Conservation of Energy and Particle Moving Towards a Mass

Karl De Paepe*

Abstract

We consider a zero rest mass classical particle moving from infinity towards a point mass along a fixed line containing the mass. We show gravitation with only constants c and G with dimension does not satisfy conservation of energy.

1 Introduction

We restrict to gravitation that has only constants c and G with dimension. Units are chosen so that c = G = 1. Let x, y, z be coordinates of space and consider a point mass A on the x axis. Let γ be a zero rest mass particle moving along the x axis from infinity towards A. Here γ being considered as a classical particle. When γ is at infinity let A be at rest at the origin and have total energy M. Let E be the energy of γ at infinity.

2 Energy gain function

As γ moves towards A it gains energy from A. Let the function W(M, E, h, R) be the amount of energy γ gains on moving from an x value of R + h, with R > 0 and h > 0, to an x value of R. For small E/M and M/R the amount of energy γ gains on moving from infinity to R is approximately ME/R. For small E/M, M/R, and h/R we have W(M, E, h, R) is approximately MEh/R^2 .

Since c and G are the only constants with dimension there is then a dimensionless function F of the dimensionless variables M/R, E/R, and h/R such that we can write

$$W(M, E, h, R) = \frac{MEh}{R^2} F\left(\frac{M}{R}, \frac{E}{R}, \frac{h}{R}\right)$$
(1)

We will assume W(M, E, h, R) is an increasing function of E.

3 Bound on energy gain

By conservation of energy γ cannot gain more than an amount M of energy so

$$W(M, E, h, R) \le M \tag{2}$$

As a consequence of this bound there is then a dimensionless function B(M/R, h/R) such that

$$\sup_{E} \left\{ \frac{MEh}{R^2} F\left(\frac{M}{R}, \frac{E}{R}, \frac{h}{R}\right) \right\} = \frac{Mh}{R} B\left(\frac{M}{R}, \frac{h}{R}\right) \le M$$
(3)

k.depaepe@alumni.utoronto.ca

For small E/M, M/R, and h/R since W(M, E, h, R) is approximately MEh/R^2 and by the assumption that W(M, E, h, R) is an increasing function of E we have B(M/R, h/R) > 0 for small M/R and h/R. Consequently we can define

$$b = \inf_{R > R_0} \left\{ B\left(\frac{M}{R}, \frac{h}{R}\right) \right\}$$
(4)

where R_0 is chosen so that M/R_0 and h/R_0 are small. We have $b \ge 0$.

4
$$b = 0$$

The amount of energy γ gains on moving from R + (N + 1)h to R is the amount of energy γ gains on moving from R + (N + 1)h to R + Nh plus the amount of energy γ gains on moving from R + Nhto R + (N - 1)h and so on. For a γ having large E this is approximately

$$\sum_{n=0}^{N} \frac{Mh}{R + (N-n)h} B\left(\frac{M}{R + (N-n)h}, \frac{h}{R + (N-n)h}\right) \ge \sum_{n=0}^{N} \frac{Mhb}{R + (N-n)h}$$
(5)

where $R > R_0$. It follows by section (3) the energy γ gains on moving from R + (N + 1)h to R becomes closer and closer to the left hand side of (5) as E becomes larger and larger. If b > 0 the right hand sum of (5) becomes unbounded as $N \to \infty$. Consequently for some N the left hand sum would become larger than M hence the energy γ gains, for large E, would be larger than M violating conservation of energy. We must have b = 0.

5 Contradiction

Since B(M/R, h/R) > 0 for $R > R_0$ and b = 0 it follows there must be a sequence $\{R_k\}$ where $R_k \to \infty$ as $k \to \infty$ such that $B(M/R_k, h/R_k) \to 0$ as $k \to \infty$. Define the function

$$C(M,h,R) = RB\left(\frac{M}{R},\frac{h}{R}\right)$$
(6)

We have $C(M_k, h_k, R) \to 0$ as $k \to \infty$ where $M_k = MR/R_k$ and $h_k = hR/R_k$. By (3) and (6)

$$\frac{MEh}{R^2}F\left(\frac{M}{R},\frac{E}{R},\frac{h}{R}\right) \le \frac{Mh}{R}B\left(\frac{M}{R},\frac{h}{R}\right) = \frac{Mh}{R^2}C(M,h,R)$$
(7)

hence

$$EF\left(\frac{M}{R}, \frac{E}{R}, \frac{h}{R}\right) \le C(M, h, R)$$
(8)

Substitute M_k for M and h_k for h in this inequality and let $k \to \infty$ gives since M_k, h_k , and $C(M_k, h_k, R)$ go to zero and E > 0 that

$$F\left(0,\frac{E}{R},0\right) \le 0 \tag{9}$$

As stated before for small E/M, M/R, and h/R that W(M, E, h, R) is approximately MEh/R^2 . Comparing this with (1) we have F(0, E/R, 0) for small E/R is approximately one contradicting (9).

6 Conclusion

Assuming that the energy gain of γ on moving from R + h to R increases as the energy γ has at infinity increases it was shown that a gravitation with only constants c and G with dimension does not satisfy conservation of energy. Other conservation of energy arguments are presented in [1] and [2].

References

- [1] K. De Paepe, Physics Essays, March 2013
- $\left[2\right]$ K. De Paepe, Physics Essays, June 2017