astronomical object may include quantities such as polarization and jets that can be represented as transverse
vectors, vectors that are perpendicular to the direction to the object itself. If a set of transverse vectors from many objects are
correlated, this information may reflect on the objects themselves or of the intervening medium through which the observations are
made or otherwise.

Given a set of transverse vectors on the sky, one may ask if their directions are correlated. Possible transverse vectors include the
polarization direction of electromagnetic radiation and the direction of asymmetries such as jets. Reducing a jumble of transverse
vectors to regions with interesting correlations is the goal of the present article.

The data for the QSOs studied in this report are taken from the JVAS1450, Ref. 3,4, a catalog of 1450 QSOs that was kindly
communicated to me by one of the authors of Ref. 3. Details of the dataset can be found in Ref. 3. As explained in Ref. 3, the
JVAS1450 catalog includes data from the earlier large JVAS/CLASS 8.4-GHz catalog, Ref. 4. See Fig. 1 for a display of the data
treated in this article.

The test of alignment used in this article, the Hub Test, extends the polarization directions, making Great Circle geodesics on the
Celestial Sphere. The polarization directions are perfectly aligned if they intersect at some point / on the sphere. The directions are
well-aligned when they converge in a small area near some point H,,;, . The Hub Test can find correlations for samples with hubs

H i, that are near the sources as well as the distant Hubs of other alignment tests.
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The Hub Test is equally capable of finding avoidance hubs, Hmax, places where the density of the Great Circle geodesics is low.
Part I the article focusses on alignment, while Part II the Appendix treats both avoidance and alignment on equal terms.

The survey discussed herein seeks interesting samples to study. The QSO sources are assigned to 5° radius circular regions
centered on the grid points of a 2° mesh. To be evaluated, a minimum of seven sources per region is required. The regions are sorted
by the significance of their alignments according to the Hub Test. Previous articles, Ref. 5 and 6, have evaluated a couple of interest-
ing samples of QSOs that are identified in this survey.

The Hub Test is briefly presented in Sec. 2. The catalog of QSOs and mapping the data occurs in Sec. 3. Then, Sec. 4 analyzes
the alignment of 5° radius samples and locates the significantly aligned samples. Maps of the results can be found in Sec. 4. Locating

neighboring significantly aligned sets of sources is the goal and that is accomplished in Sec. 4. Sec. 5 completes Part I the Article

with some concluding remarks.

Equatorial Coordinate System

Figure 1. A whole-sphere map of the sources and polarization directions of the JVAS1450 catalog. The plot is centered on (RA,dec)
= (180°,0). East is to the right.

2. The Hub Test

The Hub Test, Ref. 7, judges the alignment of transverse vectors with the directions to a point on the Celestial Sphere. By
involving the direction to another point, the Hub test is indirect. For a single source, the basic quantities are illustrated in Fig. 2. The
“alignment angle” i is the acute angle 1 between two great circles at S, 0° < n < 90°. The alignment angle n measures how well
the polarization direction ¥, matches the direction ¥;; toward the point /1. Perfect alignment occurs when 7 = 0° and the two great
circles overlap. When these two great circles are perpendicular, . = 90°, that indicates maximum “avoidance” of the polarization

direction ¥, with the point H on the sphere. The halfway value, 7 = 45°, favors neither alignment nor avoidance.
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Figure 2: The Celestial sphere is pictured on the left and on the right is the plane tangent to the sphere at the source S. The linear
polarization direction ¥y lies in the tangent plane and determines the purple great circle on the sphere. A point / on the sphere
together with the point S determine a second great circle, the blue circle drawn on the sphere. Clearly, A and S must be distinct in

order to determine a unique great circle. The acute angle n measures the alignment of the polarization direction ¢ with the point H.

With N sources S;, i = 1, ..., N, there are N alignment angles ;; at each point A . One can calculate an average alignment angle

matH,

AH) = & 2 7m » 0)
where

cos( Mg ) =1 ‘A’¢/-‘A’H| . 2)
Given a positive numerical value for the absolute value of the dot product on the right in (2), the solution for the angle 7;y is taken to
be the positive acute angle with 0° < 7,y < 90°. Clearly, the average alignment angle 7j(H) at the point H must also be acute. An
example of the function 7(H) is presented in Figs. 3 and 4.

The alignment angle 77(H) is a function of position H on the sphere. In general, the function 7(H) is symmetric across diameters,
7(H) = 7(-H), because great circles are symmetric across diameters.

For random polarization directions, the average 77(H) should be near 45°, since each alignment angle n;y is acute, 0° < n;y < 90°,
and random polarization directions should not favor large values or small values of 7;, and, therefore, average to about 45°.

Points H where the average alignment angle 7(H) is smaller than 45°, the great circles tend to converge and where the angle
7(H) is larger than 45°, the great circles can be said to diverge. The extremes of the function 7(H) measure extreme convergence and
extreme divergence of the great circles determined by the polarization directions. We use the term “alignment” for convergence and
“avoidance” for divergence.

In this article and notebook, we often use “min” to label the smallest alignment angle 7,,;,, the minimum value of the function
7(H), Eq. (1). The points on the Celestial Sphere where the minimum occurs are the “hubs” H,,;, and —H;,,. Thus “min” is associated
with convergence of the polarization directions. For divergence, the hubs Hmax and —Hmax locate places where the polarization
directions most avoid, as indicated by the largest alignment angle 7.y, the maximum value of the function 7(H). Thus, we very often

label an avoidance related quantity with “max”.
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Equatorial Coordinate System

Figure 3: For the sample of 13 QSOs called Clump 2 in Fig. 6, the alignment angle function 7(H) in (1) is mapped on the Celestial
Sphere (Aitoff plot, centered on (@,6) = (180°,0), East to the right). The QSOs are shaded green [j. The smallest alignment angle,
TTmin = 10.9°, is located at the hubs H,,;, and —H,,;;,, where the polarization directions converge best. One alignment hub H,;, is

located very close to the QSOs. The largest alignment angle, m.x = 62.7°, occurs at the avoidance hubs Hmax and —Hmax. See Ref. 6.

Close-Up View

Hmax Hmin
/ T

Figure 4: The region near the QSOs in Fig. 3. The QSOs are located at the green dots. The short black lines through the QSOs
indicate the polarization directions. Measuring polarization directions ¥ clockwise from North, one sees that the angles i range from
more than ¢y = 90° for the northern-most QSOs to 45° or so for the southerly QSOs. Most are in the general direction of the align-
ment hub H,;,, but their directions depend on where they are located. The QSOs display parallax.

The significance, p or p-value and sometimes S, of the smallest alignment angle 7,;, is defined as the likelihood that randomly
directed polarization vectors would produce a smaller value of 7, . Therefore, by this definition, one way to determine significance
is to repeat the process of making Great Circles from polarization directions, calculating the alignment function 7j(H), and finding
TTmin» all for randomly directed vectors. One such process makes a “random run”.

The most reliable method of determining significance that we consider is called “Direct Method A”. Following the definition of
significance, one generates many random runs with randomly directed transverse vectors assigned to the sources. A histogram of the
random-based results for 77,;, is then approximated by a suitable fitting function. Aside from a scale factor that normalizes the
distribution, the fitting function of the histogram is the probability distribution of the random results 7,,;,. Having found a function

that approximates the probability distribution, one estimates the likelihood that random runs return better results than the observed
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Timin®®® and that is the significance of 7;,;,°PS. Similar comments apply for avoidance.

It would be terribly inconvenient to apply Direct Method A for all the regions in the survey. Instead we introduce a “Library” of
data that can be used to reconstitute the probability distributions for a range of samples with various number of sources and with
various sizes. The Library data is used in two ways, as “Interpolation Method B” and as “Function Method C”, to develop values of
significance for the alignments of the many regions considered in the survey. The Methods are discussed briefly where they are

introduced in Sec. A7. For a more complete discussion, see Ref. 8.

3. Setting up the regions

The Hub Test needs enough information to draw great circles outward from the sources in the directions of the polarization
vectors. Thus the required data includes the location of the sources as well as the polarization direction at each source. Also, the
uncertainty in the measured polarization direction is needed to estimate the error bars on the calculated quantities. In this report, the
uncertainty in the locations is taken to be insignificant.

The JVAS1450 catalog and the JVAS/CLASS 8.4-GHz catalog gives us all the locations of the sources in J2000.0 equatorial
coordinates so we can find right ascension and declination of the sources in decimal degrees and the polarization position angle and
its uncertainty in decimal degrees. The data also includes other interesting quantities such as the redshift. Such extra data is not
needed here.

The computer program in Part II the Appendix assumes the needed data is collected in a table, called “data00”, in a prescribed
order. One hopes the program in the Appendix can serve as a kind of template. If one possesses other data from other sources in
another experimental campaign, then, by putting the other data in the same form as the data00 table here, one can run the program and

get alignment and avoidance maps for the other data.

Figure 5. The grid. At a constant declination (latitude), the right ascension (longitude) of the grid points are spaced by 2°. The circles

of constant declination are separated by 2°. Each of the regions analyzed is centered on one of the grid points.

The program constructs a mesh of grid points. The spacing of points on the grid can be adjusted as one wishes. See Figs. 5 for a
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plot of the grid for this article. We use a grid spacing of 2°, taking into account the shrinking radii of circles of constant declination as
they approach the poles.

The computer program Part 11 the Appendix has another user-definable quantity, the region radius. Regions in this report have 5°
radii. Not all the 5° radius regions have sources, only a few sources are in the South. And the number of sources in a region must be at
least 7 for the significance estimates to be sufficiently valid.

The problem is with probability distributions, like Gaussians, that assign nonzero probability to non-acute alignment angles.
With the distributions in this article and for samples with fewer than 7 sources, the probability of negative alignment angles is non-
negligible. But alignment angles are acute and never negative, so any assignment of likelihood to negative alignment angles is an
artifact. Similarly, the avoidance angle cannot be larger than 90°, yet the probability distribution continues to infinity with nonzero

likelihood. We can ignore these effects for samples with more than seven sources, N = 7.

Clump 4 Clump 3 2.00

Very Significantly Aligned Regions (S =p < 1%)

Figure 6. Regions with sources that are very significantly aligned are shaded in color. The centers of 5° radius regions that have at
least 7 sources are plotted as gray points, a total of 1811 regions. The 19 regions whose polarization directions align with a signifi-
cance less than 1%, meaning that p < 0.01, are considered “very significantly aligned” and are shaded in color. The range of
significance runs from p = 0.00047 top = 0.01 (very significant limit), and, since —Log, 0.00047 = 3.3, we have 2.0 <
—Logiop = 3.3. Asshown in Fig. A4, the uncertainty in —Log, p is about +0.4, running from +0.25 to +0.5.

4. The significance of the regions’ alignments

With the Hub Test, the alignment of a sample is gauged by the smallest average alignment angle 7,,;,, the minimum value of the
function 7j(H), Eq. (1). For example, Fig. 3 plots the function 7(H) for the sample of 13 QSOs in Ref. 6. Similarly, for each of the
1811 qualifying regions, one finds the function 7(H) and then determine the smallest alignment angle 77,,;,,. Thus, we get 1811 results
Tmin, ONE for each region.

By assuming the significance of the alignment indicated by 7, depends mainly on the number of sources N and the root-mean-
radius pRMS of the region, one can find significance by Interpolation Method B and Function Method C, Ref. 8, based on an
archived Library. The Library has a collection of parameters to generate probability distributions that can be utilized to obtain the

significance of the alignment of the sources in a region.
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Here, with polarization data from JVAS1450, we find that just 19 regions have very significant alignment. These are plotted in
color in Fig. 6. Since there are 1811 regions, 19 regions is very close to 1% of the total number of regions. However, the most
significantly aligned region has a significance of p = 0.00047 which means its alignment is better than all but one in 2100 regions
with randomly directed polarizations. The most significantly aligned region lies just above the center of Fig. 6.

If the most significantly aligned region was the only region aligned better than 2100 randomly directed regions, one could argue
that the alignment was consistent with pure chance. But there are other well-aligned regions in Fig. 6, so the likelihood that all are
aligned by chance is much smaller than 1/1811. Furthermore, by collecting the sources in different regions, one can find larger
collections of well-aligned samples and these may have significances that make the number 1811 of regions seem small. For example,
by combining the 8 sources in the most significantly aligned region with 19 sources from overlapping very significantly aligned
regions, one has a sample of 27 sources that has been studied in Ref. 5. There, the sample is shown to be aligned better than one in
about 70,000 randomly directed samples. Collecting the 13 sources in two regions near (RA,dec) = (170°, 50°), one obtains a sample
that is better aligned than one in 55,000 randomly directed samples. So the alignment of these samples is unlikely to be due to

randomly oriented polarization directions.

-Log1op
3.0

25

2.0

Significantly Aligned Regions (p < 5%)

Figure 7. Regions with significant alignment are shaded in color. There are 96 colored dots compared with the 19 in Fig. 6. That
makes sense, because to qualify as “significant” as many as one in twenty randomly directed samples need be better aligned than the
region in question. For the “very significantly” aligned regions of Fig. 6, only one in a hundred randomly directed regions can be

better aligned.

The less selective one is, the more regions are collected. In Fig. 7, the required significance is weakened to p < 5% from the p
< 1% in Fig. 6. Thus the regions in color in Fig. 7 are aligned ‘significantly’, p < 5%, but not ‘very significantly’ which would
require p = 1% or less. One sees that the very significantly aligned regions displayed in Fig. 6 are surrounded by other regions that

are merely significantly aligned.

5. Combining regions to make samples

We have previously studied two samples of polarized radio QSOs from the JVAS1450 catalog, Refs. 5 and 6. In this section we

discuss the steps that determine the two samples that were studied and published. For details, see Sec. A9 “Selecting sources to
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analyze” in Part II the Appendix. The samples studied previously are labeled Clump 1 and Clump 2 in Figs. 6.

Clump 1 consists of eight overlapping 5° radius regions with alignments that are very significant, p < 0.01 = 1%. The most
significantly aligned region has eight sources and is aligned with significance py = 4.7 x 10~4. Combining the sources from the eight
regions yields a sample with N = 27 QSO sources and a root-mean-square radius pPRMS of 6.8°, which is roughly equivalent to a
10° radius circular region since taking the root-mean-square introduces a factor of about 0.7. One finds in Ref. 5, that the smallest
alignment angle i, for the sample is i, = 21.1° which has a significance of p = (0.44 to 4.5)x 107> < 0.1 p,. Thus, by
combining the eight regions one finds a sample that is better aligned than any of the individual regions.

Clump 2 in Fig. 6 has just two 5° regions with 13 QSOs when combined. The root-mean-square radius is about 5°, pRMS =
4.7°. The significance of the alignment of the polarization directions of the 13 QSOsis p = (1.7 to 2.3)x 10> , compared with p,
= 2.4x 1073 for one of the two regions. Again, we find that combining the two very significant regions yields a sample with more
significant alignment than either region separately.

We found that simply combining neighboring very significantly aligned regions produced samples that were worth studying. One
supposes that there are other, more careful, ways to find a sample to study. However, the point of making the survey is to find order in

the jumble and to locate well aligned sources, thereby identifying neighborhoods that may worthy of further research.

6. Concluding Remarks

When confronted with a jumble of transverse vectors like that in Fig. 1, generating a survey that maps the significance of the
alignment in regions may help organize the data and identify areas to investigate further. Conducting a survey like that in this report
can be a first step to finding well-aligned polarization directions of a large catalog.

There are no guarantees, of course. Some overlooked small area may contain sources with interesting alignment properties,
overlooked because the alignment is diluted in a region that is too big. A 5° radius region survey might be blind to a well-aligned
collections of sources confined to 1° samples. Conversely, one suspects that a 1° region survey might miss some of the alignments
that a 5° survey uncovers. Maybe the answer is to conduct more surveys.

Since finding the smallest alignment angle 77,;, and the largest avoidance angle 7yax are such similar processes, this article
treats only alignment in any detail. Yet avoidance may be the more important property of polarization directions for some sets of data.
What if the polarization direction is perpendicular to some local structure. Then correlations of perpendiculars, i.e. avoidance and

TImax» take center stage. Part II the Appendix treats alignment and avoidance equally.
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Al. Introduction

The Appendix is the computer program, a “notebook” written in the Wolfram Mathematica language. The inputs to the program
in Sec. Al can be changed so the survey can deal with new data.

The Appendix treats alignment and avoidance equally, what it finds for one, it finds for the other. Avoidance may be important if
the polarization direction turns out to be perpendicular to some feature such as a jet or some other structure. Then it would be
important to find correlations of directions that are perpendicular to the polarization vectors and that would be revealed by gauging

avoidance.

A2. User Input

This notebook may be used as a template to evaluate new data.
1. The new data should conform to the format of the table “data00” displayed below.
2. You may want to furnish a home directory so the program can find and save data files.

3. The grid spacing can be chosen by the user below in this section.



In[1]:=

Out[1]=

In[3]:=

In[4]:=
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4. The regions to be analyzed are circular with a radius that can be chosen by the user in this section.

Definitions:

homeDirectory a place on the computer to store and retrieve files.

gridSpacing in degrees, the angular separation of grid points along a circle of constant latitude and the angular separa-
tion of the circles of constant latitude. See Sec. A4 Grid.

rgnRadius radius of regions in degrees

data00 This data table contains the information about the sources that produces the rest of the notebook.

1.0bject# 2.Ra(rad) 3.Dec(rad) 4. (rad) 5. gy (rad)

homeDirectory =
"C:\\Users\\shurt\\Dropbox\\HOME_DESKTOP-OMRE50J\\SendXXX_CJP_CEJPetc\\SendViXra\\
20200715A1ignmentMethod\\20211221Maps0fSignificance"”
C:\Users\shurt\Dropbox\HOME _DESKTOP-OMRE50J\SendXXX_CJIP_CEJPetc\
SendViXra\20200715AlignmentMethod\20211221Maps0OfSignificance

The following cell has the data00 table with the information about the sources. It is very large and, therefore, it is hidden from view.

To see it go to “Cell Properties” and click “Open”.

(*The table data®® can be uploaded from a file.x)
(xSetDirectory [homeDirectory]
data@e=Get ["20200718data@8IVAS1450.dat" ] ; %)

gridSpacing = 2 (xgrid spacing in degreesx);
rgnRadius = 5. (xdegreesx) ;

A3. Preliminary

Definitions:

er, eN, eE are unit vectors in a 3D Cartesian coordinate system from Origin to Source,
(a,6) = RA and Dec of the source. We use degrees for the angles.

er(a,0) = unit vectors from Origin to Source

eN(a,6) = local North at Source

eE(a,0) = local East at Source

aFROMr(er) = RA determined by radial unit vector er

OFROMr(er) = Dec determined by radial unit vector er

Aitoff Plot Functions
aH(a,0), xH(a,0), yH(a,0), where xH, yH is centeredon a = 0.
xH180(a,0) , yH180(a,0), where xH is centered on @ = 180°.
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In[6]:=

In[7]:=

In[10]:=

Out[13]=

In[14]:=

In[20]:=

Print["The date and time that this statement was evaluated: ", Now]
The date and time that this statement was evaluated: Wed 12 Jan 2022 14:05:57 GMT-5.

(*We work with degrees, so define convenient functions.x)

2.7
cos[6_] := Cos [6 (—J ];

360.
. . 2.1
sin[e_] :=Sin[e (—) ]
360.
2.7
tan[e_] :=Tan[e (—) ]
360.
360. . . 360.
arccos[x_] := ArcCos [X] (—), arcsin[x_] := ArcSin[x] (—),
2.7 2.7
360.
arctan[x_] := ArcTan[x] (—)
2.7

(= For a Source at (RA,dec) = (a,8): er, eN,
eE are unit vectors from Origin to Source, local North, local East, resp. *)
er[a_, 6_] :=er[a, 6] = {cos[a]<cos[6], sin[a] <cos[6], sin[5]}
eN[a_, 6_] :=eN[a, 6] = {-cos[a] <sin[6], -sin[a] «sin[&], cos[&]1}
eE[a_, 6_] :=eE[a, 6] = {-sin[a], cos[a], @}
{"Check er.er = 1, er.eN = 0, er.eE = 0, eN.eN
= 1, eN.eE = 9,eE.eE = 1, erXeE = eN, eEXeN = er, eNXer = eE: ",
{0}==Union[Flatten[simplify[{er[a, 6].er[a, 6] -1, er[a, 6] .eN[a, 6], er[a, &6].eE[a, 6],
eN[a, 6] .eN[a, 6] -1, eN[a, 6] .€eE[a, 6], €eE[a, 6] .eE[a, 6] -1, Cross[er[a, 6], eE[a, 6]] -
eN[a, 5], Cross[eE[a, 5], eN[a, 8]] - er[a, 6], Cross[eN[a, &], er[a, 5]] - eE[a, 61}1]]}
{Check er.er = 1, er.eN = 0, er.eE = 0, eN.eN =1,
eN.eE = @,eE.eE = 1, erXeE = eN, eEXeN = er, eNXer = eE: , True}

Get (a,0) in degrees from radial vector r:
ri[2]1]
ri[1]]
aFROMr[r_] := (N[lse. - ar‘ctan[Abs[

aFROMP [P _] := (N[ar‘ctan[Abs[ ]]] /3 (P[12]1]1 2@08&r[[1]] >e)]

]]] /5 (rL[2]] 208&r[[1]] <e)]
rL[]]

ri[21]
ri[1]]

ri[2]]
ri[1]]
aFROMr[r_] := (90. /; (r[[2]] 20&&r[[1]] =0))
aFROMr[r_] := (270. /; (r[[2]] <@&&r[[1]] =0))

aFROMP [P ] := (N[180. +arctan[ [ ]]] /3 (P[12]1]1 <@8&&r[[1]] <e))

aFROMP [P ] := (N[BGO. -arctan[Abs[ ”] /3 (PII2]1 <@&&r[[1]] >e))

ri[3]1]
Nrl[11172+r[[2]]172
SFROMr[r_] := (Sign[r[[3]11]9@. /; (+/r[[1]1"2+r[[2]]"2 ==8))

SFROMr[r_] := (N[ar‘ctan[ ]] 75 (VrTmEIT 2+ F21T 72 >a)]

The following Aitoff Plot formulas can be found in, for example, Ref. 9.

Imagine the Sources are plotted on the Celestial sphere and we are looking down on the sphere from the outside.
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aH[a_, 6_] :=aH[a, 6] =arccos[cos[6] “cos[a/2.]]
2. cos[6] “sin[a/2.]
Sinc[aH[a, 6]]
sin[é]

XH[a_, 6_] :=xH[a, 6] =

YH[a_, 6_] :=yH[a, &] =
Sinc[(:é—a’f) aH[a, &]]

Using the following functions produces an Aitoff Plot that is centered on a = 180°.
Imagine the Sources are plotted on the Celestial sphere and we are looking down on the sphere from the outside.

2. cos[6] xsin[ (a-180.) /2.]

xH180[a_, 6_] :=xH180[a, 6] =

sinc[(;—e’f) oH[ (o - 180.), 8]]

sin[&]

yH180[a_, &6_] :=yH180[a, 6] =

Sinc[(:(;—a’f) oH[ (o - 180.), 5] ]

A4. Sources
The source data table “data00” was input above in Sec. A2.

Definitions:

data00 - This data table contains the information that produces the rest of the notebook.
data00:
1.0bject# 2.Ra(rad) 3.Dec (rad) 4.¢ (rad) 5. oy (rad) [6.z 7.p (%) 8.0p (%) ]

Items 6,7,8 are not used in this notebook.

from data00:
rai(i) RA of ith source (radians)
deci(i) dec of ith source (radians)
Yi(i) position angle
oyi(i) uncertainty in ¥

calculated:

ri(i) unit vector from Origin to ith Source

vNi(i)  Local North at the ith Source, a 3D unit vector

vEi(i)  Local East at the ith Source, a 3D unit vector

viyi(i)  unit vector in direction of PA ¢ in tangent plane at the ith Source

nSxyri(i) cross product of ri(i) and vyi(i) = X vy , perpendicular to both, a unit vector in tangent plane at the ith Source
plot

xyAitoffSources source coordinates on Aitoff projection of the Celestial Sphere

crossesOverPlus, Minusthe polarization vectors of some sources cross over the edge of the Aitoff projection

noCrossing sources with polarization vectors contained in the Aitoft projection
rPlusy[i,d] endpoints of the polarization vector for the ith source (d positive and negative)
polarLinesNoCrossing[d] polarization vectors for sources with no crossing problem
polarLinesCrossingPlus[d] polarization vectors for sources with d positive crossing beyond

polarLinesCrossingMinus[d] polarization vectors for sources with d negative crossing beyond

mapOfSources Aitoff plot of the data, sources and their polarization vectors

| 13
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ne7= (*Example of a data@® record.x)datad@[[16]]
ou27= {16, 0.0502079, 0.016832, 2.99673, 0.0147697, 1.4904, 3.02524, 0.0893572}

in2e1= (*From data@@. CONVERT DATA TO DEGREES#)

rai[i_] :=rai[i] = dataee[[i, 2]] [zi] (*RA of ith sourcex)
« TT

deci[i_] := deci[i] - dataee|[[4, 3] (Zﬂ] (vdecs)
« JT

360.
Yi[i_] :=yi[i] = dataee|[i, 4]] [—] (*PPA,
2.7
polarization position angle: clockwise from North with East to the right. x)

owi[i_] := owil[i] = dataee[[i, 5]] (%)
in32)= (*Convenient functionsx)
ri[i_] :=ri[i] =er[rai[i], deci[i]]
(»unit vector from Origin to ith Source on Celestial Spherex)
WNi[i_] :=wNi[i] =eN[rai[i], deci[i]] (*North at i*" sourcex)
VEi[i_] :=VvEi[i] =eE[rai[i], deci[i]] («East at i*" sourcex)
vz//i[i_] :=vz[/i[i] =C0$[llfi[i]] vNi[i] +sin[z//i[i]] in[i] (*unit vector in direction of PPAx)
nSxdfi[i_] :=nSxdli[i] =sin[wi[i]] vNi[i] —cos[wi[i]] in[i] (* r Cross v *)

na7= (*Plot sourcesx)
xyAitoffSources =
Table[ {xH180[ rai[i], deci[i] ], yH180[ rai[i], deci[i] ]}, {i, Length[data@0]}];

nsei= (*Plot polarization directionsx)
rPlusy[i_, d_] := (ri[i] +dvyi[i]) / ((ri[i] +dvyi[i]). (ri[i] +dvyi[i]))"?
crossesOverPlus = {}; crossesOverMinus = {};
For[i =1, i < Length[data@@], i++,
If[ aFROMr[ rPlusy[i, ©.05]] -rai[i] < -200, AppendTo[crossesOverPlus, i]];
If[ aFROMr[ rPlusy[i, -0.05]] -rai[i] > 200, AppendTo[crossesOverMinus, i]]]
noCrossing = Complement [Range[Length[data®®]], Union[crossesOverPlus, crossesOverMinus]];

n421= (*Plot polarization directionsx)
polarLinesNoCrossing[d_] :=
Table[Line[{ {xH180 [aFROMr[ rPlusy[i, d]], SFROMr[ rPlusy[i, d]]1],
yH180 [aFROMr [ rPlusy[i, d]], SFROMr[ rPlusy[i, d]11},
{xH180 [aFROMr [ rPlusy[i, -d]], 6FROMr[ rPlusy[i, -d]]1],
yH180 [aFROMr [ rPlusy[i, -d]], 6FROMr[ rPlusy[i, -d]11}}], {i, noCrossing}]
polarLinesCrossingPlus[d_] := Table[Line[{{xH180[rai[i], deci[i]],
yH180[rai[i], deci[i]]}, {xH18@[aFROMr[ rPlusy[i, -d]], SFROMr[ rPlusy[i, -d]1]],
yH180 [aFROMr [ rPlusy[i, -d]], 6FROMr[ rPlusy[i, -d]1]1}}], {i, crossesOverPlus}]
polarLinesCrossingMinus[d_] := Table[Line[{{xH180[aFROMr[ rPlusy[i, d]],
SFROMr [ rPlusy[i, d]1]]1, YH180 [aFROMr [ rPlusy[i, d]], S6FROMr[ rPlusy[i, d1]11},
{xH180[rai[i], deci[i]], yH18@[rai[i], deci[i]]}}],
{i, crossesOverMinus (xnoCrossingx) }]
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(xConstruct the map of 7(H).=*)
mapOfSources =
Show[{Table[Parametr‘icPlot[{lese[a, 5], yH180[a, 61},

{8, -90, 90}, PlotStyle » {Black, Thickness[0.002]}, PlotPoints - 60,
7.5

PlotRange - {{-4.@, 3.5}, (-3, 3}}, Axes -> False, Frame - False], {a, @, 360, 39}],

Table[ParametricPlot[{xH18@[a, 5], yH180[a, 61}, {a, @, 360},

PlotStyle - {Black, Thickness[0.002]}, PlotPoints »60], {5, -60, 60, 30} |, Graphics|

{Pointsize[0.004], Text[StyleForm["N", FontSize -> 14, FontWeight -> "Plain"], {@, 1.85}],

Text[StyleForm["Equatorial Coordinate System", FontSize -> 14, FontWeight -> "Plain"|,
{0, -1.85}], Black, {(*Thick,«)polarLinesNoCrossing[@.05]},

Black, { (#Thick,«)polarLinesCrossingPlus[0.05]}, Black, { (*Thick,*)
polarLinesCrossingMinus[0.05] }, (*Sources S:=)Orange, Point[ xyAitoffSources ]

}]}, ImageSize -» 1.2 432]
Pr‘int["Figur‘e Al. Pine needle plot of the transverse vectors of the sources. There are ",

Length[data@e], " sources."]

Equatorial Coordinate System

Figure Al. Pine needle plot of the transverse vectors of the sources. There are 1450 sources.

A5. Build a Grid

Make a grid for the Northern hemisphere, then the Southern hemisphere, then combine them.

Definitions:

dol separation in degrees between grid points on a constant latitude circle and separation of constant latitude circles.
gridN, gridS North and South hemisphere grids

nGrid number of grid points

| 15
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rHj(j) unit radial vector to jth grid point H;
aHj[j], 6Hj[j] RA and dec of the jth grid point in degrees
vHij(i,)) unit vector tangent to the great circle connecting the ith source with Hj in tangent space of the ith source

nSxHij(i,j)  unit vector perpendicular to the plane of the great circle containing the ith source and the jth grid point Hj

niHj(i,j) alignment angle between the PPA direction and the great circle toward Hj in the tangent space at the ith source.

gridN and gridS and grid
1. sequential point# 2. RA index 3.decindex 4. RA (range: 0 -360°) 5. dec (range: -90° -+90°) 6. Cartesian coordi-

nates of the point

in471= del1 = gridSpacing ; (» grid Spacing in degreesx)
Let’s get the grid. With “gridSpacing” = 2°,itisa 2°x2° grid.

in48]= (*KEEP this cell - DO NOT DELETE=*)
gridN=(}; idN=1;

9.
For[aj =0., &j < o1’ 5j++, 6pointH = 65 deo1;

For-[ ai=0., ai< Ceiling[ 360. (cos[&pointH] +@.01) ] ,
del
ai++, apointH = ai de1/ (cos[&pointH] + @.01) ;
AppendTo [gridN, {idN, ai, &j, apointH, SpointH, er[apointH, &pointH]}];
idN=idN+1

/]

in50)= (*KEEP this cell - DO NOT DELETE=*)
gridS={}; idN=1;

9.
For‘[éj =1., &j < o1’ 5j++, 6pointH = -53 de1;

360.
For‘[ ai=0., ai< Ceiling[ ol (cos[spointH] +0.01) ] ,

ai++, apointH = ai de1/ (cos[&pointH] + @.01);
AppendTo[grids, {idN, ai, &j, apointH, SpointH, er[apointH, &pointH]}];
idN=idN+1

/]

in52)= (*KEEP this cell - DO NOT DELETE=*)
grid={};j=1;
For[jN=1, jN<Length[gridN], jN++, AppendTo|[grid,
{3, gridN[[jN, 2]], gridN[[jN, 3]], gridN[[]jN, 4]], gridN[[jN, 5]], gridN[[iN, 6]]}];
j=3+1]
For[jS =1, jS < Length[grids], jS++, AppendTo|[grid,
{3, grids[[3js, 2]], grids[[js, 3]], grids[[]s, 4]], grids[[js, 5]], grids[[]s, 6]]}];
j=3+1]
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nGrid = Length[grid];

rHj[j_] :=rHj[j] =grid[[], 6]] (+unit radial vector to grid point Hx)
aHj[j_] := aFROMr[rHj[3]]

8Hj[j_] := 6FROMr[rHF[3]]

(*» ith Source and jth grid pointx)
(*vHij: unit vector tangent to the great circle connecting
the ith source with Hj in tangent space of the ith sourcex)
(*nSxHij: unit vector perpendicular to the plane of the
great circle containing the ith source and Hjx)
(*niHj: alignment angle between the PPA direction ¢ and the great
circle toward Hj in the tangent space at the ith source. See Fig. 2.x)
(* The two unit vectors nSxyi and nSxHij are perpendicular to v¢ and vHij,
but the angle between them is the samex)
VHij[i_, j_] := VHij[i, ] = (rPHj[3] - (rH3[3]1.ri[i]) ri[i]) /
(v ((rH3[31 - (PHI[F1.ri[i]) ri[i]). (rHI[F] - (PHI[F].ri[i]) ri[i])))
Cross[ri[i], rHj[j]]

nSxHij[i_, j_]1 := nSxHij[i, j] =

(Cross[ri[i], rHj[j]1]).(Cross[ri[i], rHj[j1])
niHj[i_, j_]1 :=niHj[i, j] = arccos[Abs [nSxyi[i].nSxHij[i, j]11]

(*Check (a,8) range for the gridx)

| 17

(*ListPlot[{Sort[Table[grid[[]j,4]],{j,nGrid}]],Sort[Table[grid[[]j,5]]1,{j,nGrid}]113}1;%*)

(*See the grid pointsx)
Show[ {Graphics3D[ {Sphere[{0, 0, ©0}], Thick, Line[{{0, 0, -1.2}, {0, 0, 1.2}}],
Text[Style["N", Bold], {@, @, 1.25}]}, Boxed -» False], ListPointPlot3D[

Table[rHj[j]l, {j, nGrid}], PlotStyle » {PointSize[0.007]1}]}, ImageSize » 72 < 4]

Print["Figure A2. The grid. There are ", nGrid, " grid points."]

Figure A2. The grid. There are 10518 grid points.
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A6. Setting up circular regions to analyze

(a) Collect the sources in circular regions centered on the grid points. (b) Drop the regions with too few sources. (c) Some regions
may have duplicate source lists, meaning two regions have the same sources but different center points. Keep one of the two

regions.

Definitions:

rgnPOPnumMIN = minimum number of sources needed for a region to be included in the analysis, “POP” - population
rgnCntrAndSrcld0 A region for every grid point is included. No regions cut.
rgnCntrAndSrcld2 This table has only sufficiently populated regions, N = rgnPOPnumMIN (minimum)

sortRgnNsrc sort table “rgnCntrAndSrcld2” by number of sources in each region

1. region ID # 2. number of sources
NsrcMIN Fewest number of sources in any regions (must be at least rgnPOPnumMIN)
NsrceMAX Maximum number of sources in any region

[Tt}

rgnIDsWithnSrc[n]Id #s in rgnCntrAndSrcld2 of regions with exactly “n” sources

duplicatk Pairs of regions {k1,k2} that contain the same sources

dropDupk list of the second region in each pair in duplicatk. These are to be dropped.
rgnCntrAndSrcld No two regions have the same sources. Each region has at least the minimum number of sources.

1. sequential Id# 2. grid ID for region’s center point 3. Source data00 id#s for sources contained in the region

nSrck[k] number of sources in the kth region

nSrcTable list of the number of sources in the regions

srcIDrgnk[k] list of data00 ID #s for sources in the kth region

aSrcRgnk[k] RAs of the sources in the kth region

o0SrcRgnk[k] decs of the sources in the kth region

xyHSrcRgnk[k] Aitoff plot coordinates for the sources in the kth region

rAVEK[k] unit radial vector to average location of the sources in the kth region
aAVEKk[k] Right Ascension at the average location of the sources in the kth region
0AVEKk[k] Declination at the average location of the sources in the kth region
pSrcToAVEK[K] angles between the i sources and the average location in the kth region
PRMSKk[k] root mean square radius of the kth region

nBarHkj(k,j) average alignment angle at Hj for the sources in the kth region
kNjpMinjnpMax:

1. region ID# in “rgnCntrAndSrcld” table 2. N = number of sources in the region 3. {j, nmin} : j = grid point ID#
where 77 is minimum ymin 4. {j, ymax} : j = grid point ID# where 77 is maximum nmax

(nmink(k), nmaxk(k)) In degrees. The min and max angles 7 for the sources in the kth region to align with any grid point Hj.

in65:= rgNPOPNUMMIN = 7. (*minimum number of sourcesx);
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(*Identify sources in each region whose center is on the grid. Collect results. =)
rgnCntrAndSrcIdo = {};
For[j=1, j<Length[grid], j++, rgnCntr =grid[[], 6]];

prgn = rgnRadius; (* region radius in degreesx)

rgnSrcld = {};

For[i=1, i< Length[dataee], i++,

If[er[rai[i], deci[i]].rgnCntr > cos[prgn], rgnSrcId = AppendTo[rgnSrcId, i]]];

AppendTo [ rgnCntrAndSrcIde, {j, rgnsrcId}] ]

(»Get a table with only sufficiently populous regions.x)
rgnCntrAndSrcId2 = {};
j=0;
For[igrid =1, igrid s Length[grid], igrid++,
If[Length[ rgnCntrAndSrcIde|[igrid, 2]] ] 2 rgnPOPnumMIN, (j=3j+1;

| 19

AppendTo[rgnCntrAndSrcId2, {j, rgnCntrAndsrcIde[[igrid, 1]], rgnCntrAndSrcide|[igrid, 2]]}])]]

sortRgnNsrc = Sort [Table[{k, Length[ rgnCntrAndSrcId2[[k, 31] 1},
{k, Length[rgnCntrAndSrcId2]}], #1[[2]] <#2[[2]] &];

{sortRgnNsrc[[1]], sortRgnNsrc[[-1]1]};

NsrcMIN = sortRgnNsrc[[1, 2]];

NsrcMAX = sortRgnNsrc[[-1, 2]];

For[n=1, n<2NsrcMAX, n++, rgnIDsWithnSrco[n] = {}]

rgnIDsWithnSrcO [NsrcMAX] ;

(#Collect the IDs%)

For[k =1, k<= Length[rgnCntrAndSrcId2], k++,
AppendTo [ rgnIDsWithnSrc@[ Length[rgnCntrAndSrcId2[[k, 3]11] 1, k]]

duplicatk = {};
For[n =NsrcMIN, n <NsrcMAX, n++, For[kl=1, k1 s Length[rgnIDsWithnSrce[n]] -1,
kl++ , For[k3=k1+1, k3 <Length[rgnIDsWithnSrco[n]], k3++,
If[ Length[Union|[rgnCntrAndSrcId2|[[ rgnIDsWithnSrc@[n][[k1]]1, 3 ]] -
rgnCntrAndSrcId2| [rgnIDsWithnSrc@[n] [[k3]1, 3]]]] =1, AppendTo[duplicatk,
{rgnIDsWithnSrc@[n] [[k1]], rgnIDsWithnSrc@[n][[k3]]}] ] ]

(xFor example, the regions in duplicatk[[2]]

have the same sources in rgnCntrAndSrcId2[[k,3]] item 3.x)
Print["Region ", duplicatk[[2, 1]], " and region ", duplicatk[[2, 2]],
" have the same sources. The dataeo IDs are ",

rgnCntrAndSrcId2[[ duplicatk[[2, 1]],3 1], " and ",
rgnCntrAndSrcId2[[ duplicatk[[2, 2]]1,3 11, "." ]

Region 19 and region 20 have the same sources. The data@® IDs are
{198, 203, 204, 205, 206, 208, 209} and {198, 203, 204, 205, 206, 208, 209} .

(xGet the second region in each pair in duplicatk. These will be dropped. =*)
dropDupk = Union [Table [duplicatk[[d2, 2]], {d2, Length[duplicatk]}]];

Remove duplicate populations.
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In[81]:=

In[83]:=
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In[94]:=

rgnCntrAndSrcId = {}; k=1;

For‘[ ka =1, ka < Length[rgnCntrAndSrcId2], ka++, If[ Not [MemberQ[dropDupk, ka]l] ,
(AppendTo[ rgnCntrAndSrcld, {k, rgnCntrAndSrcId2[[ka, 2]], rgnCntrAndSrcId2[[ka, 3]1]}];
k=k+1) ] ]

For[n=1, n<2NsrcMAX, n++, rgnIDsWithnSrc[n] = {}]

rgnIDsWithnSrc [NsrcMAX] ;

(*Collect the IDs=x)

For[k =1, k <= Length[rgnCntrAndSrcId], k++,
AppendTo [ rgnIDsWithnSrc[ Length[rgnCntrAndSrcId[[k, 311] 1, k]]

ListPlot[Table[ {n, Length[rgnIDsWithnSrc[n] ]}, {n, 1, NsrcMAX +5}1,
PlotRange -» {{0©, NsrcMAX + 5}, All}, PlotLabel - "Number of regions with n sources ",
GridLines -» Automatic, Frame - True, FrameLabel -» {"n", "Number"}, ImageSize -» 72 « 4]
Print["Figure A3. There are ", Length[rgnIDsWithnSrc[NsrcMIN]], " regions with ",
NsrcMIN, " sources, the minimum number. There are ", Length[rgnIDsWithnSrc[NsrcMAX]],
" regions with the maximum number of sources, ", NsrcMAX, "."]
— Number of regions with 1 sources

300 - 3

200 - 1

Number

100 B 1

Ob e o 9 9 9 o I I ? 9000 04

Figure A3. There are 377 regions with 7 sources, the minimum number. There are
2 regions with the maximum number of sources, 20.

nSrck[k_] :=nSrck[k] = Length[ rgnCntrAndSrcId[ [k, 3]] ]
(*number of sources in the kth regionx)
nSrcTable = Sort[Table[nSrck[k], {k, Length[ rgnCntrAndSrcId]}]];
srcIDrgnk[k_] :=srcIDrgnk[k] = rgnCntrAndSrcId[ [k, 3]]
(» data@® id numbers of the sources in the kth regionx)
asrcRgnk [k_] :=Table[datae@[[ ides, 2 |]« (360./ (2. x)), {ides, srcIDrgnk[k]}];
(» RAs in degrees for the sources in the Rth regionx)
8SrcRgnk [k_] :=Table[data@e[[ ide8 , 3 ||« (36@./ (2.x)), {ide8, srcIDrgnk[k]}]; (+ decs )
xyHsrcRgnk [k_] :=Table[{ xH188[ aSrcRgnk[k][[i]], &SrcRgnk[k][[i]] ],
yH180[ aSrcRgnk[k][[i]], &SrcRgnk[k][[i]] ] }, {i, Length[ aSrcRgnk[k] ]} ]
(xAitoff coordinates for the locations of the sources in the kth regionx)

rAVEkO [k_] := rAVEkO[k] =
Sum[r‘i[ rgnCntrAndSrcId[ [k, 3, n1]] ], {nl1, Length[ rgnCntrAndSrcId[ [k, 3]] ]}]/nSrck[k]

rAVEK [k_] := rAVEk@[k] / (rAVEK@[K] .rAVEk@[k]) /2

(»unit radial vector to average location of the sources in the kth regionx)

aAVEk [k_] := aAVEk [k] = aFROMr [PAVEk [k]]

SAVEk [k_] := SAVEk[k] = SFROMr [PrAVEK [k] ]
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(*We need the RMS radius of the k" region to determine significances.x)
pSrcToAVEk [k_] := Table[arccos[ ri[ rgnCntrAndSrcId[ [k, 3, n1]] ].rAVEk[k] 1,
{n1, Length[ rgnCntrAndSrcId[ [k, 3]] 1}]
1

Length[rgnCntrAndSrcId[ [k, 3]] ]

PRMSk [k_] o=

1/2
Sum|[pSrcToAVEK [k] [[i]1]%, {i, Length[ oSrcToAVEk[k] ]} ]

(*nBarHkj: average alignment angle at Hj for the sources in the kth region, Eq. (1).*)
nBarHkj[k_, j_1 :=
nBarHkj [k, j] = Sum[niHj[i, jI, {i,srcIDrgnk[k]}]/Length[srcIDrgnk[k]]

The following cell has the kNjpMinjnpMax table. It is very large and, therefore, it is hidden from view. To see it go to “Cell Proper-

ties” and click “Open”.
kNjyMinjyMax angles in degrees

1. region ID# in “rgnCntrAndSrcld” table 2. N = number of sources in the region 3. {j, nmin} : j = grid point ID# where 7 is

minimum 7min 4. {j, ymax} : j = grid point ID# where 77 is maximum 7max

(*KEEP THIS CELL to generate the kNjnMinjnMax table.x)
(*t1=TimeUsed[]
kNjnMinjnMax={};
For [k=1,ksLength[rgnCntrAndSrcId],k++,nBark=Table[{j,nBarHkj[k,j]},{j,Length[grid]}];
sortnBark=Sort[nBark,#1[[2]]1<#2[[2]]1&];
jnMin=sortnBark[[1]];
jnMax=sortnBark[[-1]];
AppendTo [ kNjnMinjnMax, {k,nSrck [k],jnMin, jnMax}] ]
t2=TimeUsed[]
t2-tl1x)
(*This cell takes some time. On Dec. 30,2021, it took 1445.39 seconds.x)

(»Save kNjnMinjnMaxx)

(xSetDirectory [homeDirectory]

Put [kNjnMinjnMax, "20211230kNjEtaMinjEtaMax1450a. dat" ]
*)

(xGet kNjnMinjnMax, if you've got it.=x)
(xSetDirectory [homeDirectory] ;
kNjnMinjnMax=Get [ "20211226kNjEtaMinjEtaMax1450.dat" | ;

*)

nmink [k_] :=nmink[k] = kNjnMinjnMax[ [k, 3, 2]]
(*In degrees. The smallest alignment angle nmin determines how well the sources in
the kth region align with any point Hj on the grid, i.e. anywhere on the sphere.x)
nmaxk [k_] :=nmaxk[k] = kNjnMinjnMax[ [k, 4, 2]] (*In degrees. The largest avoidance
angle nmax gives a measure of avoidance from any point Hj on the spherex)
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Section Summary

Initially, a total of 10518
regions are created, each centered on one of the 10518 grid points which are
2 degrees apart. The regions are circular, each with a radius of 5. degrees.

Regions with duplicate lists of sources
are dropped. Regions must have a minimum number of sources.

There are 1811 regions with sufficient populations and duplicates dropped.

The min number of sources in a region is 7 and the max number is 20.
The median number of sources in a region is 9.

The arithmetic average number of sources in a region is 9.

A’7. Probability Distributions and Significance of the Regions

The problem of “significance” is to determine the likelihood that random polarizations directions would have better alignment or
avoidance than the observed polarization directions. Suppose we are given a region with a smallest alignment angle 7, and a largest
avoidance angle fyax. The most reliable method of finding the significance of either value is to creates many copies of the region but
assign the sources randomly directed polarizations. Collect the angles i, and Fyax for each randomly directed copy and make a
probability distribution for the collection of 7, and a probability distribution for the collection of 77,,y. Fit the distributions with
suitable functions and integrate to find the significances. This process is “Direct Method A”. It takes a lot of time and effort and
would not be practical for a survey with hundreds, or more, of regions.

To avoid Direct Method A, we apply a combination of Interpolation Method B and Function Method C. Both are based on a
“Library” of random run data. One finds that the probability distributions for smallest alignment angle 7,,;, with random runs can be
fit by a function with just two free parameters, called the location 70 of the peak and the half-width ¢. Avoidance distributions take
two more parameters. For details see Ref. 8.

We assume that just two properties of a region determine its the significance of its values of 7, and Tmax. The two properties
are the number of sources nSrc and the root-mean-square radius pPRMS of the sources about their mean location. Thus the Library has
tables of the distribution parameters 70 and o for many combinations of nSrc and pRMS.

Interpolating the Library data to get 0 and o is called Interpolation Method B. The Library data can be fit with suitable
functions. Substituting nSrc and pRMS in those functions to get 0 and o is called Function Method C. Again, for details, see Ref. 8.

Definitions:

norm a constant used to normalize the distribution so the integral of probability is 1.

probMINO, probMAX0 probability distributions for alignment (MIN) and avoidance (MAX), functions of 1, 19, o

probMINO[7, 10, o], probMAX0 probability distributions for probability of 77 using given values of 19, o
signiMINO[7, n0, o], signiMAX0 significance of 17 using given values of 19, o
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(*y = ((n - ne)/o); dy = dn/o *)
(* The normalization factor "norm" is needed for the probability density =)
¥ -1
norm = ((1/ (2 n)l/z) NIntegrate[(1+ e*¥™1) ™ e™7, {y, -, oo}]) ;
norm ; (¥xConstant needed to make the probability distributions integrate to unity.x)
(n-me-o) \ =1 1 (n-ne)2
probMINO[n_, n@_, o_] := (nor‘m/ (o (Zn)l/z)) (1+ ' . ) e 2( o )
signiMIN@[n_, n@_, o_] := NIntegrate[probMINO[nl, n@, o], {nl, -, n}]
-n@+0) \ -1 1 - 2
probMAXO0[n_, n0_, o_] := (nor‘m/ (c (27r)1/2)) (1+ e (n'f ')) e‘?(nane)
signiMAX@[n_, n@_, o_] := NIntegrate[prooMAXO0[nl1, no, o], {nl, n, o}]
Print["The significance signiMIN@([n,n@,c] is
m

the integral of probMINO, i.e. signiMINO = J- Puzn® (1) dnj; : "]
Print["The significance signiMAX@[n,n@,c] is the integral of

probMAXe, i.e. signiMAXe = j Puax® (n1)dns: " |

n
The significance signiMIN®[n,n@,c] 1is
n
the integral of probMIN®, i.e. signiMINO = J PMINe(ni)dlni:
The significance signiMAX@([n,n0,c0] is the integral of probMAX®, i.e. signiMAXe = JmPMAxe(ni)dmi:
n
A7a. The Library data

Definitions:

fitData Parameters of the alignment (min) and avoidance (max) random run distributions. Originally in radians, converted to

degrees after it is inputted below.

fitData:

la. nSrci[i] Number of sources  1b. pNomi[i] Nominal radius, deg. 1c. pPRMSi[i] RMS radius, deg.
2a. nOmini[i] peak alignment distribution 2b. dpOmini[i] standard error

3a. omini[i]  half-width alignment distr. 3b. domini[i] standard error

4a. nOmaxi[i] peak alignment distribution 4b. dpOmaxi[i] standard error

Sa. omaxi[i] half-width alignment distr. 5b. domaxi[i] standard error

wi[i] inverse square root of the number of sources, w = 1 / N1/2

TRMSI[i] inverse RMS radius, in deg.”!

fitData = {{{9., 0.004363, 0.0043, 10000.}, {0.598, 0.0013}, {0.1127, 0.0016},
{0.977, 0.001700}, {0.1128, 0.002}}, {{9., 0.005818, 0.005734, 10000.},
{0.5885, 0.0016}, {0.1118, 0.0019}, {0.9868, 0.001}, {0.1107, 0.001200} },

{{9., ©.008727, 0.008601, 10000.}, {0.5707, 0.0011}, {0.1076, 0.0013},
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{1.00503, 0.000860}, {0.1069, 0.001}}, {{9., 0.017453, 0.017202, 10000.},
{0.52541, 0.00068}, {0.09791, 0.000810}, {1.05165, 0.00079}, {0.09636, 0.000950}},

{{9., 0.02618, 0.025803, 10000.}, {0.50422, 0.000610}, {0.09425, 0.000730},
{1.07266, 0.000740}, {0.09407, 0.000890}}, {{9., 0.034907, 0.034406, 10000. },
{0.49249, 0.00084}, {0.09335, 0.001}, {1.08406, 0.000770}, {0.09356, 0.000910}},

{{9., ©.05236, 0.051615, 10000.}, {0.48150, 0.00076}, {0.09325, 0.000910},
{1.09181, 0.00072}, {0.09353, 0.000860}}, {{9., 0.069813, 0.068831, 10000. },
{0.47716, 0.000600}, {0.09572, 0.00072}, {1.0949, 0.0005}, {0.09324, 0.000600} },

{{9., ©.139626, 0.137827, 10000.}, {0.47140, 0.00051}, {0.0943, 0.000610},
{1.10081, 0.000610}, {0.09566, 0.000730}}, {{9., 0.733038, 0.758894, 10000. },
{0.46917, 0.00062}, {0.09209, 0.00075}, {1.10139, 0.00043000}, {0.09214, 0.000520} },

{{16., 0.004363, 0.003926, 10000.}, {0.6493, 0.0011}, {0.0839, 0.0014},

{0.92532, 0.000950}, {0.083, 0.0011}}, {{16., 0.005818, 0.005234, 10000. },
{0.6436, 0.0011}, {0.0849, 0.0013}, {0.9314, 0.0011}, {0.0836, 0.0013}},

{{16., 0.008727, 0.007851, 10000.}, {0.6308, 0.001200}, {0.0827, 0.0014},

{0.9443, 0.001}, {0.0829, 0.001200}}, {{16., 0.017453, 0.015703, 10000.},
{0.59942, 0.000830}, {0.07466, 0.00099}, {0.97587, 0.000810}, {0.07568, 0.00097}},

{{16., 0.02618, 0.023555, 10000.}, {0.58222, 0.00076}, {0.07263, 0.000900},
{0.99397, 0.00063}, {0.07299, 0.00075}}, {{16., 0.034907, 0.031407, 10000. },
{0.57108, 0.00033}, {0.07264, 0.0004}, {1.00501, 0.00042}, {0.07128, 0.00051}},

{{16., 0.05236, 0.047116, 10000.}, {0.56133, 0.00048}, {0.07272, 0.000570},
{1.01146, 0.000600}, {0.07183, 0.00072}}, {{16., 0.069813, 0.06283, 10000. },
{0.55732, 0.0004}, {0.07328, 0.00047000}, {1.01605, 0.000520}, {0.07326, 0.00062} },

{{16., ©.139626, 0.125785, 10000.}, {0.55186, 0.00067}, {0.0721, 0.0008},

{1.02026, 0.000490}, {0.07183, 0.00059}}, {{16., 0.733038, 0.686975, 10000. },
{0.55102, 0.000520}, {0.07313, 0.00062}, {1.02006, 0.000490}, {0.07269, 0.00059}},

{{25., 0.004363, 0.003724, 10000.}, {0.67677, 0.00076}, {0.06753, 0.000910},
{(0.89747, 0.000730}, {0.06752, 0.000870}}, {{25., 0.005818, 0.004966, 10000. },
{0.67228, 0.000730}, {0.06735, 0.000870}, {0.90184, 0.00093}, {0.0673, 0.0011}},

{{25., 0.008727, 0.007448, 10000.}, {0.66404, 0.00088}, {0.0651, 0.0011},

{0.91047, 0.00076}, {0.06528, 0.000910}}, {{25., 0.017453, 0.014897, 10000. },
{0.64101, 0.00037}, {0.06098, 0.00044}, {0.93461, 0.00051}, {0.06021, 0.000610} },

{{25., 0.02618, 0.022346, 10000.}, {0.62549, 0.000700}, {0.05922, 0.000830},
{0.95097, 0.00045000}, {0.05944, 0.00054}}, {{25., 0.034907, 0.029795, 10000.},
{0.61729, 0.00039}, {0.0589, 0.00046}, {0.95886, 0.00033}, {0.05889, 0.00039}},

{{25., 0.05236, 0.044697, 10000.}, {0.60836, 0.00045000}, {0.05886, 0.000530},
{0.96488, 0.00031}, {0.05889, 0.00037}}, {{25., 0.069813, 0.059604, 10000. },
{0.60328, 0.00048}, {0.05880, 0.00058}, {0.96728, 0.00046}, {0.05893, 0.00055}},

{{25., ©.139626, 0.119314, 10000.}, {0.60034, 0.00025}, {0.06006, 0.00030000} ,
{0.97273, 0.00035}, {0.060610, 0.00042}}, {{25., 0.733038, 0.648932, 10000. },
{0.59794, 0.0005}, {0.05811, 0.000600}, {0.97322, 0.00036}, {0.0584, 0.00043000}},

{{36., 0.004363, 0.003598, 10000.}, {0.69775, 0.000820}, {0.055510, 0.00098000} ,
{0.8761, 0.00088}, {0.055600, 0.001}}, {{36., 0.005818, 0.004797, 10000. },
{0.69363, 0.000830}, {0.0555, 0.001}, {0.8804, 0.000860}, {0.0557, 0.001}},

{{36., 0.008727, 0.007196, 10000.}, {0.68712, 0.000730}, {0.05454, 0.000870},
{0.8879, 0.00058}, {0.05439, 0.000690}}, {{36., 0.017453, 0.014392, 10000. },
{0.66756, 0.0004}, {0.05093, 0.00047000}, {0.90807, 0.00035}, {0.05152, 0.00041}},

{{36., 0.02618, 0.021588, 10000.}, {0.65519, 0.00041}, {0.04926, 0.000490},
{0.92136, 0.00037}, {0.05009, 0.00044}}, {{36., 0.034907, 0.028785, 10000. },
{0.64719, 0.00039}, {0.04839, 0.00046}, {0.92823, 0.00037}, {0.04884, 0.00044}},

{{36., 0.05236, 0.043181, 10000.}, {0.63967, 0.00033}, {0.04904, 0.0004},
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{0.93442, 0.00044}, {0.04867, 0.000530}}, {{36., 0.069813, 0.057582, 10000. },
{0.63554, 0.00030000}, {0.05024, 0.00035}, {0.93769, 0.00033}, {0.049210, 0.0004} },
{{36., ©.139626, 0.115259, 10000.}, {0.63112, 0.0004}, {0.04907, 0.00048},
{0.94043, 0.00059}, {0.0495, 0.000700}}, {{36., 0.733038, 0.625307, 10000. },
{0.62905, 0.00036}, {0.04914, 0.00043000}, {0.94269, 0.00043000}, {0.04859, 0.00051}},
{{49., 0.004363, 0.003511, 10000.}, {0.71156, 0.000730}, {0.04788, 0.00088},
{0.86253, 0.00072}, {0.04732, 0.000860}}, {{49., 0.005818, 0.004682, 10000. },
{0.70811, 0.00079}, {0.04807, 0.000940}, {0.86667, 0.00076}, {0.04843, 0.000910}},
{{49., 0.008727, 0.007022, 10000.}, {0.70161, 0.000530}, {0.04623, 0.00063},
{0.87291, 0.00055}, {0.04655, 0.000660}}, {{49., 0.017453, 0.014045, 10000. },
{0.68587, 0.00035}, {0.04424, 0.00042}, {0.890, 0.00035}, {0.04376, 0.00042}},
{{49., 0.02618, 0.021068, 10000.}, {0.67439, 0.00027}, {0.043160, 0.00032},
{0.90159, 0.00026000}, {0.0427, 0.00031}}, {{49., 0.034907, 0.028091, 10000.},
{0.66799, 0.00024000}, {0.04188, 0.00029}, {0.90758, 0.00038}, {0.04168, 0.00046} },
{{49., 0.05236, 0.04214, 10000.}, {0.66113, 0.00023}, {0.04173, 0.00027},
{0.91225, 0.00029}, {0.042210, 0.00035}}, {{49., 0.069813, 0.056193, 10000. },
{0.65771, 0.00019}, {0.04249, 0.00022}, {0.91411, 0.00028000}, {0.041890, 0.00034}},
{{49., 0.139626, 0.112476, 10000.}, {0.65365, 0.00022}, {0.04396, 0.00026000} ,
{0.91819, 0.00022}, {0.04322, 0.00026000}}, {{49., 0.733038, 0.609183, 10000.},
{0.65169, 0.00022}, {0.04206, 0.00027}, {0.91821, 0.00032}, {0.04166, 0.00038}},
{{64., 0.004363, 0.003448, 10000.}, {0.72042, 0.000700}, {0.042660, 0.00084} ,
{0.85352, 0.00071}, {0.04226, 0.000850}}, {{64., 0.005818, 0.004597, 10000. },
{0.71742, 0.00051}, {0.04232, 0.000610}, {0.857, 0.000530}, {0.04168, 0.00064}},
{{64., 0.008727, 0.006896, 10000.}, {0.71212, 0.00059}, {0.04115, 0.00071},
{0.8622, 0.000530}, {0.040940, 0.00063}}, {{64., 0.017453, 0.013792, 10000. },
{0.69893, 0.00034}, {0.03817, 0.00041}, {0.87707, 0.00034}, {0.0381, 0.00041}},
{{64., 0.02618, 0.020688, 10000.}, {0.68991, 0.00039}, {0.03791, 0.00047000} ,
{0.88662, 0.00031}, {0.03707, 0.00037}}, {{64., 0.034907, 0.027585, 10000. },
{0.68318, 0.00030000}, {0.03715, 0.00036}, {0.89217, 0.00027}, {0.03706, 0.00032}},
{{64., 0.05236, 0.041381, 10000.}, {0.67673, 0.00022}, {0.03751, 0.00026000} ,
{0.89693, 0.00029}, {0.03724, 0.00035}}, {{64., 0.069813, 0.05518, 10000.},
{0.67481, 0.00031}, {0.03732, 0.00037}, {0.89809, 0.00033}, {0.03743, 0.00039}},
{{64., 0.139626, 0.110445, 10000.}, {0.67003, 0.00034}, {0.03716, 0.00041},
{0.90149, 0.00031}, {0.03727, 0.00037}}, {{64., 0.733038, 0.597467, 10000. },
{0.66813, 0.00024000}, {0.03774, 0.00029}, {0.9024, 0.00028000}, {0.03726, 0.00033}},
{{81., 0.004363, 0.0034, 10000.}, {0.72763, 0.000560}, {0.03752, 0.00067},
{0.84644, 0.000560}, {0.03725, 0.00067}}, {{81., 0.005818, 0.004533, 10000. },
{0.7255, 0.0005}, {0.037540, 0.000600}, {0.84895, 0.00045000}, {0.03713, 0.00054} },
{{81., 0.008727, 0.006799, 10000.}, {0.72054, 0.000490}, {0.03712, 0.00058},
{0.85379, 0.00044}, {0.036250, 0.000530}}, {{81., 0.017453, 0.013599, 10000.},
{0.709, 0.00034}, {0.034910, 0.00041}, {0.86674, 0.00018}, {0.03409, 0.00022}},
{{81., 0.02618, 0.020399, 10000.}, {0.70134, 0.00030000}, {0.03357, 0.00035},
{0.87493, 0.00024000}, {0.033030, 0.00028000}}, {{81., 0.034907, 0.027199, 10000. },
{0.6956, 0.0001500}, {0.03345, 0.00018}, {0.88028, 0.00023}, {0.03265, 0.00028000} },
{{81., 0.05236, 0.040802, 10000.}, {0.68945, 0.00023}, {0.03349, 0.00028000},
{0.88405, 0.00033}, {0.03343, 0.00039}}, {{81., 0.069813, 0.054408, 10000. },
{0.68641, 0.00019}, {0.03356, 0.00023}, {0.88641, 0.00031}, {0.03351, 0.00037}},
{{81., 0.139626, 0.108897, 10000.}, {0.68338, 0.00025}, {0.03265, 0.00030000} ,
{0.88795, 0.00041}, {0.03366, 0.00048}}, {{81., 0.733038, 0.588565, 10000. },
{0.68158, 0.00028000}, {0.032850, 0.00034}, {0.88922, 0.00025}, {0.03259, 0.00030000} },
{{121., 0.004363, 0.003331, 10000.}, {0.7385, 0.0004}, {0.030840, 0.00048},
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{0.8356, 0.00036}, {0.030590, 0.00042}}, {{121., 0.005818, 0.004441, 10000. },
{0.73652, 0.00041}, {0.0308600, 0.000490}, {0.83759, 0.00038}, {0.03021, 0.00046} },
{{121., ©.008727, 0.006662, 10000.}, {0.73305, 0.00035}, {0.03037, 0.00042},
{0.84113, 0.00038}, {0.029820, 0.00045000}}, {{121., 0.017453, 0.013324, 10000.},
{0.72346, 0.00029}, {0.028620, 0.00034}, {0.852, 0.00030000}, {0.02825, 0.00036} },
{{121., ©.02618, 0.019987, 10000.}, {0.71662, 0.00027}, {0.027750, 0.00032},
{0.85972, 0.00016}, {0.027670, 0.00019}}, {{121., 0.034907, 0.026649, 10000.},
{0.71241, 0.00026000}, {0.02706, 0.00031}, {0.86292, 0.00018}, {0.027080, 0.00021}},
{{121., ©.05236, 0.039977, 10000.}, {0.708, 0.00018}, {0.02723, 0.00022},
{0.86635, 0.0001500}, {0.027420, 0.00018}}, {{121., 0.069813, 0.053308, 10000. },
{0.70508, 0.00023}, {0.027260, 0.00028000}, {0.86744, 0.00022}, {0.02772, 0.00026000} },
{{121., ©.139626, 0.106692, 10000.}, {0.70191, 0.00029}, {0.02704, 0.00034},
{0.86976, 0.0001500}, {0.027500, 0.00018}}, {{121., 0.733038, 0.575927, 10000.},
{0.70062, 0.00025}, {0.0267700, 0.00030000}, {0.87027, 0.00019}, {0.02739, 0.00023}},
{{225., 0.004363, 0.003251, 10000.}, {0.75118, 0.00031}, {0.022740, 0.00038},
{0.82256, 0.00034}, {0.02254, 0.0004}}, {{225., 0.005818, 0.004334, 10000. },
{0.75016, 0.00029}, {0.022140, 0.00035}, {0.8238, 0.00038}, {0.021730, 0.00045000} },
{{225., 0.008727, 0.006501, 10000.}, {0.74756, 0.00030000}, {0.022410, 0.00035},
{0.82659, 0.00029}, {0.021630, 0.00034}}, {{225., 0.017453, 0.013003, 10000.},
{0.74086, 0.00018}, {0.021040, 0.00022}, {0.83388, 0.00022}, {0.0206400, 0.00027}},
{{225., ©.02618, 0.019505, 10000.}, {0.73588, 0.00022}, {0.0201300, 0.00026000} ,
{0.83963, 0.00018}, {0.0198, 0.00021}}, {{225., 0.034907, 0.026007, 10000. },
{0.73308, 0.00013}, {0.02008, 0.0001500}, {0.84245, 0.0002}, {0.01983, 0.00023}},
{{225., ©.05236, 0.039013, 10000.}, {0.728744, 0.000090}, {0.02014, 0.00011},
{0.84508, 0.00013}, {0.019770, 0.00016}}, {{225., 0.069813, 0.052023, 10000.},
{0.727354, 0.000099}, {0.0199, 0.00012}, {0.84565, 0.00013}, {0.0200400, 0.00016} },
{{225., 0.139626, 0.104116, 10000.}, {0.72498, 0.00013}, {0.020100, 0.00016},
{0.84702, 0.0001500}, {0.0202100, 0.00018}}, {{225., 0.733038, 0.561218, 10000. },
{0.72336, 0.00016}, {0.019770, 0.00019}, {0.84781, 0.0001400}, {0.02023, 0.00017}}};

(*Identify the items in the fitData table with functions
having recognizable names. Convert fitData radians to DEGREES: %)
nSrci[i_] := fitData[[i, 1, 1]]

360.
pNomi[i_] := fitData[[i, 1, 2]] (—) (*The nominal radius in degreesx)
2.7
- . . 360. .
PRMSi[i_] := fitData[[i, 1, 3]] (—) (*The RMS radius =)
2.7

s . . 360.
nomini[i_] := fitData[[i, 2, 1]] ( )

2.7

... . . 360.
dn@mini[i_] := fitData[[i, 2, 2]] ( ]

2.7

360.
omini[i_] := fitData[[i, 3, 1]] (—)
2.7
360.
domini[i_] := fitData[[i, 3, 2]] (—)
2.7
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- . . 360.
nomaxi[i_] := fitData[[i, 4, 1]] (—)

2.7

.. . . 360.
dn@maxi[i_] := fitData[[i, 4, 2]] (—]

2.7

360.
omaxi[i_] := fitData[[i, 5, 1]] (—)
2.7

360.
domaxi[i_] := fitData[[i, 5, 2]] (—)

2.7
R 1
Wili ] 1z ———————— (%W = 1/N1/2*)
nSrcif[i]?/?
tRMSi[i_] := —— (* inverse RMS radius in inverse degreesx)
PRMSi[i]

A7b. Interpolation Method B

The Library constructed for Method B in Sec. A2 is essentially a table of the values of the four parameters, nyMin, gmin,  pomax,
and o™ needed to determine the probability distributions and significances in Egs. (A1-A4).
Instead of the variables N and pRMS, the number of sources and the root-mean-square radius, we choose to consider the four

parameters as functions of w and TRMS, the inverse square root of N and the inverse of the radius pRMS,

w = N-12 and TRMS = pRMS-1. (A5)
A change of variables from (N, pRMS) to (w, TRMS).

Definitions:

Tables: wrnOminLib, wrdnOminLib, wrnOmaxLib, wrdnOmaxLib, wrominLib, wrdominLib, wromaxLib, wrdomaxLib
The tables wrOminLib ... have Library data in the form [(w, TRMS), quantity] were “quantity” is one of the parameters or their

standard errors: nomin’ dnomin, O-min’ do-min’ nMmax, dnomax’ gmax | domax

The associated interpolation functions are 70minBint, dy0minBint , y0maxBint , dyOmaxBint, cminBint, dominBint, cmaxBint ,

domaxBint

Setting up the interpolations takes two steps. First a tables of the data are constructed. Each table has the form {w, TRMS,
parameter}. Second, the interpolation for each parameter is defined. There are four parameters o™i, gmin, pomax and gMax and each

one has a standard error dny™in, domin, dpemax, and do™m2* developed in the fitting process that gives fitData from random run data.

wznOminLib = Table[{{wi[i], tRMSi[i]}, n@mini[i]}, {i, Length[fitData]}];
wtdn@minLib = Table[{wi[i], tRMSi[i], dn@mini[i]}, {i, Length[fitData]}];
wtn@maxLib = Table[{wi[i], tRMSi[i], n@maxi[i]}, {i, Length[fitData]}];
wtdn@maxLib = Table[{wi[i], tRMSi[i], dn@maxi[i]}, {i, Length[fitData]}];
wrtominLib = Table[{wi[i], tRMSi[i], omini[i]}, {i, Length[fitData]l}];
wtdominLib = Table[{wi[i], tRMSi[i], domini[i]}, {i, Length[fitData]}];
wromaxLib = Table[{wi[i], tRMSi[i], omaxi[i]}, {i, Length[fitData]l}];
wrdomaxLib = Table[{wi[i], tRMSi[i], domaxi[i]}, {i, Length[fitData]}];
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inf43:= n@minBint = Interpolation[wtn@minLib]; (* int - interpolation functionx)

dn@minBint = Interpolation[wtdn@OminLib];

n@maxBint = Interpolation[wtn@OmaxLib];

dn@maxBint = Interpolation[wtdnOmaxLib];

ominBint = Interpolation[wzominLib];

dominBint = Interpolation[wtdominLib];

omaxBint = Interpolation[wzomaxLib];

domaxBint = Interpolation[wzdomaxLib];

Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or

InterpolationOrder->All. Order will be reduced to 1.

Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or

InterpolationOrder->All. Order will be reduced to 1.

Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or

InterpolationOrder->All. Order will be reduced to 1.

Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or

InterpolationOrder->All. Order will be reduced to 1.

Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or

InterpolationOrder->All. Order will be reduced to 1.

Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or

InterpolationOrder->All. Order will be reduced to 1.

Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or

InterpolationOrder—>All. Order will be reduced to 1.

Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or

InterpolationOrder->All. Order will be reduced to 1.

By the rules of interpolations, when the variables w and 7 are in the range of the Library data, then Mathematica finds an average

value from the surrounding Library data points. In terms of the variables w and TRMS, the ranges are

I_SWS

. ;— and 0.024 deg~! < 7RMS <4 deg™! (Ranges of Interpolation Variables ) (A6)

Note: The values for TRMS are only approximate because the limits shown are values of 1/pNominal and the nominal values

pNominal only approximate the root-mean-square values pPRMS, pNominal ~ pRMS .

ATc. Fit the Library Data with Functions, Function Method C

Applying Interpolation Method B when one or both sample’s variables are outside the Library data set, results in extrapolation,
not interpolation. Instead of interpolating Library data points that surround the sample’s variables, Mathematica guesses what lies
beyond the Library’s boundaries. In such a case or for other situations that arise, one can apply the following alternative Formula
Method C to find the distribution parameters no™in, g™min, pomax and gmax and , with Egs. (A4, A5), the significances desired.

Formula Method C finds formulas to fit the four distribution parameters 7y™"(w, TRMS), o™in(w, TRMS), 17o™*(w, TRMS),
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and o™ (w, TRMS). Best, Big and Small are just copied from 202111 12InterpolateAndFormula2a which are copied from
20211116AlternateRandomRunStatsDegrees.nb

Definitions:

Alignment:

Library data fitting functions:
etaOminFit[w,7], etaOminFitbig[w,7], etaOminFitsmall[w,7], detaOminFit[w,7]
sigmaminFit[w,7], sigminFitBig[w,7], sigminFitSmall[w,7], dsigmaminFit[w,7]
Plots of the Library data fitting function for the iNth value of w:
plotTauEtamin[iN], plotTauEtaminbig[iN], plotTauEtaminsmall[iN],
plotTausigmamin[iN], ...
Display of the fitting functions for all values of w:
etaOMinVSTauFit (Big, Best, Small) and etaOMinVSTauFit0 (Best only)

sortPercentDiffEta0minfit percent differences between the Library data and the relevant fitting function, here for n,™in.
sortPercentDiffSigmaminfit Same, but for g-min
Avoidance:

REPEAT ALL OF THE ABOVE AGAIN, BUT THIS TIME WITH “MAX”, NOT “MIN”, i.e. etaOmaxFit[w,r], ..., sortPercentDif-

fSigmamaxfit

(*Equation (A7), 20211112InterpolateAndFormula2a.nb )
eta@minFit[w_, T_] :=
45.0269 - w (47.386 + 7.32w-17.789 Tanh[ (0.7096 - ©.3488 w) (-0.5348 + T)])

(xEquation (A8)«)eta@minFitbig[w_, t_] :=
45.0434 - w (47.031 + 6.83w + (-17.789 +0.302Sign[ (-0.7096 + ©.3488 w) (-0.5348 + ) |)
Tanh|[ (-©.5348 + £ + ©.0254 Sign[0.7096 - 0.3488 w] )
(0.7096 +w (-0.3488 + 0.0321 Sign[-0.5348 + t]) + 0.0137 Sign[-0.5348 + ])])

(xEquation (A9)«)eta@minFitsmall[w_, t_] :=
45.0103 - w (47.741 +7.81w+ (-17.789 - 0.302 Sign[ (-0.7096 + ©.3488w) (-0.5348 + ) |)
Tanh|[ (-©.5348 + £ - ©.0254 Sign[0.7096 - 0.3488 W] )
(0.7096 +w (-0.3488 - 0.0321 Sign[-0.5348 + t]) - 0.0137 Sign[-0.5348 + ])])

deta@minFit[w_, _] := eta@minFitbig[w, t] - eta@minFit[w, t]

(xEquation (A10)x)
sigmaminFit[w_, t_] :=0.25w (73.570 - 8.29w + (3.093 + 10.658 w) Tanh[1.2161 (-1.6072 + T)|)

(xEquation (A11)=x)
sigminFitBig[w_, t_] :=0.25w
(73.679 -7.86w+ (3.093 +w (10.658 + ©.508 Sign[-1.6072 + t]) + ©.126 Sign[-1.6072 + t])
Tanh[(-1.6072+ T +0.0202Sign[3.093 + 16.658 w] ) (1.2161 +0.0441Sign[-1.6072+t])])
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In[157]:=

In[160]:=

In[161]:=

In[162]:=

In[163]:=

In[164]:=

In[165]:=

In[166]:=

(vEquation (A12) )
sigminFitSmall[w_, t_] :=0.25w
(73.460 - 8.73w + (3.093 +w (10.658 - ©.508 Sign[-1.6072 + t]) - ©.126 Sign[-1.6072 + t])
Tanh[(-1.6072 + t - 0.0202 Sign[3.093 + 10.658 W] ) (1.2161 - 0.0441Sign[-1.6072+t])])

dsigmaminFit[w_, t_] := sigminFitBig([w, t] - sigmaminFit[w, t]

(xEquation (A13) =)
eta@maxFit[w_, t_] := 45.1455 +w (44.230 + 8.35w - 14.632 Tanh[0.6808 (-0.8608 + ) | )

(xEquation (A14)x)
eta@maxFitbig[w_, t_] := 45.1632 +w (44.483 +8.85w + (-14.632 +0.179 Sign[-0.8608 + ] )
Tanh|[ (-©.8777 + t) (©.6808 +0.0106 Sign[0.8608 - t])])

(xEquation (A15)x)
eta@maxFitsmall[w_, t_] := 45.1279 +w (43.977 +7.85w + (-14.632-0.179Sign[-0.8608 + t])
Tanh|[ (-©.8439 + t) (©.6808 - 0.0106 Sign[0.8608 - t])])

deta@maxFit[w_, t_] := eta@maxFitbig[w, t] - eta@maxFit[w, ]

(xEquation (A16)=)

sigmamaxFit[w_, t_] :=0.25w (73.287 - 8.11w+ (2.773 +11.126w) Tanh[1.2850 (-1.6242+ t)])

(xEquation (A17) )
sigmaxFitBig[w_, t_] :=0.25w
(73.400 - 7.66 w + (2.773 +w (11.126 +0.521Sign[-1.6242 + t]) +0.129Sign[-1.6242 + t])
Tanh[(-1.6242+ T +0.0210Sign[2.773 + 11.126 w] ) (1.2850 +0.0494 Sign[-1.6242+t])])

(xEquation (A18)«)
sigmaxFitSmall[w_, t_] :=0.25w
(73.174 - 8.567w+ (2.773 +w (11.126 - ©.521 Sign[-1.6242 + t]) - 0.129 Sign[-1.6242 + t])
Tanh[ (—1.6242 +T-0.0210Sign[2.773 +11.126 W] ) (1.2850 -0.0494Sign[-1.6242 + T] ) ])

dsigmamaxFit[w_, t_] := sigmaxFitBig[w, t] - sigmamaxFit[w, t]
A7d. Combine Interpolation Method B and Function Method C

Apply Interpolation Method B when both sample’s variables are within the range of the Library data set. Otherwise, one can

apply the following alternative Formula Method C to find the distribution parameters no™in, o™min - pomax_and gmax

Definitions:
Alignment:
Methods B,C combination parameter functions:
nOmin[w,7], dpOmin[w,7] peak alignment distribution, standard error

omin[w,7], domin[w,7]  half-width alignment distr., standard error

nOmax[w,7], dyOmax[w,r] peak avoidance distribution, standard error
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omax[w,7], domax[w,r]  half-width avoidance distr., standard error

probMIN[#, nSrc, pPRMS], proobMAX probability distributions for probability of 77 using a sample’s values of N, pPRMS
signiMIN[7,nSrc,oRMS], signiMAX significance of 7 using a sample’s values of N, pPRMS

1
n67;= n@min[w_, T_] := I'F[( SWs< — ) && (0.025 <tTs< 3.9) ,» n@minBint [w, t], eta@minFit[w, t] ];
3

15. .
dn@min[w_, t_] :=

1 1
If[(— Sws —) && (e.azs sts< 3.9), dnéminBint [w, t], deta@minFit [w, t]];
15. 3.

1
nemax[w_, t_] := If[ [— Sws ) && (0.025 < t < 3.9), n@maxBint [w, t], eta@maxFit[w, t]];

dn@max[w_, t_] :=

1 1
If[(— SWs —) && (0.025 < t < 3.9), dnemaxBint [w, t], deta@maxFit[w, t]];
15. 3.
. 1 1 - . -
omin[w_, t_] := If[ (— SW< —) && (0.025 < t < 3.9), ominBint [w, t], sigmaminFit[w, t]];
15. 3.

domin[w_, t_] :=

1 1
If[(— W< —) && (0.025 < t < 3.9), dominBint [w, ], dsigmaminFit[w, t]];
15. 3.
1 1 . . .
omax[w_, t_] := If[ (— SWsS —) && (0.025 < t < 3.9), omaxBint [w, t], sigmamaxFit[w, t]];
15. 3.

domax[w_, t_] :=

1 1
If[(— SWs —) && (0.025 < t < 3.9), domaxBint [w, ], dsigmamaxFit[w, t]];
15. 3.
nii75:= probMIN[n_, nSrc_, pRMS_] := probMINe[ n, nemin[nSrc=*/2, pRMS™'], omin[nSrc /2, pRMS™] ]
signiMIN[n_, nSrc_, pRMS_] := signiMIN@[n, n@min[nSrc~*/2, pRMS™*], omin[nSrc=*/2, pRMS™*]]
probMAX[n_, nSrc_, pRMS_] := probMAXO[ n, n@max[nSrc /2, pRMS™*], omax [nSrc /2, pRMS™*]
signiMAX[n_, nSrc_, oRMS_] := signiMAX@[n, n@max[nSrc™*/2, pRMS], omax[nSrc=*/2, pRMS™]]

ATe. Significance of alignment and avoidance for the regions

To get significance formulas for each region, we use the number of sources and the pRMS for each region, i.e. nSrck[k] and
PRMSKk([k] for the kthregion. One has

in179):= sigMINK[k_] := signiMIN[ nmink[k], nSrck[k], pRMSk[k] ]
sigMAXKk[k_] := signiMAX[nmaxk[k], nSrck[k], pPRMSk[k] ]
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n1e11= (*Get the ID#s k for Regions with very significant alignment.x)
nMINVerySigkList = {};
For[k =1, k < Length[kNjnMinjnMax], k++,
If[e.01 > sigMINk [k], AppendTo[nMINVerySigkList, {k, sigMINk[k]}]]]
nMINVerySigkList;
Length[nMINVerySigkList];

infes= sortnMINVerySigkList = Sort[nMINVerySigkList, #1[[2]] < #2[[2]] &];
Table[sortnMINVerySigkList[[i]], {i, 10}];
Length[sortnMINVerySigkList];

ini1ssl= (xGet the ID#s k for Regions with ( 5%, NOT Very) significant alignment.x)
nMINSigkList = {};
For[k =1, k < Length[kNjnMinjnMax], k++,
If[@.05 > sigMINk[k], AppendTo[nMINSigkList, {k, sigMINk[k]}]]]
nMINSigkList;
Length[nMINSigkList];

niez)= (*Regions with ( 5%, NOT Very) significant alignment.x)
sortnMINSigkList = Sort[nMINSigkList, #1[[2]] < #2[[2]] &];
Table[sortnMINSigkList[[i]], {i, 10}];
Length[sortnMINSigkList];

in1951= (xGet the ID#s k for Regions with very significant avoidance.x)
nMAXVerySigkList = {};
For[k =1, k < Length[kNjnMinjnMax], k++,
If[@.01>sigMAXk[k], AppendTo[nMAXVerysigkList, {k, sigMAXk[k]}]]]
nMAXVerySigkList;
Length[nMAXVerySigkList] ;

in99r= sortnMAXVerySigkList = Sort[nMAXVerySigkList, #1[[2]] < #2[[2]] &];
Table[sortnMAXVerySigkList[[i]], {i, Length[nMAXVerySigkList]}];
Length[sortnMAXVerySigkList];

in2021= (*Regions with ( 5%, NOT Very) significant alignment.x)
nMAXSigkList = {};
For[k =1, k < Length[kNjnMinjnMax], k++,
If[e.05 > sigMAXk[k], AppendTo[nMAXSigkList, {k, sigMAXk[k]}]]]
nMAXSigkList;
Length[nMAXSigkList];

nzo5- (*Regions with ( 5%, NOT Very) significant alignment.x)
sortnMAXSigkList = Sort[nMAXSigkList, #1[[2]] < #2[[2]] &];
Table[sortnMAXSigkList[[i]], {1, Length[nMAXSigkList]}];
Length[sortnMAXSigkList];
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n2ogy= (*Uncertainty of -LogieS for nmink with uncertainty for nmink = +1° . %)
neglLogSignminBest [k_] := -Log[10,
signiMIN® [ nmink [k], n@min [nSrck[k] /2, oRMSk[k] ], omin[nSrck[k] /%, pRMSk[k]™*]]]

neglLogSignminBig[k_] := -Log[1@, signiMIN®@[ nmink[k] - (1),

nemin [nSrck [k]-*/2, pRMSk [k]~*] + dn@min[nSrck[k] /%, oRMSk[k] ],

omin[nSrck[k] /%, pRMSk [k] '] - domin[nSrck[k] '/, oRMSk[k]™*]]]
neglLogSignminSmall[k_] := -Log[1@, signiMIN®[ nmink[k] + (1),

nemin [nSrck[k]~*/2, pRMSk [k]~*] - dn@min[nSrck[k] /%, oRMSk[k] ],

omin[nSrck[k] /%, pRMSk [k] '] + domin[nSrck[k]™*/2, oRMSk[k]™*]]]

ne121= (*Uncertainty of -LogieS for nmaxk with uncertainty for nmaxk = +1° . )
neglLogSignmaxBest [k_] := -Log[1e,
signiMAXe [ nmaxk [k], n@max [nSrck[k] /2, oRMSk[k] ], omax[nSrck[k] /2, pRMSk[k]™*]]]

neglLogSignmaxBig[k_] := -Log[10, signiMAX@[ nmaxk[k] + (1),

nemax [nsrck [k] /%, pRMSk [k]*] - dnemax[nSrck[k] /%, pRMSk[k]™*],

omax [nSrck [k] /2, pRMSk[k] ] - domax [nSrck[k] %2, pRMSk[k]™*]]]
neglLogSignmaxSmall[k_] := -Log[1@, signiMAXe[ nmaxk[k] - (1),

némax [nSrck [k]~*/2, pRMSk [k]~*] + dn@max [nSrck[k] /%, oRMSk [k] ],

omax [nSrck [k] /2, pRMSk[k] ] + domax[nSrck[k] %2, oRMSk[k]™*]]]

n215:= negLogVerySignmin =
Table[Around[negLogSignminBest [k], {negLogSignminBest[k] - negLogSignminSmall k],
negLogSignminBig[k] - negLogSignminBest[k]}],
{k, Table[sortnMINVerySigkList[[i, 1]], {i, Length[sortnMINVerySigkList]}]}1;
Print["For the very significantly aligned regions, S = p < 1072, the -LogiS values ar‘e"]
negLogVerySignmin

For the very significantly aligned regions, S = p < 1072, the -Logi;sS values are

oupine {3.379:4, 2,928, 2.62°3:35, 2.53'9:%, 2.4875%,, 2.30°0:37, 2.2673:33, 2.20°9:3, 2.183:31, 2.17 3%,
2.17°8:%, 2.13'83, 2.12°8:3, 2.12°8:3, 2.09'8:33, 2,080, 2.065:33, 2.03'9:33, 2.03 83}

in21s= negLogVerySignmax =
Table[Around[negLogSignmaxBest[k], {neglLogSignmaxBest[k] - negLogSignmaxSmall k],
negLogSignmaxBig[k] - negLogSignmaxBest[k]}],
{k, Table[sortnMAXvVerySigkList[[i, 1]], {i, Length[sortnMAXVerySigkList]}]}1;
Print["For- the regions with very significant avoidance,
S = p < 1072, the -LogeS values are"]
negLogVerySignmax

2

For the regions with very significant avoidance, S = p < 107°, the -Logi;eS values are

ouzzor {4.7'9:3, 3.6'84, 2.96°8:33, 2.94'9:31, 2,904, 2.49°8:31, 2.49°0:3;, 2.4378:33, 2.43°0:37, 2.36°8:31,
2.22°9:3, 2.19°9:3, 2.18'9:33, 2.14°5:33, 2.050:37, 2.03'0:3, 2.2 03, 2.01°0:%, 2.01°53;, 2.01°0:3; )

in221= 1pNegLogVerySigAlign = ListPlot [negLogVerySignmin, PlotRange » {{0, 20}, {0, 5.5}},
PlotLabel -» " -Logipp, Alignment ", GridLines - Automatic,
Frame - True, FrameLabel -» {"Rank", "-Logp"}, ImageSize » 72 < 4];
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in222;= 1pNegLogVerySigAvoid =
ListPlot [neglLogVerySignmax, PlotRange » All, PlotLabel - " -Logigp, Avoidance ",
GridLines -» Automatic, Frame - True, FrameLabel -» {"Rank", "-Logp"}, ImageSize -» 72 < 4];

in2231= GraphicsRow[ {1pNeglLogVerySigAlign, lpNeglLogVerySigAvoid} ]
Print[
"Figure A4. The negative log of the significance p for regions with very significant
alignment (left) and avoidance (right). The most significant region has rank
1, the next most significant has rank 2, etc. Most of the uncertainty is
due to the experimental uncertainty in the polarization position angles ¥."]

-Logop, Alignment -Log1op, Avoidance

5F 1 5F 1

4—I ] 411 1
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ouesr T o0 T T T ob Iy
1F E 1 E

0 L L . OE I I I d
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Rank Rank

Figure A4. The negative log of the significance p for regions with very
significant alignment (left) and avoidance (right). The most significant region
has rank 1, the next most significant has rank 2, etc. Most of the uncertainty
is due to the experimental uncertainty in the polarization position angles .

The number of regions with very significant alignment is 19 regions, i.e. S = p < 1072 = 0.01 .
The number of regions with significant alignment is 96 regions, i.e. S = p < 1872 = 8.05 .
The number of regions with very significant avoidance is 20 regions, i.e. S = p < 1072 = 0.01 .

The number of regions with significant avoidance is 88 regions, i.e. S = p < 1872 = 8.05 .

The region with the most significant alignment is region number
393, which has S = p = 0.000467833.

The region with the most significant avoidance is region number
260, which has S = p = 0.000019276.

AS8. Mapping the significance of the regions

in232= raDEClogSigForAllVerySigMin =
Table[ {aHj [rgnCntrAndSrcId[ [sortnMINVerySigkList [[j, 111, 2111,
&Hj [rgnCntrAndSrcId|[ [sortnMINVerySigkList [[j, 111, 2111,
-Log[10, sortnMINVerySigkList [[]j, 2111}, {Jj, Length[sortnMINVerySigkList]}];

in233= sortraDEClogSigForAllVerySigMin = Sort[raDEClogSigForAllVerySigMin, #1[[3]] > #2[[3]] &];
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in23ai= 1pl = ListPlot[
{Table[Style[{xH180[ aAVEk[k], SAVEk[k] 1, yH180[ aAVEk[k], SAVEK[k] 1}, LightGray],
{k, Length[rgnCntrAndSrcId]}],
Table[Style[{xH180[sortraDEClogSigForAllVerySigMin[[-311[[1]],
sortraDEClogSigForAllVerySigMin[[-3j]11[[2]11],
yH180 [sortraDEClogSigForAllVerySigMin[[-j1]1[[11],
sortraDEClogSigForAllvVerySigMin[[-j]11[[2]111},
ColorData["Rainbow"] [ (sortraDEClogSigForAllVerySigMin[[-3]1]1[[3]1]-2.) /
(sortraDEClogSigForAllVerySigMin[[1]][[3]]1-2.)]],
{j, Length[sortraDEClogSigForAllVerySigMin]}]},
PlotRange » {{-4., 4.}, {-2.2, 2.2}}, PlotStyle -» PointSize[Medium],
PlotLegends - BarLegend[ {"Rainbow", {2.0, sortraDEClogSigForAllVerySigMin[[1]1]1[[3]1}},
LegendLabel » "-Logiop"], AXes - False];

ine3s= 1p2 = Show[ {1pl, Table[ParametricPlot[{xH180[a, 6], YH180[a, 61}, {6, -90, 90},
PlotStyle » {Black, Thickness[0.002]}, PlotPoints - 60], {a, 0, 360, 30}],
Table[ParametricPlot[{xH180[a, 6], yH180[a, 61}, {a, O, 360},
PlotStyle » {Black, Thickness[0.002]}, PlotPoints - 60], {5, -60, 60, 30}],
Graphics [ {PointSize[0.004], Text [StyleForm["N", FontSize -> 14, FontWeight -> "Plain"],
{0, 1.85}], Text[StyleForm["Very Significantly Aligned Regions (S = p < 1%)",
FontSize -> 14, FontWeight -> "Plain"], {@, -1.85}],
Text[StyleForm["Clump 1", FontSize - 12, FontWeight -> "Bold"], {-3.3, 1.0}],
{Arrow[BezierCurve[{{-3.3, 1.2}, {-1.3, 2.5}, {xH180[170, 20], yH180[170, 20]}}]11},
Text [StyleForm["Clump 2", FontSize -» 12, FontWeight -> "Bold"], {3.3, 1.0}],
{Arrow[BezierCurve[{{3.3, 1.2}, {1.3, 2.5}, {xH180[175, 53], yH180[175, 531}}11},
Text[StyleForm["Clump 3", FontSize -» 12, FontWeight -> "Bold"], {+3.3, -1.0}], {Arrow[
BezierCurve[{{+3.3, -1.2}, {+0.3, -1.5}, {xH180[235, 28], yH180[235, 28]}}]11},
Text[StyleForm["Clump 4", FontSize - 12, FontWeight -> "Bold"], {-3.3, -1.0}],
{Arrow[BezierCurve[{{-3.3, -1.2}, {-1.3, -1.5},
{xH180[118, 18], yH180[118, 18]1}}11}}1}, ImageSize » 432]
Print["Figure A5. The very significantly aligned regions are shaded in color.
The regions in grey have sources that are not very significantly aligned."]

out[235]=
2.50

2.25

Clump 4 Clump 3 2.00

Very Significantly Aligned Regions (S = p £ 1%)

Figure A5. The very significantly aligned regions are shaded in color.
The regions in grey have sources that are not very significantly aligned.
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nes71= (*Regions with ( 5%, NOT Very) significant alignment.x)
raDEClogSigForAl11SigMin = Table[ {aHj [rgnCntrAndSrcId[ [sortnMINSigkList [[j, 111, 2111,
SHj [rgnCntrAndSrcId[ [sortnMINSigkList [[j, 111, 2111,
-Log[10, sortnMINSigkList [[j, 2111}, {Jj, Length[sortnMINSigkList]}];

inz3s;= sortraDEClogSigForAllSigMin = Sort[raDEClogSigForAllSigMin, #1[[3]] > #2[[3]] &];

in2agr= 1p3 = LiStPlot[
{Table[Style[{xH180[ aAVEk[k], SAVEk[k] 1, yH180[ aAVEk[k], SAVEK[k] ]}, LightGray],
{k, Length[rgnCntrAndSrcId]}],
Table[Style[{xH18@ [sortraDEClogSigForAllSigMin[[-311[[1]],
sortraDEClogSigForAl1SigMin[[-3j]1]1[[2]]1], yH180[sortraDEClogSigForAl1SigMin[ [
-j11[[1]1], sortraDEClogSigForAl11SigMin[[-3j11[[2111},
ColorData["Rainbow"] [ (sortraDEClogSigForAllSigMin[[-3]11[[3]]-2.)/
(sortraDEClogSigForAllSigMin[[1]1][[3]] -2.)]],
{j, Length[sortraDEClogSigForAllSigMin]}]}, PlotRange -» {{-4., 4.}, {-2.2, 2.2}},
PlotStyle - PointSize[Medium], PlotLegends -
BarLegend[ {"Rainbow", {-Log[10, ©0.05], sortraDEClogSigForAl1SigMin[[1]]1[[3]11}},

LegendLabel - "-Logiep"], Axes - False];

inz40= (*Regions with ( 5%, NOT Very) significant alignment. )
1p4 = Show[ {1p3, Table[ParametricPlot[{xH180[a, 6], YH180[a, 6]}, {6, -90, 90},
PlotStyle » {Black, Thickness[0.002]}, PlotPoints -» 60], {a, 0, 360, 30}],
Table[ParametricPlot[{xH180[a, 6], yH180[a, 6]}, {a, O, 360},
PlotStyle -» {Black, Thickness[0.002]}, PlotPoints -» 60], {6, -60, 60, 30}],
Graphics[{PointSize[0.004], Text [StyleForm["N", FontSize -> 14, FontWeight -> "Plain"],
{0, 1.85}], Text[StyleForm["Significantly Aligned Regions (p < 5%)",
FontSize -> 14, FontWeight -> "Plain"], {@, -1.85}1}]1}, ImageSize » 432]
Print["Figure A6. Significantly aligned regions, this map has 96 significantly
aligned regions, compared to 19 very significantly aligned regions in Fig. A5."]
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Figure A6. Significantly aligned regions, this map has 96 significantly
aligned regions, compared to 19 very significantly aligned regions in Fig. AS5.
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in2421= raDEClogSigForAllVerySigMax =
Table[ {aHj [rgnCntrAndSrcId[ [sortnMAXVerySigkList [[j, 111, 2111,

&Hj [rgnCntrAndSrcId|[ [sortnMAXVerySigkList [[j, 111, 2111,

-Log[10, sortnMAXVerySigkList [[]j, 2111}, {Jj, Length[sortnMAXVerySigkList]}];
sortraDEClogSigForAllVerySigMax = Sort[raDEClogSigForAllVerySigMax, #1[[3]] > #2[[3]] &];
1p5 = ListPlot|

{Table[Style[{xH180[ aAVEk[k], SAVEk[k] 1, yH180[ aAVEk[k], SAVEK[k] ]}, LightGray],
{k, Length[rgnCntrAndSrcId]}],
Table[Style[{xH18@ [sortraDEClogSigForAllVerySigMax[[-311[[1]],
sortraDEClogSigForAllVerySigMax[[-3j11[[2]11],
yH180 [sortraDEClogSigForAllVerySigMax[[-Jj11[[11],
sortraDEClogSigForAllvVerySigMax[[-j]11[[2]111},
ColorData["Rainbow"] [ (sortraDEClogSigForAllVerySigMax[[-3]11[[3]1]1-2.)/
(sortraDEClogSigForAllVerySigMax[[1]]1[[3]]1-2.)]],
{j, Length[sortraDEClogSigForAllVerySigMax]}]},
PlotRange » {{-4., 4.}, {-2.2, 2.2}}, PlotStyle -» PointSize[Medium],
PlotLegends - BarLegend[ {"Rainbow", {2.0, sortraDEClogSigForAllVerySigMax[[1]1]1[[3]1}},

LegendLabel » "-Logiop"], AXes - False];

in24s5= 1p6 = Show[ {1p1l, Table[ParametricPlot[{xH180[a, 6], YH180[a, &1}, {6, -90, 90},
PlotStyle » {Black, Thickness[0.002]}, PlotPoints » 60], {a, 0, 360, 30}],
Table[ParametricPlot[{xH180[a, 6], yH180[a, 6]}, {a, O, 360},
PlotStyle » {Black, Thickness[0.002]}, PlotPoints - 60], {5, -60, 60, 30}],
Graphics [ {PointSize[0.004], Text [StyleForm["N", FontSize -> 14, FontWeight -> "Plain"],
{0, 1.85}], Text[StyleForm["Regions with Very Significant Avoidance (p < 1%) ",
FontSize -> 14, FontWeight -> "Plain"], {0, -1.85}1}]}, ImageSize -» 432]
Print["Figure A7. Regions whose polarization directions very
significantly avoid some place on the Celestial Sphere."]
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Figure A7. Regions whose polarization directions
very significantly avoid some place on the Celestial Sphere.
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np47)= (*Regions with ( 5%, NOT Very) significant avoidance.x)
raDEClogSigForAllSigMax = Table[ {aHj [rgnCntrAndSrcId[ [sortnMAXSigkList [[j, 111, 2111,
SHj [rgnCntrAndSrcId[ [sortnMAXSigkList [[j, 111, 2111,
-Log[10, sortnMAXSigkList [[j, 2111}, {Jj, Length[sortnMAXSigkList]}];
sortraDEClogSigForAllSigMax = Sort[raDEClogSigForAllSigMax, #1[[3]] > #2[[3]] &];
1p7 = ListPlot|
{Table[Style[{xH180[ oAVEk[k], SAVEK[k] ], yH180[ aAVEK[k], SAVEK[k] ]}, LightGray],
{k, Length[rgnCntrAndSrcId]}],
Table[Style[{xH18@[sortraDEClogSigForAllSigMax[[-3]11[[1]],
sortraDEClogSigForAllSigMax[[-j]1][[2]]1], yH180[sortraDEClogSigForAllSigMax| [
-j11[[1]1], sortraDEClogSigForAl1SigMax[[-3j11[[21]11},
ColorData["Rainbow"] [ (sortraDEClogSigForAllSigMax[[-3j]1]1[[3]]1-2.)/
(sortraDEClogSigForAllSigMax[[1]1][[3]] -2.)]],
{j, Length[sortraDEClogSigForAllSigMax]}]}, PlotRange -» {{-4., 4.}, {-2.2, 2.2}},
PlotStyle -» PointSize[Medium], PlotLegends -
BarLegend[ {"Rainbow", {-Log[10, 0.05], sortraDEClogSigForAl1SigMax[[1]]1[[311}},
LegendLabel —» "-Logiop"], Axes - False];

nesoj= (*Regions with ( 5%, NOT Very) significant avoidance.x)
1p8 = Show[ {1p3, Table[ParametricPlot[{xH180[a, 6], YH180[a, 6]}, {6, -90, 90},
PlotStyle - {Black, Thickness[0.002]}, PlotPoints - 60], {a, 0, 360, 30}1],
Table[ParametricPlot[{xH180[a, 6], yH180[a, 6]}, {a, O, 360},
PlotStyle -» {Black, Thickness[0.002]}, PlotPoints -» 60], {5, -60, 60, 30}],
Graphics[{PointSize[0.004], Text [StyleForm["N", FontSize -> 14, FontWeight -> "Plain"],
{0, 1.85}], Text[StyleForm["Regions with Significant Avoidance (p < 5%)",
FontSize -> 14, FontWeight -> "Plain"], {0, -1.85}]}]}, ImageSize » 432]
Print["Figure A8. Regions whose polarization directions significantly avoid
some place on the Celestial Sphere. This map has 88 regions with significant
avoidance, compared to 20 regions with very significant avoidance in Fig. A7."]
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Figure A8. Regions whose polarization directions significantly avoid
some place on the Celestial Sphere. This map has 88 regions with significant
avoidance, compared to 20 regions with very significant avoidance in Fig. A7.
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A9. Selecting sources to analyze

Definitions:

firstClumpjsForSortyMINVerySigkList1450  List of item #s in table “sortyMINVerySigkList” in this clump
raDEClogSigForVeryIstClump1450 Table of 1. RA 2. dec 3. significance of the smallest alignment angle 7,
firstVeryClumpksForRgnCntrAndSrcld1450  List of region ID #s in this clump. Most region data is in the table “rgnCntrAndSrcld”
firstVeryClumpQsosIDinData001450 List of source ID #s in the table “data00”

Replace first and Ist by second and 2nd, third and 3rd, etc for the other clumps.

Clump 1

firstClumpjsForSortnMINVerySigklList1450 = {};
Table[If[(165. < raDEClogSigForAllVerySigMin[[i, 1]] < 200.) &&
(@ < raDEClogSigForAllVerySigMin[[i, 2]] < 30.),
AppendTo [firstClumpjsForSortnMINVerySigkList1450, i]],
{i, Length[raDEClogSigForA11VerySigMin]}];
Length[firstClumpjsForSortnMINVerySigkList1450] ;

raDEClogSigForVerylstClump1450 =
Table[ {aHj [rgnCntrAndSrcId[ [sortnMINVerySigkList [[j, 111, 2111,
&Hj [rgnCntrAndSrcId|[ [sortnMINVerySigkList [[j, 111, 2111,
-Log[10, sortnMINVerySigkList [[j, 2111},
{j, firstClumpjsForSortnMINVerySigklList1450}];
firstVeryClumpksForRgnCntrAndSrcId1450 = Table[rgnCntrAndSrcId| [
sortnMINVerySigkList [[j, 111, 111, {j, firstClumpjsForSortnMINVerySigkList1450}];

firstVeryClumpQsosIDinData001450 =
Union[Flatten[Table[rgnCntrAndSrcId[ [sortnMINSigkList [[j, 111, 311,
{j, firstClumpjsForSortnMINVerySigkList1450}]11]]
Length[firstVeryClumpQsosIDinData0014509] ;
Print["Clump 1 combines the sources in ",
Length[firstClumpjsForSortnMINVerySigkList1450], " regions, for a total of ",
Length[firstVeryClumpQsosIDinData001450], " sources."]

(659, 660, 663, 667, 674, 680, 682, 690, 695, 696, 698, 707, 712,
714, 718, 720, 721, 727, 728, 731, 734, 744, 746, 751, 752, 762, 764}

Clump 1 combines the sources in 8 regions, for a total of 27 sources.

Clump 2
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inzeo;= secondClumpjsForSortnMINVerySigkList1450 = {};
Table[If[(150. < raDEClogSigForAllVerySigMin[[i, 1]] < 190.) &&
(3@ < raDEClogSigForAllVerySigMin[[i, 2]] < 60.),
AppendTo[secondClumpjsForSortnMINVerySigklList1450, i] ] R
{i, Length[raDEClogSigForAllVerySigMin] }];

in262;= raDEClogSigForVery2ndClump1450 =
Table[ {aHj [rgnCntrAndSrcId[ [sortnMINVerySigkList [[j, 111, 2111,
6Hj [rgnCntrAndSrcId[ [sortnMINVerySigkList [[j, 111, 211 1,
-Log[10, sortnMINVerySigkList [[j, 2111},
{j, secondClumpjsForSortnMINVerySigkList1450}];
secondVeryClumpksForRgnCntrAndSrcId1450 = Table [rgnCntrAndSrcId] [
sortnMINVerySigkList [[j, 11], 111, {j, secondClumpjsForSortnMINVerySigkList1450}];

inze4= secondVeryClumpQsosIDinData®01450 =
Union[Flatten[Table[rgnCntrAndSrcId][ [sortnMINVerySigkList [[j, 111, 311,
{j, secondClumpjsForSortnMINVerySigkList1450}]]]
Length[secondClumpjsForSortnMINVerySigklList1450] ;
Length[secondVeryClumpQsosIDinData001450] ;
Print["Clump 2 combines the sources in ",
Length[secondClumpjsForSortnMINVerySigkList1450], " regions, for a total of ",

Length[secondVeryClumpQsosIDinData®01450], " sources."]
ouees- {618, 624, 638, 657, 661, 666, 668, 672, 697, 699, 708, 713, 719}

Clump 2 combines the sources in 2 regions, for a total of 13 sources.

Clump 3

ines;= thirdClumpjsForSortnMINVerySigkList1450 = {};
Table[If[(23@. < raDEClogSigForAllVerySigMin[[i, 1]] < 250.) &
(25. < raDEClogSigForAllVerySigMin[[i, 2]] < 4e.),
AppendTo [thirdClumpjsForSortnMINVerySigkList1450, i] ] s
{i, Length[raDEClogSigForAllVerySigMin] }];

ine70;= raDEClogSigForVery3rdClump1450 =
Table[ {aHj [rgnCntrAndSrcId[ [sortnMINSigkList [[j, 111, 2111,
SHj [rgnCntrAndSrcId[ [sortnMINSigkList [[j, 111, 2111,
-Log[10, sortnMINSigkList [[j, 2111}, {J, thirdClumpjsForSortnMINVerySigklList1450}];
thirdVeryClumpksForRgnCntrAndSrcId1450 = Table [rgnCntrAndSrcId[ [
sortnMINVerySigkList [[j, 11], 111, {j, thirdClumpjsForSortnMINVerySigkList1450}];
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in272;= thirdVeryClumpQsosIDinData001450 =
Union[Flatten[Table[rgnCntrAndSrcId[ [sortnMINSigkList [[j, 11], 311,

{j, thirdClumpjsForSortnMINVerySigkList1450}]11]]
Length[thirdClumpjsForSortnMINVerySigkList1450] ;
Length[thirdVeryClumpQsosIDinData001459] ;

Print["Clump 3 combines the sources in "
Length[thirdClumpjsForSortnMINVerySigkList1450], " regions, for a total of ",
Length[thirdVeryClumpQsosIDinData@01450], " sources."]

oupra- {1063, 1070, 1081, 1093, 1094, 1098, 1106, 1113, 1133}

Clump 3 combines the sources in 2 regions, for a total of 9 sources.

Clump 4

ine7e)= fourthClumpjsForSortnMINVerySigkList1450 = {};
Table[If[(105. < raDEClogSigForAllVerySigMin[[i, 1]] < 125.) &&
(18. < raDEClogSigForAllVerySigMin[[i, 2]] < 3e.),
AppendTo [fourthClumpjsForSortnMINVerySigkList1450, i]],
{1, Length[raDEClogSigForAllVerySigMin]}];

in27e;= raDEClogSigForVery4thClump1450 =
Table[ {aHj [rgnCntrAndSrcId|[ [sortnMINSigkList [[j, 111, 2111,
&Hj [rgnCntrAndSrcId|[ [sortnMINSigkList [[j, 111, 2]11],
-Log[10, sortnMINSigkList [[j, 2111}, {J, fourthClumpjsForSortnMINVerySigklList1450}];
fourthVeryClumpksForRgnCntrAndSrcId1450 = Table[rgnCntrAndSrcId] [
sortnMINVerySigkList [[j, 111, 111, {j, fourthClumpjsForSortnMINVerySigkList1450}];

inzso)= fourthVeryClumpQsosIDinData001450 =
Union[Flatten[Table[rgnCntrAndSrcId[ [sortnMINSigkList [[j, 111, 311,
{j, fourthClumpjsForSortnMINVerySigklList1450}]]]

Length[fourthClumpjsForSortnMINVerySigkList1450];

Length[fourthVeryClumpQsosIDinData®01450] ;

Print["Clump 4 consists of the sources in
Length [fourthClumpjsForSortnMINVerySigkList1450], " region, for a total of ",
Length [fourthVeryClumpQsosIDinData®01450], " sources."]

oupso- {275, 284, 289, 292, 295, 311, 314, 315}

Clump 4 consists of the sources in 1 region, for a total of 8 sources.

URLs:
https://www.wolframcloud.com/obj/shurtleffr/Published/20211221Survey 1450QSOsMapb.nb
https://www.dropbox.com/s/6bqy56vazlfuuu6/20211221Survey 1450QSOsMapb.nb?d1=0



