
Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International 

License 

Calculation of the Higgs Mass for Quark and Lepton 

Electric Charges Swap Lie-Groupoid 

 

 

 

 

 

E Koorambas  

Computational Applications, Group, Division of Applied Technologies, National Center for 

Science and Research ‘Demokritos’, Aghia Paraskevi-Athens, Greece 

E-mail: elias.koor@gmail.com 

(January 14, 2022) 

 

Abstract: Starting from the SU(2) group of weak interactions in the presence of Electric Charge Swap 

(ECS) symmetry, we show that ordinary and non-regular (ECS) leptons are related by the ECS 

rotational group SO(3). We find that many Standard Model (SM) algebras depend on the sin of the 

angle θs of the ECS rotational group SO (3). We call these ECSM algebras. Furthermore, the break of 

the gauge symmetry of the SM groupoid gives the massive ECS particle. We find that the ECS particle 

masses are related with the SM particle masses by sinθs. We also investigate the finite subgroups of the 

ECS Möbius transformations. We find that sinθs could be derived from the ECS dihedral group DF, 

which refers to the symmetry of the fermionic polygon (F-gon). The average value of the anchor of the 

SM algebroid depends on the fermionic Catalan numbers (CF). Finally, we find that the ECS physics at 

loop level differs the SM physics. The ECSM mass is suppressed by the CF numbers. For 24 fermions, 

the calculated one-loop radiative correction to the bare Higgs mass µ
 
is 125,6 GeV—a value very close 

to the experimental one. 
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1. Introduction 

In the electroweak (EW) theory, SU(2)L× U(1)Y[1] is broken down to the electromagnetic 

gauge group U(1)em by the vacuum expectation value of an elementary scalar field φ. This 

scalar field should be part of the Grand Unification Theory (GUT)[2]. To produce a vacuum 

expectation value of a size that imparts to the observed W and Z boson a mass of 82 and 91 

GeV, respectively, the Standard Model (SM) Higgs scalar field must obtain a negative mass 

term, of a size [1]: 

2 2
0 (100)   .          (1) 
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Equation (1) is subjected to additive renormalization. Beyond tree level, the radiative 

corrections to the Higgs mass for the Higgs (H), top quark (t-t¯), and boson (W, Z ) loops in 

the SM [4-6], are shown in Figure 1: 

 

Fig. 1. One-loop corrections to the Higgs mass. The diagrams for the Higgs (H), top quark (t-

t¯), and boson (W,Z) loops are quadratically divergent, and make the Higgs mass highly UV-

sensitive [7] C. Grojean, Philos Trans A Math Phys Eng Sci. 2015 Jan 13; 373(2032): 

20140042). 

Each diagram in Figure 1 shows a contribution to the self-energy iΣ(p
 2

), where p is the four-

momentum of the external particle [8]: 

2 2 2
0 ( )H HM M  .          (2) 

In Equation (2), 0 is the bare Higgs mass. Using a cutoff to regularize the bare amplitudes 

[8], these radiative corrections lead to the well-known mass correction: 

2
2 2 2 2 2 2
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3
[ 2 4 ] ....
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H H W Z tM M M M m

 


        ,    (3) 

where mt, MW,Z, and MH are the mass of the top quark, W, Z bosons, and Higgs bosons (H), 

respectively, υ is the vacuum expectation value of the Higgs potential in the SM, and ΛC is the 

cutoff energy scale ΛC [4-6]. The dots indicate logarithmic corrections at the cutoff energy 

scale ΛC, as well as contributions independent of the cutoff energy scale, in the large ΛC limit 

[8].  

Λc can be the energy scale of a new physics coupled to the SM one. In particular, Λc can even 

be the Planck mass scale, Mp. On the other hand, it is unnatural to have Λc >> mw, since 

everything is defined by the EW scale [9]. Equation (3) is the source of the usual fine-tuning 

problem in the SM: if Λc ∼ mW , then we must suppose that the tree-level μ
2 

and the loop 

contributions cancel each other in order for |μ0
2
| to be ∼ m

2
W [9]. After the discovery of the 

Higgs boson (of a mass of 125 GeV) in the ATLAS and CMS experiments [10, 11], the SM 

would be a perfect theory but from the fine-tuning problem. There are two general ways to 

solve this problem: either by evoking some (super)symmetry to cancel out the huge terms 

[12], or by introducing some new physics, such as large extra dimensions [13], composite 

Higgs models[14], etc., at a scale not very far from the electroweak one, thus making the Λc to 

be small [7]. The observation of a light Higgs boson with properties consistent with the SM 

[10,11] has motivated much reexamination of the notion of the naturalness problem [7].  

It is well known that the supersymmetric extension of the SM can solve the fine-tuning 

problem. Despite many efforts to search for supersymmetry at the Large Hadron Collider 

(LHC) experiments, the current LHC data do not offer unequivocal proof for the production 

of supersymmetric particles [15]. For this reason, we investigate the possibility of solving the 

fine-tuning problem without supersymmetry.  
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In the SM, mass is generated due to spontaneous symmetry breaking in the Higgs sector. 

While the Higgs boson mass was introduced by Peter Higgs et al. [16] from the outset, the 

tachyon mass term breaks the scale invariance (conformal symmetry) explicitly [16]. 

However, if the conformal symmetry could be broken sufficiently ‘softly’ so that symmetry is 

restored at high energies, the Higgs mass would still be protected from the largest radiative 

corrections necessitated by the highest energies [17,18,19].  

Recently P. Grang´ et.al [8] re-analysed the perturbative radiative corrections to the Higgs 

mass within the SM in the light of the Taylor-Lagrange renormalisation scheme. This scheme 

naturally leads to completely finite corrections, depending on an arbitrary scale. Nima 

Arkani-Hamed et.al [20] proposed the N-naturalness model, which presents a new solution to 

the electroweak hierarchy problem. The authors introduced N copies of the SM, with varying 

values of the Higgs mass parameter. This proposition generally yields a sector whose weak 

scale is parametrically removed from the cutoff by a factor of 1/ √ N.  

In the framework of fine symmetries, the Monster Group is related to the symmetries of a 

particular
 
bosonic string theory on the Leech lattice [21]. However, there is no physical reason 

for the presence of the Monster Group or its subgroups in the Lagrangian:  its appearance may 

merely be a coincidence. Another coincidence is that, in reduced Planck units, the Higgs mass 

is approximately 
1/3

48 125.5M GeV


  (where |M| is the order of the Baby Monster group). 

This suggests that the small size of the Higgs mass may be due to a redundancy caused by a 

symmetry of the extra dimensions, which must be divided out [22]. It is also possible that
 
the 

hierarchy problem is a specific manifestation of Bayesian statistics[23-27] .  

In the Fine-Tuning Naturalness (FTN) problem, we suppose that bare SM parameters are 

physically interpreted as “fundamental parameters,” analogous to the microscopic lattice 

parameters of a Condensed Matter (CM) system [28]. Alternatively, bare SM parameters can 

be interpreted as unphysical “auxiliary parameters”: if the Wilsonian Renormalization Group 

(RG) transformations are interpreted as invertible re-parametrisations, the bare parameters in 

High Energy Physics (HEP) and Condensed Matter Physics (CMP) are formally—but not 

physically—analogous [28]. Furthermore, it is possible that neither the bare mass, μ0, nor the 

radiative corrections, δM
2
, are directly measurable. Since these are probably not physical, 

there is no coincidence to be explained (Wetterich 1984[29]), (Bianchi & Rovelli 2010[30]). 

For quarks and leptons, an Electric Charge Swap (ECS) symmetry has been proposed by the 

author [31]. A family of particular transformations may be continuous (e.g., the rotation of a 

circle) or discrete (e.g., the reflexion of a bilaterally symmetrical figure, or the rotation of a 

regular polygon) [31-34], [35]. ECS transformation between ordinary families of leptons 

produces heavy, neutral, non-regular leptons of an O-order mass (TeV). These particles may 

form cold dark matter [31]. Furthermore, the ECS symmetry could explain certain properties 

of lepton families within the framework of superstring theories [36-39].  Recently, A-

Wollmann Kleinert and F. Bulnes, based on ECS symmetry (in this case, leptons [31]), 

proposed that leptons are the subtle Fermions [35]. 

From the mathematical point of view, in R-Category—a category theory with invertible 

morphisms [40]—the geometric structures under consideration are always associated with 

local Lie brackets [ , ] on sections of some vector bundles (Lie algebroids [41,42]). Based on 

[41-43], in this article, we study the structure of transitive Lie algebroids as a mathematical 

framework for generalizing the formulation of a gauge theory through an action functional: 
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the integral of a differential form on the algebroid [44]. On Atiyah Lie algebroids [45], the 

space of ordinary connections 1-forms corresponds with the Ehresmann connections on a 

principal fiber bundle P (see the S. Lazzarini and T. Masson in [46,47]). Cédric Fournel 

(2013) [44] proved that transitive Lie algebroids equipped with generalized connections 

contain scalar fields as algebraic parameters. These parameters, absent in differential 

geometry, have a role similar to that of the scalar field in the Higgs mechanism [16]. In 

higher-dimensional spacetime, the Double Field Theory (DFT) is a gravity theory with 

manifest T duality (Hull-Zwiebach, 2009 [48]). The DFT has gauge symmetry (described by 

the C bracket ([ , ]C: see[48])), which defines the Vaisman-algebroid (Vaisman, 2013[49]). 

This paper is structured as follows: In section 2, taking the SU(2) group of weak interactions 

in the presence of ECS symmetry as a starting point, we show that ordinary and non-regular 

(ECS) leptons are related by the ECS rotational SO(3) group. In section 3, we investigate a 

version of the SM algebroid whose anchor map depends on the sin of the ECS angle θs of the 

ECS rotational SO (3) group. We find many SM algebras that depend on sinθs; we call these 

algebras ECSM algebras. Furthermore, the broken gauge symmetry of the SM groupoid gives 

the massive ECS particle. We find that the ECS particle mass is related with the SM particle 

mass by sinθs. In section 4, we investigate the finite subgroups of the ECS-Möbius 

transformations. In this case, sinθs could be originated from the ECS dihedral group DF, 

which refers to the symmetry of the Fermionic polygon (F-gon). The average value of the 

anchor of the SM algebroid then depends on the fermionic Catalan numbers, CF . Finally, in 

section 5, we find that the ECS physics at loop-level differs from the SM physics: the ECSM 

mass is suppressed by the numbers CF.  For 24-fermions, the calculation of one-loop radiative 

corrections to the bare Higgs mass µ
 
is 125,6 GeV, which is very close to the experimental 

value. 

2. The global ECS symmetry for quarks and leptons 

Hypothetical non-regular leptons are, a) a zero-charged version of the electron, 0e , and, b) a 

positively charged version of the electron neutrino, e


.  Non-regular leptons can, therefore, 

be obtained from the swap of electric charge between electrons and electron neutrinos in the 

internal space. We call these proposed non-regular leptons, electric charge swap (ECS) 

leptons [19]. 

Although ECS leptons have the same mass as ordinary-family leptons, they are distinguished 

from the latter by their different lepton numbers ( 1sL   for ordinary leptons; 1sL    for 

ordinary antileptons) and their electric charge (positive or neutral for ordinary leptons; 

negative or neutral for ordinary antileptons). We hypothesize that ECS leptons are produced 

from ordinary-family leptons when the latter enter the internal space: in these conditions, the 

properties of ordinary-family leptons change profoundly as these leptons lose their 

‘individuality’ and swap their electric charge [31-34]. Το formulate the swap of electric 

charge between ordinary leptons, we have to look for a global symmetry that characterises the 

swap process in the framework of 2-internal dimensions [31-34]. We consider the 2-sphere 

2S  as a quotient space (
2 (2) / (1)LS SU U  ), and express it in terms of the new symmetry 

between the original lepton and the new ECS lepton doublets. We do this in the following 

steps [31-34]: First, we observe that both the ordinary lepton doublet, 0( ) (e , )L el x  , and 
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the ECS lepton doublet, 0
0( ) (e , ) L el x    , can form the fundamental representation of 

(2)LSU [50]. This fundamental representation is given by: 

[ , ]I I i I    .
         (4) 

Τhe generators are denoted as: 
 

 
1

2
I  ,                                                                    (5)

 

where  

1 2 3

0 1 0 1 0
, ,

1 0 0 0 1

i

i
  

     
       

              
(6)

 

are the isospin versions of Pauli matrices.  

The action of the latter on the new lepton states is represented by: 

0 1 0
,

0 1
L ee     
    
   

.                                                                                                          (7)
 

To link the two distinct types of lepton, ordinary and ECS leptons, we assume that neither the 

ordinary ( L ) nor the ECS ( sL ) lepton numbers are conserved, while the overall number of 

leptons is conserved obligatorily.  

0overall sL L L   .                (8) 

sL L , ( ) (e ) 1s eL L     .          (9) 

sL L , 
0(e ) ( ) 1s eL L   .                     (10) 

The quantum numbers of the new ECS leptons are given in Table 1 [31-34]. 

Table 1. Quantum numbers (weak ECS isospin Is, charge Q, ECS hypercharge Ys, ECS 

lepton number LS) of the ECS leptons 0
Le
, ev

.
 

New lepton  I Is-z Q Ys           Ls 

ev   

 

½   ½ 1 1           -1 

0
Le   ½  -½  0 1           -1 

 

The next step is to define the group transformation that can account for the swap of electric 

charges between the electron and electron neutrino particles. The global ECS transformation 

must be derived from a transformation from: 
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1) (2) / (1)I YSU U , in which the fundamental representation of (2)ISU is 

0( ) (e , )L el x  , and (1)YU  is the symmetric group generated by hypercharge 

1Y    

to  

2) (2) / (1)
s sI YSU U , in which the fundamental representation of (2)

sI
SU is 

0
0( ) (e , ) L el x    ,  and (1)

SYU  is the symmetric group generated by swap 

hypercharge 1SY  . 

  

The quotient space SU (2)/U (1) is diffeomorphic to the unit 2-sphere S
2
. Consequently, the 

swap of electric charges between electrons and electron neutrinos must be an automorphism 

of the 2-sphere to itself [31-34]. Since the two internal dimensions are endowed with the 

Fubini-Study
[1]

 metric [51], [52], not all Möbius transformations (e.g., dilations and 

translations) are isometries.
 
Therefore, the automorphism from 

2 (2) / (1)S SU U  to itself, 

which causes the electric charge swap between the electrons and electron neutrinos, is given 

by the isometries that form a proper subgroup of the group of projective linear 

transformations 2 ( arg )
ˆ( ) Ch ePGL C —namely 2( arg )Ch ePSU . Subgroup PSU2(Charge) is isomorphic 

to the global rotation group (3)ECSSO  [51], [52],[ 31-34], which is the isometric group of the 

unit sphere in three-dimensional real space 3R . The automophism of the Riemann sphere Ĉ is 

given by:  

 

( ) 2( arg )
ˆ( ) (3) ,ECS Ch e ECSRot PSU SO 

                
(11) 

2ˆ S  
, 

where ˆ is the extended complex plane, 2( arg )Ch ePSU  is the proper subgroup of the projective 

linear transformations, and global swap symmetry, (3)ECSSO , is the group of rotations in 

three-dimensional vector space 3R . This can be consigned in the double fibration on a vector 

bundle of lines ℑ2
 in the extended space (ad infinitum), that is to say, ˆ    .  

The universal cover of (3)ECSSO  is the special unitary group ( )(2)
SI ISU  [31-34]. This group 

is also differomorphic to the unit 3 sphere S
3
. We regard the ordinary and ECS leptons as 

different electric charge states of the same particle—analogous, that is, to the proton-neutron 

isotopic pair. Finally, in terms of global rotational symmetry between the original lepton and 

the proposed ECS lepton, the ECS 2 sphere 2
ECSS is given by: 

2
( ) ( )  (2) / (1)

S SECS I I Y YS SU U [19],                                                                (12) 

[1]
The round metric of the 2-sphere can be expressed in stereographic coordinates as: 

 
2 2
1 2

2 2(1 )

dy dy
G







, where

2 2
1 2y y   . The metric G  is the Fubini-Study metric of the 2-sphere [51], [52] 
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where ( )(2)
SI ISU  is the special unitary group and ( )(1)

sY YU  is the symmetric group generated 

by hypercharge ( )sY Y . Similar with hypothetical non-regular leptons, hypothetical non-

regular quarks are, a) an 1/3-electrically charged version of the up (α) quark types, α῀, and, b) 

a -2/3-electrically charged version of the down (κ) quark types, κ῀ . Non-regular quarks can, 

therefore, be obtained from the swap of electric charge between up and down quark types. We 

call these proposed non-regular quarks electric charge swap (ECS) quarks [31-34]. We regard 

ordinary and ECS quarks as different electric charge states of the same particle—analogous, 

that is, to the proton-neutron isotopic pair [31-34]. Some quantum numbers of the new ECS 

quarks are shown in Table 2. 

 
Table 2: Quantum numbers of the proposed ECS quarks. 

New (ECS) 

quarks 

Q: electric charge Isz: ECS isospin component Bs: Baryonic number 

u῀,c῀,t῀ 1/3 -½ -1/3 

d῀,s῀,b῀ -2/3 ½ -1/3 

 

The simplest way to realise the global SO(3)ECS group provided by Equation (11) is by adding 

the ECS electron 0
Le  and grouping it together with the ECS electron neutrino ev , electron 

antineutrino e , and electron e into a triplet, as follows: 

2 0 3

0 0
: , | , cos sin

e

e ee eL
ECS e s s

L LL L

L

T V e V
e ee e

e


  

  



 

 



  
                                                     

   

,  (13) 

where θs is an arbitrary real parameter, independent of space-time coordinates, which 

represents the lepton and ECS quark mixing angle. There remains a left-hand singlet: 

        
 

1

0 1

: , | ,

( cos sin )

L
ECS e e row

R R R

e s s L row

S e e V

e V

 

  

     
  

  

.      (14) 

The muon (  ) and its antineutrino (  ), as well the tau (   ) and its antineutrino (  ), can 

be introduced in a manner similar to the above, at the cost of the four ECS leptons 

( 0
L v

 , 0
L v

 ). For this introduction, we have to add an 1/3-electrically charged version of 

the up (α) quark types (ECS-α quarks) and group them together with the -2/3-electrically 

charged version of the down (κ) quark types (ECS-κ quarks), and the anti-up ( )  and down 

(κ) quark types into a triplet: 

sin cos
L s sQ

L

T



   



 
 

  
 
 

.        (15) 
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There remains a left-hand singlet: 

 

 sin cos
LQ s s L

S      .        (16) 

 

Equations (13) and (15) form the fundamental representation space of the SO(3)ECS group: 

0 00, ,sin cos sin cossin cos

e

e s s s ss s

L

vv v

e

e

 

         



 

 

     
      

      
               

,   (17) 

csin cos, ,u sin cos t sin coss ss s s s

L

u tc

sd b

sd b

    

     
     

      
     

     

.    (18) 

Equations (17) and (18) are 3-component vectors for the linear combination between fermions 

and ECS fermions. The representative matrix of a general element of the SO(3)ECS group can 

be written as: 

e
si X

ECSO






 
 , α=(1,2,3),        (19) 

with θ
α 

= (θ
1
,θ

2
,θ

3
) being arbitrary real group parameters independent of space-time 

coordinates, and OECS being an orthogonal 3 × 3 matrix: 

T T
ECS ECS ECS ECSO O I O O  .        (20) 

The three basic ECS rotation matrices that rotate fermions by an angle θs
α
 (α = 1, 2, 3) about 

the x-, y-, or z-axis in three internal dimensions can be explicitly written as follows: 

e si X
ECSO




 .         (21) 

 

In this representative space, the representative matrices of the generators of the SO(3)ECS 

group are denoted by Xα (α = 1, 2, 3): 

 

1

0 1 0
1

1 0 1
2

0 1 0

X

 
 

  
 
 

, 2

0 1 0

1 0 1
2

0 1 0

i
X

 
 

  
 
 

,       3

1 0 0

0 0 0

0 0 1

X

 
 

  
  

.   (22)

 
 

These matrices satisfy the following condition: 

[X ,X ] iC X    ,         (23) 

where Cαβγ are structure constants of the SO(3)ECS group. Generator Xα is Hermitian and 

traceless: 

†X X    , TrX 0  .         (24) 
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To calculate the trace, we used the sum of the diagonal elements of the rotation matrix given 

by Equation (21):  

( ) 2cos || || 1ECS sTr O   .        (25) 

From Equation (25), it follows that the arbitrary absolute value of the ECS angle is: 

( ) 1 ( ) 1
|| || arccos arcsin ,

2 2 2

( )
( ) sin || ||

2

ECS ECS
s s

ECS
s s

Tr O Tr O

Tr O
F


 

 

    
      

   

 

.    (26) 

3. The Standard Model of particle physics in the R-Category theory 

In general, the U(n) gauge group cannot be identified as a more familiar-looking manifold. It 

is an ‘iterated extension’ of the odd-dimensional sphere
1 3 2 1, ,..., ,nS S S 

 and the rational 

homotopic equivalent to the product 
1 3 2 1... nS S S    [53-55]. This means that the U(n) 

gauge group has the same rational co-homology and rational homotopy groups as this 

product; however, it is generally not homeomorphic or diffeomorphic to this product[53-55]. 

‘Iterated extension’ means that the unitary groups fit into fiber sequences which are ultimately 

built from odd spheres, starting with: 

det
1(n) (n)SU U S  ,          (27) 

and continuing with: 

2 1(n 1) (n) nSU SU S    .        (28) 

The first sequence is a short exact sequence of Lie groups and splits smoothly; therefore, 

the U(n) is diffeomorphic to 1(n)SU S [53-55]. In particular, the SM gauge group U(2) [56-

57] is diffeomorphic to the product 
3 1S S  manifold. However, this is not an isomorphism of 

groups, since  U(n) is a semidirect rather than a direct product. The vector spaces of  

( ) ( ) ( )a
ax T x I x




     ,  α=(1,2,3) ,      (29) 

together with the commutator relation  

 

2 1 2 3,[ , ] 0,[ , ] 2I i     α=(1,2,3)       (30) 

2 3 1, 3 1 2[ , ] 2 ,[ , ] 2i i       ,        (31) 

 

are referred to as the SM algebra 4(2)u  . 
2

I are the 2×2 unity matrix and the 3-

tuple (Equation.(31)) of the Hermitian and traceless matrices, respectively; ( )a x are the 

real arbitrary group parameters of the local U(2) gauge group; and α(x) and β(x) are the real 

arbitrary group parameters of the local SU(2) and U(1) gauge groups, respectively. 

From the mathematical point of view, in R-Category—a category theory with invertible 

morphisms [40]—the geometric structures we consider here are always associated with local 
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Lie brackets [ , ] on sections of some vector bundles (Lie algebroids). A Lie algebroid over a 

manifold B is defined to be a vector bundle A over B with a Lie algebra structure  on its space 

of smooth sections [ , ], together with a bundle map, ρ (called the anchor of the Lie 

algebroid), from A to the tangent bundle TB. Here, we definite the ECS-Standard Model 

(ECSM) algebra 4(2)u   from the SM algebroid ASM over the product 3 1M S S   

manifold which satisfies the conditions: 

2 2[ (I ), ( )] ([I , ])               (49) 

2 2 2[I , ] [I , ] ( (I ) )           , α=(1,2,3)     (50) 

[ ( ), ( )] ([ , ])                   (51) 

[ , ] [ , ] ( ( ) )                 , β=(1,2,3)     (52) 

(with  being smooth sections of ASM, and ϕ being a smooth function on 3 1M S S  ), when 

the anchor’s smooth multiplication factor of the SM-algebroid, ASM, is given by Equation 

(26), and the ECS generators are derived from the SM generators by the anchor map: 

2 2 2 2( ) F( ) sins sI I I I     ( )TM ,      (53) 

2 2 2 2( ) F( ) sins s         ( )TM .      (54) 

In the above equations, ( )TM indicates the sections of the tangent bundle TM, 

F( ) sins sF             (55) 

indicates the smooth function on 
3 1S S , and θs are the arbitrary ECS-angles if we 

parametrise the unit 3-sphere by hyperspherical coordinates  0 1 2 3, , ,x x x x  and use  , ,s   . 

By restricting the domain of Equation (26), we obtain: 

 sin : , 1,1 ,
2 2

sins s

 

 

 
   
  .        (56) 

This function is both one-one and onto; therefore, it has inverse function: 

 1

1

sin : 1,1 , ,
2 2

sins s

 

 





 
   

  .        (57) 

By Equations (56) and (57), the anchor of the SM-algebroid, ASM, is thus both an one-one and 

onto map between the SM and ECS generators.  

2 2
2 F( ) F( )

[ ( ), ( )] [F( ) ,F( ) ] F( ) [ , ] [ , ]
F( ) F( )

s s
s s s

s s

T T T T T T T T i T        

 
    

   
    

 
,(58)
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F( )s

T
T 


 
 


;the changes of scale of the generatorT , and an infinitesimal positive 

quantity.    [ , ] ( )sT T iT iF T       (59).For 0   by Equations (58) and (59) we 

have:  [ ( ), ( )] [ , ]T T T T      . 

 

Hence Equations (49) and (51) define the ECSM algebra 4(2)u   in terms of the SM 

algebra 4(2)u   as follows: 

2 2 2[ , ] F( )[ , ] sin [ , ] 0s sI I I          ,      (60) 

[ , ] F( )[ , ] sin [ , ]s s              .        (61) 

Properties  

The ECSM algebra is the F( )s -valued SM algebra in ASM. Consequently, we have the 

following properties for the 4(2)u  algebra: 

1. For angle θs = 0, we find an ECS trivial algebra {0} and the usual SM algebra. 

2. For angle θs = ±π/2, we find the usual SM-algebra. 

3. For every other value of angle θs, we find many SM algebras that depend on ECS angle θs. 

These are called ECSM algebras. 

The terms  2( )I  and  ( )    in Equations (50) and (52) correspond to the Lie 

derivatives of   with respect to 2I  and  : 

2( ) 2sin [I , ] 0I s      , where 2[I , ] 0  ,      (62) 

( ) sin s


        .         (63) 

For a gentle smooth function on 3 1M S S   that satisfies the eigenvalue equation 

im    with eigenvalues ( 0, 1, 2,......m    ), Equations (50) and (52) for the SM 

algebroid ASM become: 

2[I , ] 0  ,          (64) 

[ , ] [ , ](1 F( ))sm          , where 0, 1, 2,......m        (65) 

For ( 0s  ) or ( 0m  ), we find the usual SM-algebra. The other possibilities generated by 

the eigenvalues m are under investigation for a further paper [58]. Following Mark Bugden, 

Peter Bouwkneg (2018)[59] and Cédric Fournel (2013)[44],when ASM is an SM algebroid, we 

can use the anchor map (Equation ()) to lift any vector bundle connection (∇μ) on ASM, to a so-

called A connection (
A∇μ) on ASM: 
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: ( ) ( ) ( )A A A A    .        (66) 

In this paper, we use a specific A connection, given by: 

(T )(T ) : ( ) (T ) ( )A
T

T T


      
     ,      (67) 

where ( )T   is the bundle connection. Once we have an A connection, we can define the A 

curvature of 
A∇μ as follows: 

( ) ( ) [ ( ) , ( ) ]

[e ,e ]

: [ ] [ ( ) ( ) ]

[ ( ), ( )] ( )F ( )

A
T T T TF T T

T T T T

   

 

            

      

 

   

      

     
,   (68) 

where 

[e ,e ][ , ]F
       ,        (69) 

is the curvature of the bundle connection ∇μ. 

3.1. The ECSM-groupoid (2)U  

Following Marius Crainic and Rui Loja Fernandes (2003)[42], we now deduce the known 

inerrability.  

1. Lie algebra bundles: For Lie algebroids with zero anchor map (Lie algebra bundles), the 

orbits are the points of M. Therefore, the conditions of the main theorem [42] are trivially 

satisfied, and we obtain the results of Douady and Lazard (1966) [60]:  

Corollary 1 [42]: Any Lie algebra bundle is integrable to a Lie group bundle. 

Corollary 2: The ECSM algebra is integrable to the ECSM group U(2)ECS. 

By Corollary 1, the SM algebra is integrable to a SM group. By the anchor of the SM 

algebroid ASM (Equations (53-54)), the SM and ECSM algebras are integrable to the SM 

group U(2) and ECSM group U(2)ECS, respectively, up to the anchor homomorphic surjection 

between the SM and ECSM algebra.  

From equations (29) and (53–54), we obtain the vector spaces of  

2( ) ( ) ( )a
ax T x I x




     , α=(1,2,3,4),       (70) 

together with the commutator. Equations (70) and (60), (61) are referred to the ECSM 

algebra 4(2)u  . We observe that: 

   

   

2 2

2

3 1 2

3 3

( ) ( ) ( ) ( ) ( )F( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( , ) ( , )

( ) ( ) ( ) ( )

s s s s

s s s

x I b x x I b x F

x b x b x ib x
F x I b x

x b x x b x

       


    

 

    

  
       

,   (71) 



13 
 

with being the real arbitrary ECS parameters. These parameters are as follows: 

1 1

2 2 3 3

( , ) ( ) ( ), ( , ) ( ) ( ),

( , ) ( ) ( ), ( , ) ( ) ( ),

s s s s

s s s s

a x a x b x b x

b x b x b x b x

     

     

 

 
      (72) 

Here, F( )s  is the smooth function on 3 1S S , given by the  Equation(55); s is the ECS 

mixing angle, which is strictly a  global parameter; and 1 2 3( ), ( ), ( ), ( )a x b x b x b x are the real 

arbitrary group parameters of the local U(2) gauge group [56–57].  

A representation of the SM gauge groupoid (2)U  on a vector bundle E→M induces a 

representation 
A∇ of ASM on E→M, defined by the following system of partial differential 

equations (PDE): 

 

0( ( , )) ( ( , )) | ( ( , )) T ( ( , ))s s s s

d
U x U x U x i U x

d 


     



       




 
   

 
,  (73) 

 

where 

0( ( , )) | Ts

d
U x i

d 


 



 




 
 

 
,  α=(1,2,3,4).      (74) 

 

T
are the generators of the SM algebra, given by Equation (29). Using Equations (71)–(72), 

the solution of the PDE system is given by: 

 2

3(x, ) exp( ( , ) )exp( ( , ) ) | ( , ) , , ( , ) (2)s s s s s sU i x I ib x x b x U               (75) 

with (2)U  being the SM gauge groupoid of two dimensions. Therefore, it follows that   

 3

1 2

(x, ) exp( ( , ))exp( ( , ) ) | ( , ) , , ( , )

U(x) U(x) (1) (2)

s s s s s sU i x ib x x b x

U SU

            

  

,  (76) 

where 

 1(x, ) exp( ( , )) | ( , ), , (1)s s s sU i x x U         ,    (77) 

(1)U is the unitary gauge groupoid in one dimension, generated by phase 2I [56–57], 

and (2)SU is the special unitary gauge groupoid in two dimensions, generated by the 3-tuple 

τα=(τ1,τ2,τ3) of the Hermitian and traceless matrices, respectively[56–57]. By comparing 

equations (76) and (77), we have: 

(2) (1) (2)U U SU  .         (78) 

For the Equations (71)–(72) and (75), we have: 

 2

3

F( )

(x, ) exp( ( ) ( ) ) ( ( ) ( ) ) | ( ) , , ( )

(x) (2)s

s s s sU iF x I iF b x x b x

U U


           

 

,  (79) 

where (x) (2)U U [56–57],  

 3

F( ) F( )
1 2

(x, ) exp( ( ) ( ))exp( ( ) ( ) ) | ( ) , , ( )

U(x) U(x) (1) (2)s s

s s s sU iF x iF b x x b x

U SU
 

          

  

,  (80) 

where 

 
F( )

1 1
(x, ) exp( ( ) ( )) | ( ), , (x) (1)s

s s sU iF x x U U


         ,   (81) 
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  F( )3
2 2

(x, ) exp( ( ) ( ) ) | , ( ) (x) (2)s
s s sU iF b x b x U SU


         ,   (82) 

and 1(x) (1)U U , 2(x) (2)U SU [56–57].  

 

Therefore from equations (79), (80),we have: 

F( ) F( )F( )
1 2

(x) U(x) U(x)s ssU
 

 .       (83) 

 

We observe that the (2),SU(2)U , and (1)U  gauge groupoids are the F( )s -valued U(2), 

SU(2), and U(1) gauge groups [56–57] in θs.  

Properties  

The gauge groupoid (2)U , therefore, has the following properties: 

1. For angle θs = 0, we obtain the trivial group 1 . 

2. For angle θs = ± π/2, we obtain the usual SM gauge group (2)U . 

3. For every other value of angle θs, we obtain many SM gauge groups (2)U  that depend on 

the ECS angle θs; therefore, these groups are called the ECSM gauge group (2)ECSU . 

We regard the ECSM gauge group sectors as mirror SM models [61-63] that are suppressed 

for small values of the ECS angle s . These groups will be explored in future work [64].  

The ECS-angle s in the anchor map (Equation (53-54)) is strictly a global parameter, and 

may originate form a different group. In this case, the ECS angle s could originate either 

from the global SO(3)ECS group or from the finite subgroups of the ECS Möbius 

transformations (see below). Furthermore, as Weinstein article illustrates [42], there is no 

assumption that a gauge transformation actually extends to the entire object U(2): it may be 

that the gauge symmetry does not extend globally but affects only a part of U(2), while the 

ECS symmetry extend globally. 

3.2. The Lagrangian of the gauge groupoid (2)U  

The A connection coefficient of the gauge groupoid (2)U  stems from the A connection:  

( ) T ( T ) (T ) ( ) sin T ( T ) ( ) (x)A A
s sA x T F A                    ,  (84) 

where 

(x) T ( T )A              (85) 

is the SM connection coefficient, and ( )sF  is the smooth function on 3 1S S , given by 

Equation (55). The gauge covariant derivative is as follows: 

( , ) ( , ) ( ) ( )s s sD x igA x igF A x            .     (86) 
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The transformation of ( , )sA x  is derived from the following equation: 

( , )
( , ) e ( , )si x

s sD x D x
 

    .        (87) 

After same matrix manipulations, the solution of Equation (87) for ( , )sA x   in terms of 

( , )sA x   is: 

( , ) ( , ) 1
( , ) e ( , )e ( , )s si x i x

s s sA x A x x
g

   
         ,     (88) 

where ( , )
e si x   is the inverse of the matrix ( , )

e si x  .  The strength of the ECSM and ordinary 

SM gauge fields ( , )sA x
   and ( )A x

  are defined as follows: 

 

1
F ( , ) ( , ), ( , ) ( , ) ( , )

( , ), ( , ) ( ) ( ) ( ) ( ) (x), ( )

( )F ( )

s s s s s

s s s s

s

x D x D x A x A x
g

ig A x A x F A x A x igF A A x

F x

      

       



    

   



      

           



.  (89) 

Similarly, F ( , )sx   and F ( )x  can also be expressed as linear combinations of generators: 

( , ) ( , )T ( )T ( )F ( )T ( )F ( )s s s sF x F x F x F x F x  
              .  (90) 

The transformation law for the matrix ( , )sF x   is:  

( , ) ( , )
( , ) e ( , )e .s si x i x

s sF x F x
   

            (91) 

Thus, we can write down a kinetic energy term as follows: 

 
1

( , ) ( , )
4

ECS s sF x F x 
     .       (92) 

The Lagrangian density of the ECSM is given by: 

2
4

1
( , ) [ ( ( , ) ) ] F ( , )F ( , )

4

F( )
[ ( ( ) ( ) ) ] F (x)F ( ) O( ( ) )

4

ECSM s s s s

s
s s

x igA x T m x x

igF A x T m x

  
   

  
   

      


     

      

      

.  (93) 

We see that the Lagrangian is given in the initial form before the spontaneous breaking of the 

groupoid (2)U  symmetry. The (1)YU  ECS gauge groupoid is implicitly assumed in the 

second term of the summation over (2)LSU . The first term represents the kinetic terms and 

the gauge interactions of fermions, provided by the covariant derivative(s).  

3.2. ECSM gauge field mass 
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It turns out that the concept of spontaneous symmetry breaking plays an important role in the 

proposed theory of ECS electroweak interaction. The broken large groupoid symmetry 

(2) (1) (1)L Y EMSU U U          (94) 

gives the massive ECS particles W and Z  bosons. In equations (80) and (81), we observe 

that the spontaneous breaking of the large groupoid symmetry can only occur when the 

symmetry of electroweak interaction breaks spontaneously: 

SU(2)L×U(1)Y → U(1)EM         (95) 

Equation (95) predicts the massive particles W and Z bosons, whose correct mass has already 

been known since 1983 [4–6]. In Equation (81), (1)EMU  is the ECS gauge groupoid of 

electromagnetism, which is the F( )s -valued U(1)EM common electromagnetism in θs. 

Therefore, we may view the ECS electromagnetism sectors of the
 (1)EMU  gauge groupoid as 

the mirror sectors [61-63] that are suppressed for small ECS angles s (a proposition to be 

explored in further work [64]). The most general Lagrangian consistent with the gauge 

invariance, Lorentz invariance, and renormalizability of the ECS gauge groupoid 

(1) (2)U SU : 

2
( ) ( ) * * 2

2
( ) ( ) 2 * 4 * 2

1
| ( ) | ( )

2 2 4

1
| sin | |{ sin | | ( )} | sin | | sin | | ( )

2 2 4

ECS

s s s s

iA t iB y

i A t iB y

 
  

 
  

 
    

 
        

        

       

,  (96) 

where 

( , ) ( ) ( )s sA x F A x   , ( , ) ( )B ( )s sB x F x   , ( , ) ( ) ( )s sx F x    .   (97) 

The scalar Lagrangian (96) then yields an ECSM vector boson mass term: 

2

( ) ( ) 2

2 2 2 2
*

01 1
| ( ( ) ( ) ) ( ) | ( ) ( ))

( )2 2 2 2

( ) ( , )
( ) ( ) ( ) ( )

4 4

s s s s s
s

s s
s s s s

g g
iA iB A T A

v

v g v x g
W W Z Z

  
    

 
 

       


 
   

   
          

  


 

, (98) 

where g and g  are the coupling constants. The ECSM masses are given as follows: 

2 21 1
( ) 0, ( ) ( ), ( ) ( )

2 2
s s s s sW ZA

M M g M g g            .    (99) 

Here, W  and 0Z  are the gauge bosons that mediate the ECS-exchanging electroweak 

interaction between the families of fermions (for details see [31-34]). Using Equation (97), 

the ECSM masses become 

( ) 0, ( ) F( ), ( ) F( )s A s W s s Z sW ZA
M M M M M M        ,              (100) 
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where 

2 21 1
0, ,

2 2
A W ZM M g M g g                       (101) 

are the gauge boson masses of the SM vector [4–6].  The ECS Higgs potential in Equation 

(96) is given by  

2 42
0 ( )V       .                   (102) 

Decomposing into physical and Nambu-Goldstone (NG) modes, we notice that, when we 

expand about some general vacuum with φ = υ undetermined, the resulting masses are: 

2 2 2( ) 6 ( )s sH
m       ,                  (103) 

2 2 2( ) 2 ( )NGB s sm      ,                  (104) 

where mGB is the common mass of the NG bosons. At the minimum of the potential in 

Equation (), we obtain the bare ECS Higgs mass:  

2 2 2 2 2 2 2( ) 2 4 ( ) 4 ( ) ( )s s s H sH
m F m F           ,               (105) 

where 

2 24Hm  .                    (106) 

The SM Higgs gauge boson [4–6] and all the NG bosons are massless. 

3.3. Masses of the ECSM quarks and leptons 

The masses and mixing of the ECSM quarks and leptons have a common origin, as suggested 

in the SM [4–6]. They arise from the Yukawa interactions with the ECS Higgs condensate: 

*( ( )) ( ( ))u .d I I u I I
Y ij Li s Rj ij Li s RjL Y Q F d Y Q F h c       ,                (107) 

where  ,u d
ijY  are 3×3 complex matrices, ( ( ))sF   is the ECS Higgs field, i, j are generation 

labels, ε is the 2×2 antisymmetric tensor, 
I
LiQ are left-handed ECSM quark doublets, and 

I
Rjd and u I

Rj are, respectively, right-handed down- and up-type ECS quark singlets in the 

weak eigenstate.  

When ( )s  acquires a vacuum expectation value, ( ( ) (0, ( ) / 2)s sv   ), Equation (107) 

yields mass terms for the ECSM quarks, as follows: 

( ) ( )u .I d I u I u I
Y Li ij s Rj ij Li ij s RjL Q m d Y Q m h c     ,                (108) 

where 
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0( ) ( ) F( )d d d
ij s ij s ij s

n

m Y m      , 0( ) ( ) F( )u u u
ij s ij s ij s

n

m Y m     .              (109) 

0d d
ij ij

n

m Y   , 0u u
ij ij

n

m Y                   (200) 

are the SM quark masses [4–6]. The ECSM quark masses depend on the arbitrary couplings 

and cannot be predicted. Furthermore, since ECSM quarks are not observed in isolation, their 

masses are not precisely defined. Similarly, for ECSM leptons, we have: 

0( ) ( ) F( )l l l
ij s ij s ij s

n

m Y m     ,                 (201) 

where 

0l l
ij ij

n

m Y                      (203) 

are the SM lepton masses [4–6]. 

4. Finite subgroups of the ECS Möbius transformations 

We observe that the (2),SU(2)U , and the (1)U  ECS gauge groupoid are the F( )s -valued 

U(2), SU(2), and U(1) gauge groups [4–6] in θs. The ECS angle s in Equation (55) is strictly 

an arbitrary global parameter, and may originate form a different group—either the SO(3)ECS 

group or from the finite subgroups of the ECS Möbius transformations as we explain in this 

section. 

Let Γ be an ECS subgroup of PSL2(C)ECS, consisting of elliptic elements together with the 

identity. Then ΓECS is conjugate in PSL2(C)ECS to a subgroup of PSU2(C)ECS [53-54]. 

Now, by the group isomorphism (12), for every finite subgroup of ECS rotations (i.e. a 

subgroup of PSU2(C)ECS ), we have the following: 

For a given finite group, ΓECS, of ECS rotations in C
∞ 

(Equation ()),one of the following holds 

[53-54]:  

1 .Γ is ECS-cyclic;  

2 .Γ is ECS-dihedral;  

3. Γ is the ECS symmetry group of a regular ECS tetrahedron (A4), ECS octahedron (S4), or 

ECS icosahedron (A5). 

One can show that two finite ECS subgroups in PSL2(C)ECS are conjugate if and only if they 

are isomorphic.  

4.1. ECS-dihedral group 

Here, DF (with F being the number of fermions) refers to the symmetries of the Fermionic 

polygon (F-gon:having F fermionicsides)—a group of order 2F. In abstract algebra, D2F refers 

to this same ECS dihedral group (for details of the Dirac equation on the polygon regions see 

[69-75]). DF is a subgroup of (2) (1)ECS ECSO U , i.e., the group of ECS rotations (about the 

origin) and ECS reflections (across axes through the origin) of the plane. However, the 

notation ‘DF’ is also used for a subgroup of (3) (2)ECS ECSSO SU , which is also an abstract 
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group: the proper symmetry group of an F-gon embedded in three-dimensional internal 

space (if the number of fermions is F ≥ 3).  

 

4.2. The averages of F(θs) function over the triangulation of a convex fermionic F-gon 

The sum of the interior ECS angles of a simple F-gon is (F − 2)π radians. This is because any 

simple F-gon can be considered to be made up of (F−2) triangles, each of which has an angle 

sum of π radians: 

2
( ) 1s F

F
 

 
  
 

,                    (204)  

where 

ordinary ECSF F F  .                   (205) 

F is the total number of fermions, given by the sum of ordinary ordinaryF and ECS 

fermions ECSF . Following [76], we find that the number (CF) of triangulations of a convex 

fermionic F-gon in the internal space satisfies the recursive formula 

0 1 1 2 1 0...F F F FC C C C C C C       ,                 (206) 

where C0 = 1 [77-80]. The numbers CF are now called fermionic Catalan numbers. From 

(206), it follows that C1 = 1, C2 = 2, C3 = 5, and so on. Using generating functions and 

Segner's formula, an explicit formula for CF can be developed [80]: 

(2 )!

( 1)! !
F

F
C

F F



,                    (207) 

with F being the total number of fermions.                 

After the triangulation of a convex fermionic F-gon in three-dimensional internal space, 

Equation () becomes: 

 
 

( )

sin (F) 2
sin (F)

F

s averge
s

F FC C

 



   , on [0,π/2],               (208) 

where 

 
2

sin (F)s averge



 , on [0,π/2].                 (209) 

This is the normalised average sin of the ECS angle θs over the triangulation of a convex 

fermionic F-gon by the fermionic Catalan numbers CF. 

 

5. Results  

Now that the averages of the F(θs) function have been determined by the fermionic Catalan 

numbers CF, we consider two possible scenarios of ECS contribution to the SM: 



20 
 

Loop level: The ECS Physics at loop-level differs from the SM physics; the ECSM mass is 

not identical to the SM mass; therefore, 

 
p ( )

( )

2
sin (F) 1n

n
s

n p SM

M

C M


 




   ,on [0,π/2]                            (210) 

implies  

 p ( ) ( )

2
sin (F)

n n

p SM
s p SM

F

M
M M

C



  

  , on [0,π/2],                       (211) 

where
2p ( )M   are the triangulation masses of the ECS particles (from equation 

(208)), p SMM  are the corresponding masses of the SM particles, and CF are the fermionic 

Catalan numbers for the triangulations of the fermionic F-gon. 

Tree level: The ECS Physics at tree level is the same as the SM physics, and the ECSM 

masses are identical to the SM masses. Therefore, 

  2

2

p ( )

( )
2

2
sin (F) 1s

p SM

M

C M


 




   , on [0,π/2]               (212) 

implies  

2p ( )p SMM M   ,                  (213) 

where
2p ( )M    are the ECS particle triangulation masses of the fermionic 2-gon, are the 

corresponding SM particles masses, and C2 = 2 is the fermionic Catalan number for the 

triangulation of the fermionic 2-gon. 

In the proposed ECS model ((211),(212)), the tree-level mass term, µ0, which sets the weak 

scale, is naturally ∼ mW. We thus only consider the effect of the new ECS physics at loop 

level. 

Considering the one-loop contribution to the effective potential (102), the radiative 

corrections take the form: 

2
4 2 2

1 2 2 2

1
( ) log( ( ( ))) ( ( )) ...

64 32

c
F FV d kSTr k M STrM  

  


                  (214) 

where STr = Tr (−1)
F
 defines the supertrace. This new contribution can be absorbed into V0 

(Equation (102)) by shifting the bare µ
2
: 

2
2 2 2

0 2 2

2
2 2 2 2 2
0 2 2

3
( ( ))

32

3
[ ( ) 2 ( ) ( ) 4 ( )] ....

32

A

A A A A

C
FH

C
F F F FtH W Z

M STrM

M M M m

 
 


 


  


         

 ,            (215) 

The trace over the φ-dependent triangulations masses is given by 

2 2 2
0)

2 2 2

0)

( ( )) (m ( ) | m ( ) | )

3(m | m | ) 3m ( ) |

F F FH H
scalars

NGB NGB FH

M
  

    


 

  

    

   


.              (216) 

Thus Equation (215) is reproducing.  
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Here, ( )FH
M  ,

, ,
( )FW Z

M  , and ( )Ftm   are the triangulation masses of the ECS top quark 

(from equations (211) and (3)), ECS ,W Z , and ECS Higgs bosons ( H ), respectively, and v 

is the vacuum expectation value of the Higgs potential in the SM [4-6]. The dots include 

logarithmic corrections in ΛC, as well as contributions independent of ΛC in the large ΛC limit.  

Using  equations (211) and (3), we obtain the one-loop radiative corrections to the bare Higgs 

mass: 

2 2 2 2
2 2 2

0 02 2 2 2

3 ( ) 3

8 4

AF Ct t C
H

F

m
M

C


 

  

  
    .               (217) 

These corrections depend on the fermionic Catalan number CF (Equation.(207)), the top quark 

Yukawa coupling t and the cut-off energy scale ΛC. 

Following equations [9], an all-orders result for 
2
H

M  is given by the following equation: 

2 2 2
0

0

( )logn c
c nH

n

M c
Q

 




 
    

 
 ,                 (218) 

where c0 = (32π2)
−1

STr M
2
/υ

2
. The remaining cn can be calculated recursively by the 

following relation: 

1(1 )
(log )

n n
n i

i

dc c
n c

d Q






  


,                 (219) 

where 
2
0 should ne independent of the renormalization scale Q.  For example: 

2
2 2 2 2 2 2 2 2

1 2 2

4 4 2 2

2 2 2

(16 ) (144 54 18 72 ) (27g 17 96 90 )

15 25 9

2 2 2

t
t t

F F

F F F

c g g g
C C

g g g g
C C C


            

   

.         (220) 

 

Since each order in n involves more factors of (16π
2
C

2
F)

 −1
, we expect that, for large fermionic 

Catalan numbers CF, the higher-loop contributions are unimportant. Our approach to the 

higher-order contributions yields that each cn ≠0 is suppressed by the large fermionic Catalan 

number CF for all n separately. In the infinite cutoff limit (or in a cutoff-independent 

solution), this would be the correct procedure for solving the fine-tuning problem [29]. Given 

that all cn ≠0 are independent of, and suppressed by, the large CF over the (λi) parameter, a 

solution exists. Therefore, our approach makes it possible to solve the fine-tuning problem, 

since an all orders of solutions exist. For an equal number of ordinary and ECS fermions, the 

calculated one-loop radiative corrections to the bare Higgs mass µ
2
 is given in Table 3. 
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Number of Ordinary  Fermions (FOrdinary) 

12 

Number of ECS  Fermions (FECS) 

12 

Total Number of Fermions (F) Eq. (205) 

24 

Fermionic Catalan Number (CF) Eq (207) 

2.28×10
12

 

Higgs Mass MH  (GeV) Eq (217) 

125,6 

 

Table 3. One-loop radiative corrections to the bare Higgs mass, as calculated from Equation (). For  

fermionic Catalan number C24 = 2.28×10
12 

(Equation (207)), and top quark Yukawa coupling 

0,93t  and the cut-off energy scale ΛC. = O(10
1 5

GeV). 

This result is very close to the experimental value of the Higgs mass [10,11].  The all-orders 

result for 
2
H

M  with a fermionic Catalan number 24C  becomes: 

2

2 2
0

024

( )lognc c
nH

n

M c
C Q

 




    
     

  
 .                (221) 

For instance, the calculated result 

2
2 2 2 2 2 2 2 2

1 2 2
24 24

4 4 2 2

2 2 2 2
24 24 24 24

(16 ) (144 54 18 72 ) (27g 17 96 90 )

15 25 9 1

2 2 2

t
t tc g g g

C C

g g g g O
C C C C


            

 
       

 

.        (222) 

is of the order of the inverse square of the fermionic Catalan number of the 24F-gon. Our 

approach, therefore, solves the fine-tuning problem, since it provides an all-orders solution 

which is suppressed by the fermionic Catalan number CF for all n separately. For 24 fermions, 

we calculate a Higgs mass of 125,6 GeV which is very close to the experimental value 

[10,11]. 

6. Conclusion  

Taking the SU(2) group of weak interactions in the presence of electric charge swap (ECS) 

symmetry as a starting point, we show that ordinary and non-regular (ECS) leptons are related 

by the ECS rotational SO(3) group. 
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We investigate a version of the SM algebroid with the anchor map depending on the ECS 

angle θs. We find that many SM algebras depend on the ECS angle θs. We call these ECSM 

algebras. Furthermore, the SM algebroid is integrable to the SM groupoid; so, our results 

potentially extend well beyond this case. Then, we investigate how the breaking of the SM 

groupoid symmetry gives the massive ECS particle. We find that the ECS particle mass is 

related to the SM particle mass through the ECS angle θs.  

We investigate the finite subgroups of the ECS Möbius transformations. In this case, the 

ECS-angle s  could originate from the ECS dihedral group that refers to the symmetry of 

the Fermionic polygon (F-gon). The ECS angle θs can then be determined through the 

triangulation of a convex fermionic F-gon.  

Finally, we find that, at loop-level, the ECS Physics is different from the SM physics, and the 

ECSM mass is suppressed by the fermionic Catalan numbers CF.  For 24-fermions, the 

calculated one-loop radiative correction to the bare Higgs mass µ
2 

is 125,6 GeV—very close 

to the experimental value. 
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