Conservation of Energy and Particle Moving Towards a Mass

Karl De Paepe*

Abstract

We consider a zero rest mass classical particle moving from infinity towards a point mass along a fixed line containing the mass. We show gravitation with only constants c and G with dimension does not satisfy conservation of energy.

1 Introduction

We restrict to gravitation that has only constants c and G with dimension. Units are chosen so that $c=G=1$. Let x, y, z be coordinates of space and consider a point mass A on the x axis. Let γ be a zero rest mass particle moving along the x axis from infinity towards A. Here γ being considered as a classical particle. When γ is at infinity let A be at rest at the origin and have total energy M. Let E be the energy of γ at infinity.

2 Energy gain function

As γ moves towards A it gains energy from A. Let the function $W(M, E, h, R)$ be the amount of energy γ gains on moving from an x value of $R+h$, with $R>0$ and $h>0$, to an x value of R. For small E / M and M / R the amount of energy γ gains on moving from infinity to R is approximately $M E / R$. For small $E / M, M / R$, and h / R we have $W(M, E, h, R)$ is approximately $M E h / R^{2}$.

Since c and G are the only constants with dimension there is then a dimensionless function F of the dimensionless variables $M / R, E / R$, and h / R such that we can write

$$
\begin{equation*}
W(M, E, h, R)=\frac{M E h}{R^{2}} F\left(\frac{M}{R}, \frac{E}{R}, \frac{h}{R}\right) \tag{1}
\end{equation*}
$$

We will assume $W(M, E, h, R)$ is an increasing function of E.

3 Bound on energy gain

By conservation of energy γ cannot gain more than an amount M of energy so

$$
\begin{equation*}
W(M, E, h, R) \leq M \tag{2}
\end{equation*}
$$

As a consequence of this bound there is then a dimensionless function $B(M / R, h / R)$ such that

$$
\begin{equation*}
\sup _{E}\left\{\frac{M E h}{R^{2}} F\left(\frac{M}{R}, \frac{E}{R}, \frac{h}{R}\right)\right\}=\frac{M h}{R} B\left(\frac{M}{R}, \frac{h}{R}\right) \leq M \tag{3}
\end{equation*}
$$

[^0]For small $E / M, M / R$, and h / R since $W(M, E, h, R)$ is approximately $M E h / R^{2}$ and by the assumption that $W(M, E, h, R)$ is an increasing fuction of E we have $B(M / R, h / R)>0$ for small M / R and h / R. Consequently we can define

$$
\begin{equation*}
b=\inf _{R>R_{0}}\left\{B\left(\frac{M}{R}, \frac{h}{R}\right)\right\} \tag{4}
\end{equation*}
$$

where R_{0} is chosen so that M / R_{0} and h / R_{0} are small. We have $b \geq 0$.
$4 \quad b=0$
The amount of energy γ gains on moving from $R+(N+1) h$ to R is the amount of energy γ gains on moving from $R+(N+1) h$ to $R+N h$ plus the amount of energy γ gains on moving from $R+N h$ to $R+(N-1) h$ and so on. For a γ having large E this is approximately

$$
\begin{equation*}
\sum_{n=0}^{N} \frac{M h}{R+(N-n) h} B\left(\frac{M}{R+(N-n) h}, \frac{h}{R+(N-n) h}\right) \geq \sum_{n=0}^{N} \frac{M h b}{R+(N-n) h} \tag{5}
\end{equation*}
$$

where $R>R_{0}$. It follows by section (3) the energy γ gains on moving from $R+(N+1) h$ to R becomes closer and closer to the left hand side of (5) as E becomes larger and larger. If $b>0$ the right hand sum of (5) becomes unbounded as $N \rightarrow \infty$. Consequently for some N the left hand sum would become larger than M hence the energy γ gains, for large E, would be larger than M violating conservation of energy. We must have $b=0$.

5 Contradiction

Since $B(M / R, h / R)>0$ for $R>R_{0}$ and $b=0$ it follows there must be a sequence $\left\{R_{k}\right\}$ where $R_{k} \rightarrow \infty$ as $k \rightarrow \infty$ such that $B\left(M / R_{k}, h / R_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$. Define the function

$$
\begin{equation*}
C(M, h, R)=R B\left(\frac{M}{R}, \frac{h}{R}\right) \tag{6}
\end{equation*}
$$

We have $C\left(M_{k}, h_{k}, R\right) \rightarrow 0$ as $k \rightarrow \infty$ where $M_{k}=M R / R_{k}$ and $h_{k}=h R / R_{k}$. By (3) and (6)

$$
\begin{equation*}
\frac{M E h}{R^{2}} F\left(\frac{M}{R}, \frac{E}{R}, \frac{h}{R}\right) \leq \frac{M h}{R} B\left(\frac{M}{R}, \frac{h}{R}\right)=\frac{M h}{R^{2}} C(M, h, R) \tag{7}
\end{equation*}
$$

hence

$$
\begin{equation*}
E F\left(\frac{M}{R}, \frac{E}{R}, \frac{h}{R}\right) \leq C(M, h, R) \tag{8}
\end{equation*}
$$

Substitute M_{k} for M and h_{k} for h in this inequality and let $k \rightarrow \infty$ gives since M_{k}, h_{k}, and $C\left(M_{k}, h_{k}, R\right)$ go to zero and $E>0$ that

$$
\begin{equation*}
F\left(0, \frac{E}{R}, 0\right) \leq 0 \tag{9}
\end{equation*}
$$

As stated before for small $E / M, M / R$, and h / R that $W(M, E, h, R)$ is approximately $M E h / R^{2}$. Comparing this with (1) we have $F(0, E / R, 0)$ for small E / R is approximately one contradicting (9).

6 Conclusion

Assuming that the energy gain of γ on moving from $R+h$ to R increases as the energy γ has at infinity increases it was shown that a gravitation with only constants c and G with dimension does not satisfy conservation of energy. Other conservation of energy arguments are presented in [1] and [2].

References

[1] K. De Paepe, Physics Essays, March 2013
[2] K. De Paepe, Physics Essays, June 2017

[^0]: *k.depaepe@alumni.utoronto.ca

