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Abstract

We have explained, and shown by feature stringy examples, why a D-brane in superstring theory,
when treated as a fundamental dynamical object, can be described by a map ¢ from an Azu-
maya/matrix manifold X** with a fundamental module with a connection (E,V) to the target
spacetime Y. In this sequel, we construct a non-Abelian Dirac-Born-Infeld action functional
SSI;? ’B)(cp, V) for such pairs (¢, V) when the target spacetime Y is equipped with a background
(dilaton, metric, B)-field (®, g, B) from closed strings. We next develop a technical tool needed

to study variations of this action and apply it to derive the first variation 65’&2? '5) /6(p, V) of

SSE?’B) with respect to (¢, V). The equations of motion that govern the dynamics of D-branes
then follow. We introduce a new action Séfﬁﬁ’f&B’C) for D-branes that is to D-branes as the
Polyakov action is to fundamental strings. This ‘standard action’ is abstractly a non-Abelian
gauged sigma model based on maps ¢ : (X*, E;V) — Y from an Azumaya/matrix manifold
X* with a fundamental module £ with a connection V to Y enhanced by the dilaton term, the
gauge-theory term, and the Chern-Simons/Wess-Zumino term that couples (¢, V) to Ramond-
Ramond field. In a special situation, this new theory merges the theory of harmonic maps and
a gauge theory, with a nilpotent type fuzzy extension. A complete action for a D-brane world-
volume must include also the Chern-Simons/Wess-Zumino term S (CCS)/WZ(@, V) that governs how
the D-brane world-volume couples with the Ramond-Ramond fields C' on Y. The current notes

lay down a foundation toward the dynamics of D-branes along the line of this research project.



1 Introduction

We have explained, and shown by feature stringy examples, why a D-brane in superstring the-
ory, when treated as a fundamental dynamical object, can be described by a map ¢ from an
Azumaya/matrix manifold X* served as the D-brane world-volume, with a fundamental mod-
ule with a connection (F, V), served as the Chan-Paton bundle, to the target space-time Y. In
this sequel, we construct a non-Abelian Dirac-Born-Infeld action functional S]%Ig 'B) (p, V) for such
pairs (¢, V) when the target spacetime Y is equipped with a background (dilaton, metric, B)-field

(®, g, B) from closed strings. We next develop a technical tool needed to study variations of this
action and apply it to derive the first variation 6S5u?? /6(¢, V) of SS9 with respect to (i, V).
The equations of motion that govern the dynamics of D-branes then follow. A complete action for
a D-brane world-volume must include also the Chern-Simons/Wess-Zumino term S(c%)/wz(% V)
that governs how the D-brane world-volume couples with the Ramond-Ramond fields C' on Y.

In the current notes, a version S (Cgfa,z (p, V) of non-Abelian Chern-Simons/Wess-Zumino action

functional for (p, V) that follows the same guide with which we construct S5u?® (p, V) is con-

structed for lower-dimensional D-branes (i.e. D(-1)-, DO-, D1-, D2-branes). Its first variation
08 (CC;}BV)VZ(QO, V) /d(p, V) is derived and its contribution to the equations of motion for (p, V) fol-
lows. For D-branes of dimension > 3, an anomaly issue needs to be understood in the current
context. The current notes lay down a foundation toward the dynamics of D-branes along the
line of this D-project. Some highlights of the history of how the Born-Infeld action and the
Dirac-Born-Infeld action arise from open string theory and a list of issues one needs to resolve
to convert such an action to that for coincident D-branes are given in the research article. They
serve as a guide for the steps of our exceptional discussion.

We introduce a new action S(fé};ﬁfgﬁ’c) for D-branes that is to D-branes as the (Brink-

Di Vecchia-Howe/Deser-Zumino/) Polyakov action is to fundamental superstrings. This action
depends both on the (dilaton field p, metric h) on the underlying topology X of the D-brane
world-volume and on the background (dilaton field ®, metric g, B-field B, Ramond-Ramond field
(') on the target space-time Y’; and is naturally a non-Abelian gauged sigma model — based on
maps ¢ : (X*, E;V) — Y from an Azumaya/matrix manifold X** with a fundamental module
E with a connection V to Y — enhanced by the dilaton term that couples (¢, V) to (p, @),
the B-coupled gauge-theory term that couples V to B, and the Chern-Simons/Wess-Zumino
term that couples (¢, V) to (B,C) in our standard action S¥%95)  Before one can do so,
one needs to resolve the built-in obstruction of pull-push of covariant tensors under a map from
a noncommutative manifold to a commutative manifold. Such issue already appeared in the
construction of the non-Abelian Dirac-Born-Infeld action. In this note, we give a hierarchy of
various admissible conditions on the pairs (¢, V) that are enough to resolve the issue while being
open-string compatible. This improves our understanding of admissible conditions beyond. With
the noncommutative analysis, we develop further in this note some covariant differential calculus
for such maps and use it to define the standard action for D-branes. After promoting the setting
to a family version, we work out the first variation and hence the corresponding equations of
motion for D-branes of the standard action and the second variation of the kinetic term for
maps and the dilaton term in this action. Compared with the non-Abelian Dirac-Born-Infeld
action constructed in the research article along the same line, the current standard action is
clearly much more manageable. Classically and mathematically and in the special case where
the background (®, B,C') on Y is set to vanish, this new theory is a merging of the theory of
harmonic maps and a gauge theory (free to choose either a Yang-Mills theory or other kinds
of applicable gauge theory) with a nilpotent type fuzzy extension. The current bosonic setting
is the first step toward fermionic D-branes and their quantization as fundamental dynamical
objects, in parallel to what happened for fundamental superstrings with inclusion of exceptional
type extremal brane systems.



2 The first variation of the Dirac-Born-Infeld action

Given an admissible Lorentzian map,
2 (XAZ7E7V) — (KQ,Ban),

let T := (—¢,e) C R and ¢; : (X**, E;VY) — (Y,g,B,®), t € T, be a differentiable T-family of
admissible Lorentzian maps that deforms ¢ =: ¢g. In this subsection we derive in steps the first
variation

d ®,9,B
ai_, Sout” (e V)
of the Dirac-Born-Infeld action. The derivation for the other two situations: (Y, g) Lorentzian

and ¢, spacelike, and (Y, ¢) Riemannian and ¢; Riemannian, are completely the same.
As the major part of the discussion is local and around 0 € T', we will assume that ¢ is small
enough and set the computation over a small enough coordinate chart U C X (with coordinate

functions & = (x', --- | ™) so that F|y is trivializable and trivialized, and ¢;(U) is contained
in a coordinate chart V' C Y (with coordinate functions y = (y!, - -+ , y")). Recall from Sec. 3.2
that, over U,
SS P 0(en V) = ~Tuor [ Re (Tr (7% /= SymDetu (5ilg + B) + 2ra'Fn) ) )

U

.7

- m,l/ Re (Tr (e—vi@ \/—SymDet(Z@?(Eij)DfLapg(yi)Df,gog(yj) + 21 [v;,vi])u )) o
U 17

Here, we set the notation for the tensors and connections involved as follows:
g+ B = Y,i(95+ By)dy @dy’ = ¥, ; Eydy' @ dy?, with g;; = gji, Bij = — By,
* V= d+ A" = ¥,(0,+ Al,)dx" is the connection on Ely,
* D' = d+ A ] = 2,0, + A, -])da* is the V'-induced connection on Endo(E|y),
* d™x = dax' A --- Adx™ is compatible with the orientation on U

and, for later use,

d

iy d
Pl = g

(). G =g e, A= gl oAl

We assume further that the local chart U and ¢ > 0 are small enough so that the construction
over Ur := U x (—¢,¢) in Sec. 4.1, with p € U x {0} C Uy, applies simultaneously to e~® and
Eij,i,j =1, ---, n, to give the local expression of ¢h(®) and @h(Ey;), 7,7 =1 ..., n, in terms
of elements in the polynomial ring over C*(Ur)

t=0

(@), Gh(Ey) € (S50%(Un) My ) [, - ")

of multi-degree < (r — 1, -+, r — 1). Associated to these settings and with the notation from
Remark/Notataion 4.2.3.5, recall that

e = Pr(e™) = Re_d)[o”ydsoﬁT(y)d’
jtt:oe—eot}(@) — c?tt:() ﬂ(e—cb) _ Re_q)[”yw((puT(y)d):
and
vr(Ey) = R™ [OHydsonT(y)d’
G| AE) = REW



for 7,5 =1, ..., n. For simplicity of notation, it is understood that R¥i[1] is evaluated at ¢t = 0
in the expression R % [1]|y 0 (o ()] and similarly for induced expressions that follow this.
T

The first variation of each ingredient in the Dirac-Born-Infeld action

(a) The first variation of e @ and ©*(Ey;)  Then, it follows from Proposition 4.2.3.1 that

(@) _ e ®
t=0 (e ' = n [1]|yd'(w“(yd))

dt
> > >
=1 d=0 d,|d|=d 7ecPin(1,d), iz, q=i'

(071R " [ (@) - *(v") - (105 R" " () (¥ (w))
=3 ; R [ n (@ ) - ") - BTG 2 (P ()
i'=1 d,d,7;|d|=d, iz q=i
and
d ﬁ E
gt (Pr(By) = BE| e,

(b) The first variation of D,o*(y') and F,, By straightforward computation,

i d ; ;
dil,_, (Drerw) = G| (0uhts) + AL Sh))
= DM( ) = [P, Al
and
4 ro_ d T oT
dt|,_ T = ),y Vi Vo
= D,A, — D,A,.

The first variation of the Dirac-Born-Infeld action

With all the ingredients prepared, the computation of the first variation of Spg; (¢, V) is now
straightforward, though some of the expressions may look complicated due to noncommutativity.
We proceed in five steps.

Step (1) : Input from all the pieces

Let
Zsot ()DLl (y') + 2ma’ [V, VL] € C*(Endc(E|y))



and M (t) :== [M ()], the m x m matrix with (p, v)-entry M, (t). Then,

d d
It . Spgi (¢, V) = —Th1 i . /U Re (Tr (e*“"g(q’) V—SymDet(M(t)))) d"x
d
= —T._1 /U Re (T’I“ at . (eﬂpg(q’) \/SymDet(M(t)))> d"x;
d
Tr it . (e_“’g(@) \/—SymDet (M(t)))

L3

= 1 (R " [t]0)

d
- V/=SymDet(M(0))) + Tr (e—w@) y

\/—SymDet (M (t)) ) .
=0

Yyl (y! i

Since (¢, V) is admissible, e=#*(®) and \/—SymDet(M(t)) commute. Thus,

VDA ) = S 1 (e SSmDa I -

—* (@) d
Tr (e ® dt 3

SymDet (M(t))) .

t=0 t=0

Denote by [-]" the transpose of the matrix [-] and let

M 1)(t) . .
M(t) = — [M(lﬁ ...’M(m)}
M (m)(t)
be the presentation of M () in terms of its row vectors and denote 4% o M ,(t) by M w(0),
for u =1, ..., m. Then
d - :
dt|,_ SymPet(M(0) = > SymDet (M 1y(0) 7, -+, M1y (0) T, My (0) T, Mgy (0) 7 -+, My (0)T]T).
- =
Denote 4 o M., (t) by M, (0), for i, v =1, ..., m. Then, the v-th entry in M ,(0) is given
by
M (©0) = Y RPN gy, Dud' 0D ()
ij
+ > P (Ey) - (Dudt(y') — 9 (y), Au)) - Dot (y?)
ij
+ Y HENDN ) - (D) — [W(y), Al) + 27’ (DA, — D,A,).
ij
With

MW(O) = Zwﬁ(Eij)Dmpﬁ(yi)Dvwﬂ(yj) + 2ma/ [vall]a
,J

one has altogether:

d
dt

Sppr (¢, V) = —T, 1 % /U Re (Tr (e‘“"g(@ \/—SymDet (M (t)) )) d™x
t=0

t=0

67(1)
- T, /U Re (Tr( RS g gy + V/—SymDet(M(0))

— % e #"(®) \/—SymDet (M (0))

3 SymDet (M (0) T, -+, M1y (0) s My (0) T, My (0)7, -+, My (0)7]7) )) d™

p=1

= s [ Re(Tr (R Wy gy - V/=SmDe ((0)

1

-5 e (®) \/—SymDet (M (0)) -

m
Z Z (_1)0M10(1)(0) ©--- ®M(u71) o’(ufl)(o)
H=loESumn, OM 15,0y (0) © M (1) (151 (0) @ -+ © My 1y (0) )) A"z .
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Step (2) : Arrangement to boundary terms and the linear functional 0Spe: (¢, V)/6(p, V) on

Summands from the first cluster

674)
R [1]ya(gaggay, - /= SymDet (M(0))
contain only ¢*(y?), i =1, ..., n, from (Refq)[l])|yd (o ()" Hence, it contributes solely to the
linear functional 6S559) (0, V) /8(¢, V) on (& (y1), -+, @ (y"); Ay, -+, Ay) and, hence, to the

equations of motion for (¢, V).
On the other hand, summands from the expansion of the second cluster

-1

_ L (@ \/_SymDet (M (0))

2
Z Y (1) Mi,0)(0)© -+ © My 1yo-1)(0)
p=10E€Symp OM 150 (0) © M (441) 0 (u+1)(0) © =+ + © My 56m) (0)

are of two types:

* One contains a factor in the list @*(y), i = 1, ..., n, AM, pw = 1,...,m from some
MM/,,/(O), W, v =1,..., m. They contribute to the linear functional éSpg1 (¢, V)/d(p, V)
on (¢H(yl), -, PHy™); Ay, -+, A,,) and, hence, to the equations of motion for (¢, V).

* The other contains a factor in the list Dugp( ), i=1,....,n p=1 ..., m, DMA,,,
w, v=1,...,m, from some M# (0), 1/, v =1, ..., m. After integration by parts, each
contributes a boundary term in an 1ntegral faU( ) and a term in the linear functional
6Spe1 (¢, V) /6(0, V) on (¢E(yh), -+, PH(y™); A1, ---, Ay). The latter contributes then to

the equations of motion for (¢, V).

We now proceed to study their details.

Step (3) : Details for the first cluster
For the first cluster,

Tr (RE“D[myd ) - \/—SymDet (M(0)) )

- (X 3 R 0 (P @) - ) - RENE 5 (F () ) - v/~ SymDet(M(0)) )
V=1 d,d,#;|d|=d, iz q)y=1"
= (3 oy R (1) (6 (9) - V= SymDet(MO)) - R* " [11 5 1)) ) - #("))
/=1 d,d,7®; d, iz, d)—
= TT(Z Ny TP (6,9) - ) ).

Step (4) : Details for the second cluster

For the second cluster, we have

SymDet([Mm(oﬂ e M1y (0) T, My (0) T, M1y (0)T, -+, My(0)T]T) =

o Z Y (F)7Det (Mo (0) T -+ s M1 (0) T, My (0) T, Mgy (0)7, -+, Mo(mny(0)7] 7).

pu'=1 O'GSym
U(u):u



Thus, denoting the factor — 1 e=#*(®)\/=SymDet (M (0)) by Fy(p,V;®,g,B),

Tr ( - % e (®) \/—SymDet (M (0))

<3 SymDet (M1 (0) T -+, M1y (0)Ts My (0)T, Miusny ()T -+, My (0)T]7) )

p=1
_ Tr( Fy(p,V;®,9,B) - Z SymDet([M(l)(O)T, e M(M—l)(O)T, M(u)(O)T, ]\/I(M.‘_l)(())T7 el M(m)(O)T]T) )
p=1
1 iy
— Tr(mFQ(QQV;(DygaB)'ZZ Z
p=1p'=1 o¢ Symy,
o(u')=p
(=1)7 Det ([M (51 (0) ", -+ s M(o(ur—1)(0) ", My(0) "y M1y (0) T, -+ s M(o(my)(0)T]T) )
1 o
= Tr( ml Z Z Z (=1)
pn=1 p'=1 o € Sym,,
o(p')y=p
Det([FQ(QO,Va @7973) M(o(l))(o) , , M(U(#/_l))(o)—r M(M) (0) s M(a(u’+1))(0) s y M(a(m))(O)T]T) )

! Det([M(a(,u’-l-l))(O)Tv Tty M(a(nL))(O)Tv FQ(‘P? V; (I)a g, B) M(a(l))(O)Ta Tty M(a(u’—l))(o)—rv M(u) (O)T]T) )
(by the invariance of trace under cyclic permutations) .

Note that M w(0), p,v =1, ..., m, now appear uniformly as the last factor in the summands
from the expansion of Det ([---]") above. Let Minor(p,V;®, g, B| ', ), be the (m, v)-minor of

[M (5 (041))(0), -+, M () (0), Fa(ip, V5@, g, B) M (51y)(0), -+, M (5(,v—1))(0), M (,)(0)]". Then:

m m m
1 o "(m—p’ m—+v s y
= (2 S ()T D S 1) Minor(p, V5 @, g, B | 1), M (0) )
p=1 p'=1 o € Sym,, v=1
o(p')=n

p=1 v=1
where E(¢, V; ®, 9, B),.
= S ST ()T (CE Y Minor(, Vi ®,9, B | i 0),0
’ p'=1 o€ Sym,,
a(p')=mn
= Tr( Z ZE(@,V,(I),g,B)W
p=1 v=1
(X RE U0 ay, - Db 0D ()
4,7

= (I) + (II) + (III) + (IV) (defined in Step (4.1) — Step (4.4) below) .

Let us now study each of the four subclusters of the second cluster separately.
Step (4.1) : The subcluster (I)

m

1) = ( > E(. Vi® g Bl Ry e -Duso"(yi)Dycp”(yj))

p=1 v=1 %,7



p=1 v=1
(X X RELEE) S R UE A FW) ) D 6D ) )
ij =1 d,d,7%|d|=d, iz q=i
= (X (XX Y RIS W) D D)

V=1 p=lv=1l 4j d,d,7;|d|=d, iz q=1

Elp, V52,9, B - RPN 1 (¢ @) ) - #57) )

= 1 ( S NP (7). Fu’)).
/=1

Step (4.2) : The subcluster (II)

This subcluster contributes also to boundary terms.

m = (Y Y= Vi B
T (L EE) D) D) + Y ENDA ) D) )

= (Y >y ( Du ') - E(p. V50,9, By (Ejo)

+ E(p, Vi ®, 9, B)uwé* (Biy) Du (') ) - Du(y') )

— Tr( i i ZDV{ (Duwﬁ(yi)E(ga,V;@,g,B)uu " (Eji)

St +2(p, Vi ®,9, B)uw ¢ (Eij) Dug (') ) #() | )

-1 zn: (i f: zn:D” [Du (1) - Zlp, Vi @, 9, By 4(B50)

+ E(p,V; D, g, )uwpﬁ(Eij)DuSOﬁ(yi)]) 'sb“(yj))

= iam(i (D) E(, Vi@, 9, Bluy ¢ (Bji)
v S + E(p, V5 @, 9, )uus@”(Ez‘ﬂDwﬁ(yi))¢ﬁ(yj)])

- Tr( i (i i iDu [Duw”(yi) E(e, V5,9, B)oy o' (Eji)

T
Il
—
N
Il
—
-

<

<
Il
_
b
Il
—
S
I
—
-
Il
_

ot + E(p, Vi @9, Bl (Bi) Dut ()] ) - #(4') )
—. Z(_l)u—l (Bl E.II,(@7V;<I>,9,B)(¢ti(y))) + Tr (ZM?'H’@’Q’B)(%V) . ()Oﬁ(yj)) )
v=1 j=1

Step (4.3) : The subcluster (I11)

i

Tr(— iaw,vqw,

p=1 v=1

S

(I11)

[H(w). Ayl Dugt) + D0 0H(By) D) - [0Hw). A ) )

- Tr(ZZZ( (9, Vs @, 9, B)w ¢ (Eij) D (y') % ()
v —w(y) (¢, V32,9, B)uw ¢ (Eij) D ﬁ( )
= Dup*(y") (¢, Vi @, 9, B)uyu 9 (E; ) ")

+ Qpﬁ(yi) Du@ﬁ(yj)E(@vv,(I)aga )u,u 2 (El]) ) 'Ay )

= Tr ( i]\mﬁ‘”f’ (®.9.8) (5, V) - Ay) :

v=1



Step (4.4) : The subcluster (IV)

This subcluster contributes also to boundary terms.

(IV) T (27ra' i i 2(p,V:®, 9, B) - (DA, — D,,A#))

=
Il
-
N
Il
-

- Tr(27ro/ 3 (E(@,V;@,Q,B)W - E(@,V;fb,g,B)W> -DMAD)

p=1 v=1
= Tr(27ro/ v iDM[(E(ap,V;Qg,B)W - 5(907V;‘I’,9a3)u#) AVD
p=1 =1

v=1 p=1
= Y07 (270’ Y (E(e. Vi®g, Bl — E(6, V30,9, By ) - Au )
p=1 v=1

N
Il
_

=
1S
Il
_

m m
= (OB T (a) 1 1 (3N 0P (6, 9) 4.
pn=1 v=1

Step (5) : The final formula

In summary, with the notation introduced for the various nonlinear first-order and second-order
differential expressions on (¢, V) that depend on (®, g, B) and appear in the calculation (subject
to a relabelling of the dummy 4’ index), one has

d d :
P SDBI ((ptvvt) = -Th 3 / Re ( Tr eitpt(é) \/_SymDet(M(t)) d™x
ai|,_ ai|, ], e (m )
- T, /URe( (—1)n! 3u(Bfi.lf,<w,v;¢,g,3)(¢ﬁ(y)) + Br 2V (V0.8 (4) )) ™
p=1
Tt [ Re (1 (L P, 9) NGO 0,9) 4 AP 0,9 - )
v j=1 m
£ YN o, 9) 4 NE 0D (p,7)) - A, )) d 7
v=1
= —Tpu1 [ Re(Br Y95 (g (y), A))
ou
G /URe (TT(ZM?’%B%M(%V) . L,bﬁ(yj)—i— ZMl(j@,g,B);év(%v) . Ay)) d™x .
j=1 v=1
Here,

B (500 (i (y), A)

= Z (BT i'H’ (0 Vi 9. B) (pH(y)) + Hi'w’ (“”’V@’Q’B)(A)) dz' A oo Adat U A dal A dattY e A da™
pn=1

with the da meaning the removal of dx#, is a complex-valued (m — 1)-form on U that depends

linearly on (g, A) and whose real part gives the total boundary term (up to the factor —7,, 1)

of the first variation of S5 (p, V) with respect to (¢, V).



2.1 The equations of motion for D-branes

Remark 2.1.1 [effect of Re(-) in action to equations of motion] Due to the operation ‘Taking
the real part of’” Re(-), to go from the the first variation formula to the expression for the
equations of motion there is a detail that depends on how the space of pairs (¢, V) and its
tangents (dp, 0V) are parameterized; (cf. Re(eV=12) = cosf - Re(z) —sin@ - Im (2)).

(1) For the @-part, first, caution that it is not that just because ¢*(3%), i = 1, ... ,n, take
values in a ring over C' (i.e. C®(Endc(FE))) that the space Map (X, E),Y) of all such
©’s becomes a complex space. Indeed, due to the fact that all the eigenvalues of ¢?(f),
f € C=(Y) are real (cf. [L-Y4: Sec. 3], D(11.1)), Map ((X**, E),Y) is intrinsically a real
space and there is no natural complex-space structure on it (even if exists) that can be made
compatible with the underlying moduli problem since if d¢ is an unobstructed tangent to
Map (X*,E),Y), then v/—16p can never be an unobstructed tangent to Map ((X*),Y).
So this part is good in the sense that if we fix a real presentation for ¢’s in the study, then
Re (6Spp1/d¢) gives the system of equations of motion for ¢.

(2) For the V-part, if alone, the parameter space is complex in nature in our most general
setting. When FE is Hermitian and V is required to be compatible with the Hermitian
structure, the resulting parameter space becomes intrinsically real. In the latter case,
depending on the convention in presenting a unitary gauge theory (mathematicians vs.
physicists), one may take either Re (65539 /6%) or Im (6S559P))/§V as the system of
equations for V. However, this is not the full story as we imposed the admissible condition
V.A, C A, on V. Details on writing the equations of motion will have to depend on how
we present this condition.

Not to let this additional detail to distract us in this first work in the D(13) subseries, we present
for the current notes the system of equations of motion that remove the effect of Re(-) in SI%? B,
In other words, a true system of equations of motion will involve only a combination of what are
given below.

It follows from the study in Sec. 5.2 that the equations of motion for D-branes from the
Dirac-Born-Infeld action, with the D-brane world-volume modelled in the current context as an
admissible map

g (XF B V) — (Y,,9,B)
from an Azumaya/matrix manifold with a fundamental module with a connection (X, E; V)
to a space-time Y with massless background fields (®, g, B) from closed string excitations, are
given by the following system of second-order nonlinear partial differential equations on (¢, V):

]\qu)’g’B);&p(cp, V) =20, forj=1,..., n;
{M£¢7973);5V(¢,V) =0, forv=1,...,m.
Here, for the first subsystem,
M(@,g,B);§@<gp’v) _ M;,(@,g,B)(gO’ V) + szl (cp,g,B)(% V) + M?.H, (cb,g,B)(% v)

J J

with
NP0 (0, V) = 3 RE A () - /= SymDet (M(0)) - R [1]5 4 (¢ (w))
d, d,7;|d|=d, iz gy=j
R CAY I B R 1 E L (04(y)) - D (y') Db (y)

N (09) = =SSN D (Dug () - E(e, Vi@, 9, Bl ¢ (Bji)
P LB (6, Vi, 0, B (B) D (1))
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and, for the second subsystem,

NL(®w9

with

]\LZQI.III, (®,9,B) (807 v)

DIV, V) = NI 0B (g, 7) 4 NV 008, 7)

EZZX (6, Vi .9, Bl ¢ (Eiy) Dud (') 9 (3)

PELT Oy (e, Vi @, g, B) s 0 (Bij) Dt (y)
— D, (Y1) E(p, Vi @, 9, B)uu ' (Eij) ¢ (")

+ (") DupH(y?) E(e, Vi 0,9, B)uw H(Eyy))

NV @9 B) (0, V) = 2md ZD (E(p, Vi ®,9,B)uy — Z(p, Vi ®,9,B)u).-

In both subsystems,

E(e,V;®,9,B)u

where

Minor(p,V;®, 9, B| ',

[M (641 (0) T, -+

with
F2(SD7V;(I)7973) =
MW(O) =
MW(O) =

Remark 2.1.2 [ origin/correction from anomaly equations for open strings]
theory point of view, it is very important to understand further how such systems of differential
¢, V) can arise from or be correced/improved by the anomaly-free condi-

equations on the pair (

m
= mi Z Z (-1)7 (_1);u(m—;u)+m+u Minor(p,V; ®,g, B | /1'/70');11/7

S My
( N=n
0)uw = the (m,v)-minor of
T . T T y T
5 M(a(m))(o) ’ FQ(QO, va (I)a g, B) M(a(l))(o) y T M(a(/ﬂfl))(o) ’ M(,u) (0) ]

- % e ?*(®) \/—SymDet (M (0)) - ,
the «-th row vector of M (0),
the (u,v)-entry of M(0) = Z O (B jr) Dﬂcpﬁ(yi') Dot (i) + 2md/ Vi, Vo],

Eir g0 . B0 fe,3"
;R Ulya~(iggay * Pne* 07 )Doe (v7)
V)

.7 . .7

+Zw@muw%%wwwﬂmﬂww>

+ Y HE (") - (D@t (y") — [P ("), AJ)) + 2ma’ (DA, — D,A,).

,L//

tions in open-string theory.

Remark 2.1.3 [the case of Hermitian/unitary D-branes|] When in addition F is equipped with a
Hermitian structure and ¢ is Hermitian and V is unitary, the Dirac-Born-Infeld action functional

S(¢797B)

(0% and, hence, the resulting equations of motion can be simplified. The detail should be

studied further.

11
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3 Remarks on the Chern-Simons/Wess-Zumino term

In view of Polchinski’s realization ([Pol]) that a D-brane world-volume can couple to a Ramond-
Ramond field in superstring theory (cf. FIGURE 6-0-1), the Chern-Simons/Wess-Zumino term
Scs/wz for D-branes is also an indispensable part to understand the dynamics of D-branes.
With the same essence as for the construction of S]%’ii’B)(go, V), we construct in this section
the Chern-Simons/Wess-Zumino action S¢s/wz (¢, V) for lower-dimensional D-branes, in which
cases anomaly issues do not occur, derive their first variation formula and, hence, obtain their
contribution to the equations of motions for D-branes.

To begin, with anomalies taken into account, the coupling of a simple embedded D-brane
f: X =Y

with the Ramond-Ramond field C on Y (with a B-field background B), is encoded in the Chern-
Simons/Wess-Zumino action for D-branes, which takes the form

SEma (1Y) = Tor [ (ON 5 A A [AN) )

where

* m = dimX, T,,_; the D(m — 1)-brane tension, A(-) the A-class of the bundle in question,
Nx,y the normal bundle of X in Y along f,

* (- )(m) is the degree-m component of a differential form (---) on X.

The fact that the over coupling strength is identical with the D-brane tension T, ; is a conse-
quence of supersymmetry.

With the lesson already learned from studying the Dirac-Born-Infeld action, formally the
Chern-Simons/Wess-Zumino action generalizes to the case of coincident D-brane in our setting

¢ (X* E;V) — Y,

as

SOB(£V) Y g, / Re (Tr <<p°C/\62m‘/FV+‘p0B/\\/A(XAZ)/A(NXAz m)) .
X (m)

One now has to resolve in addition the following issues:

(8) the anomaly factor “ \/ A(X%) | A(N sv)”, which presumably is an End ¢ (E)-valued dif-
ferential form on X;

(9) wedging of of Endc(F)-valued differential forms on X :
p°C N > I+ B A JA(X) JA(Nxae ) -

3.1 Resolution of issues in the Chern-Simons/Wess-Zumino term

We address in this subsection the resolution of Issue (9) in a way that is compatible with how
we treat/interpret the Dirac-Born-Infled action in Sec. 3. This gives us a version of the Chern-

Simons/Wess-Zumino term S (0?9;3&/2 for D-branes of dimension —1, 0, 1, and 2 that matches the

B)

Dirac-Born-Infeld action S](;Igf ™ constructed.
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From determinant function to wedge product of differential forms

For an ordinary differentiable manifold M, the wedge product of differential forms is determined
by the wedge product of a collection of 1-forms and the latter is set by the determinat function
through the following rule

(W' A - AwS)(er A - Aeg) = Det(w'(ey)).

Here, ey, - - - , e5 are vector fields on M, w!, --- | w® are 1-forms on M, e;A - - - Aey := Zaesyms(—l)”ea(l)(@
coo ® eg(s), and (w'(e;)) is the s X s matrix with the (¢, )-entry w’(e;). When w?, --- , w*® are
enhanced to 1-forms with value in a noncommutative ring R, the original determinant function
Det(+) needs to be enhanced/generalized as well to a determinant function for matrices with
entries in R since now w’(e;) € R, fori,j =1, ..., s.

Recall that in the study of non-Abelian Dirac-Born-Infeld action for the pair (¢, V), we ran
into the need for such a generalization, too, and introduced the notion of symmetrized determi-
nant SymDet; cf. Definition 3.1.3.6. There, we propose an Ansatz that this is the determinant
function for the construction of the non-Abelian Dirac-Born-Infeld action, cf. Ansatz 3.1.3.11. It
is very natural to suggest that the same notion of determinant function is applied to both the
Dirac-Born-Infeld term and the Chern/Simons/Wess-Zumino term in the full action for D-branes:

Ansatz 3.1.1 [wedge product in the Chern-Simons/Wess-Zumino action] We interpret

the wedge products that appear in the formal expresion for the Chern-Simons/Wess-Zumino term

S(c%’fvzfz through the symmetrized determinant that applies to the above defining identities for

wedge product; namely, we require that
(W'A - Aw)(er A - Aeg) = SymDet (w'(e;))

for End o(E)-valued 1-forms w', .-+, w® on X. Denote this generalized wedge product by A

Example 3.1.2 [Cyy A F A F] Let Cpy = 3, Cuda® and F = Y, Fypeda® A dz” be an
End ¢ (FE)-valued 1-form and 2-form respectively, then

C(l) ;D\ F ;D\ F = Z (Oﬂ ® F,LL/I/’ ® FH//V//) dz* N dm“l N d:l:l/ A\ dl"u” VAN dl‘uu y

1ol gt ol
I”L7I’L7V7l'1/ 7V

where, recall that, C, ® F,;,» ® Fjn,» is the symmetrized product of the triple (C,,, Fjypr, Fymr).

Remark 3.1.3 [ on the ring (C*(A\*T*X @g Endc(E)), +, ?\)] (Cf. Remark 3.1.3.10.) Properties
of A follow from properties of ® on C*(Endc(F)) and properties of A on C®(A*T*X) . In

particular, for example, C(1) AF A Fis directly defined for the triple (C(yy, F, F') of Endc(E)-
valued differential forms on X, rather than through a train of applications of a binary operation.
The three elements in A’ T*X ®p End o(E)

© (O]

C(l)/\F?\F, (O(l)/\F);D\F, C(l)?\(F?\F)

in general are all different. The ring (C*°(A* T*X®@grEndc(E)), +, ?\) is Z-graded, Z,-commutative,
but not associative.
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Lemma 3.1.4 [¢°, A, and ?\] Let o : (X*,E,V) =Y be an admissible map and (1, - - -

differential forms on'Y. Then
<& @ Q <& (o
PN NG = OGN NG

Recall the surrogate X, of X* specified by ¢ and the built-in maps

Xolrr]™ fold mY X

Since the function-ring A, := C=(X)(Imy*) of X,, is commutative, for differential forms (7, - - -

on X,
;) Q o / / / / /
T QLA o AT G = T G A - AT G = T (GA - NG
It follows that
o ® ® o * © © %
OGN NG = T (foC) A e Ao (foGk)
= 7o (oG N AfSG) = T (fo(GA - AG)) = @ (QA - AG).

The Chern-Simons/Wess-Zumino action for lower dimensional D-branes

; Gk

For a simple D-brane world-volume f : X — Y, the anomaly factor \/A(X)/A(NX/Y) =1, for
dim X = m < 3. This may not hold for ¢ since ¢(X*) can have fuzzy/nilpotent structure of
nilpotency < r (the rank of E as a complex vector bundle on X ), which can be large even when
the dimension m of X is small. However, if one formally assume that the same is true, then
for lower dimensional D-branes (i.e. D(—1)-, D0-, D1-, D2-branes), one has: (Assuming that

B =73, ;Bjjdy' ® dy’, Bj; = —Bj)
* For D(—1)-brane world-point (m = 0):

(Coy) o
Sesywz(®) = Ta - Tr(¢°Co)) = Ty - Tr(6*(Cipy)) -

* For D-particle world-line (m = 1): Assume that C(qy =3I, C; dy" locally; then

Cl & ocally “ 1
Seaz (0 V) = To [ Tr(e*Cay) "2 Ty [ Tr( 3 @) - Dodi(y')) do.
i=1

Here, D, := Dy/as-
* For D-string world-sheet (m = 2): Assume that C(o) = >0, Cj; dy* @ dy’ locally,
with C;; = —Cj;; then

Cr0),C2),B
S(cs(/ov)vz @ )(cp,V) = Tl/XRe(Tr(<p°C(2) + ¢°(Ci0yB) + 27ro/<pﬁ(C(0))®Fv))

_ 7 / Re(Tr(¢°(Cay + Co) B) + ma 0 (Cio)) Fy + ma' Feoh(Cio))))
X

loaally / Re (Tr( § ¢*(Cij + C0yBij) Dy 0" (y") Dy p* (y7)
U =
1,j=1

+ 70/ 0 (Cl0)) [Viar, V2] + w0 [V1, V2] 0*(Clo)) )) d.

Here, D1 := Dgjgp1, Dy2 := Dgjap2 and Vi1 1= Vg g1, V2 1= Vg g,2.
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* For D-membrane world-volume (m = 3): Assume that C(;y = >, C;dy" and Ca) =
>t k=1 Clijk dy' @ dy? ® dy* locally, with Cjj;, alternating with respect to ijk; then

C1y,C(3),B o}
Sé‘s;V)VZ @ )( ,V) = TQ/XRe(TT(gOOC(g) =+ (pO(C(l) /\B) =+ 2ra’ QDQC(U /\Fv))

| Re(Tr( 32 O+ Cue+ CoBi + Cuby) Do) Do () Dis ()
U il

+ma’ Z Z (/\;w) ( (Ci) Dy (‘pﬁ(i‘/i)) [Var, Vor] + [Van, Vi Wﬁ(ci) ka‘Pﬁ(yi)))) o

(Apv)eSymg i=1

The technical issue of anomaly is the focus of another work. For the moment, we will take the
above as our working Anzatz for the Chern-Simons/Wess-Zumino action for lower-dimensional
D-branes.

3.2 The first variation and the contribution to the equations of mo-
tion

Under the same setup as in Sec. 5. 2 We derive in this subsection the first variation of the

Chern-Simons/Wess-Zumino action 5 oS /WZ for lower-dimensional D-brane world-volumes. The

additional contribution to the equations of motion for such lower-dimensional D-branes due to
the additional term S (C%fv%/z in the total action for D-brane world-volume would then follow.

3.2.1 D(—1)-brane world-point (m = 0)

For a D(—1)-brane world-point, dim X = 0, V = 0, and S(C(;%?,Z(gp) =T - Tr(¢*(Cl)). Tt
follows that

d

. d d
d|, Scavwaler) = To1 5 » (@5 (Co)) = T ( dt|,_ jj(C(m))
= (Y (Y RCWWH&,awwy))-R%wu(ﬁ,ﬁ)(@“(y»)~¢ﬁ<yf‘>)
j=1 d,d,=
=TT (3 MO 0) gy )
j=1

Here, the following identities are employed:
a # _ C
i), (#r(Co) = RO,

> #Z

Pin(1,d),i(z ay=J

(051 RO @) (¥ (y) - & (&) - (O] R“O [U@) " (1))

REO[] 5 o (e (y)) - &' () - REON] G 4 (£ (w)) -

n
J=

1d,d7

In this case, SD(I];? B) () = 0 always and the full action S](Dq];i] By s CC;/O%A),Z is simply S(CS%VZ

The full system of equations of motion is thus
(®,9,B,C(py);0 (C(g);0
NL; e @(@) = N (O) W(SO) = 0,

j=1,...,n, for D(—1)-brane. Such world-points give rise to instantons in space-time.

15



3.2.2 D-particle world-line (m = 1)
For a D-particle world-line, dim X =1 and

C1 7
S0 (6,V) = T /U Tr (S HC) - Dag ) ) d

locally over X. It follows that

! S ler. V) = T /U Tr(iz:;gb”(Ci)-waﬁ(yi) + AHC) - (Dagh(y) — [P (), Au]) ) do
_ 1 Tr(i FCF)|,
T /U 7 iw(a) Dag(y') — Dag?(Ci) - (') — PH(C) - [¢ ()Y, Ar) ) da
= Ty BT W) (¢ (y))|au + To/U Tr ( 2 NSCOR (5 9) - gt () + Z\Lic“”;w(w)"‘iw) dz,
where :
Br #Cw)(pH(y)) = Tr(i w”(CiWﬁ(yi)) ,

N (i, 9)

- D)+ Y Yo RONL (AP W) - Dbt y) - RO (6 (),
=1d,d,7; |d|=d,iz qy=J
NS0y = S ), SC)] = 0.

i=1

The full action S5rd? (o, V) + S(Cif/l)m)/z(% V) gives the system of equations of motion for a

D-particle moving in Y:

(©,9,B,C(1));6 ®,g,B);d (C(1));0
NSRRI (o vy = NP (0 w) o ML (0, V) = 0,
i(b’%B’C(l));év(QO,V) = Mgb,g,B);(;V(gO?v) - 07

j=1,...,n.

For the current case, the curvature Fy of V is zero and the above system may still involves
A, but not its differentials with respect to x. l.e. it is a system of differential equations on ¢
but non-differential equations on V. V is thus non-dynamical, as is anticipated. Thus, after a
re-trivialization fo the fundamental module E on X, one may assume that A, = 0 and the above
system is reduced to a system

M(¢797B7C(1));5¢(@) = 07 ] = ]_, ey n,

of second-order nonlinear differential equations that involve ¢ alone.

3.2.3 D-string world-sheet (m = 2)

Denote y ' 4 ‘ '
Co) = Coy+CyB = Y (Cij + Clo)Bij) dy' @ dy’ = Y Ciydy* @ dy’
tj 12
in local coordinates of Y. Then, for a D-string world-sheet, dim X = 2 and

C(0y,C(2),B) - Ny ; ,
S(cs(/v)vz() (e, V) = T1/UR€ (TT( Z o*(Cij) D1g*(y') Doy (y7)

i,7=1

+7ro/<pﬁ(C(0)) Fis + md/ Fiy goﬁ(C(o)) )) d’x
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locally over X. (Here, Dy := Dy/pp1, Do := Dyjpp2, and Fiy := [V,1, V,2] is the curvature of V.)
It follows then from a straightforward computation that

d Cl0:C 2y, B
di|_ Sespe " ler,9T)
t=
=1y /U Re (Tr (37 (¢(Ciy) D (v') Do () + &H(Co) (D1 (') = [¢F(v), An)) Do ()
i,j=1 . ; e o
’ +9H(Ciy) Digh(y') (Dag(y!) — [y, o))
+m’¢ﬂ(c(o))F12 + 7/ ¢*(Cloy) (D1 Az — Do Ay)
+ 70/ (D1 ds — Dad) ¢H(Clo)) + 7o/ Fia ¢(Cro)) )
Ty [ Re(Br e VC0 oD (giy), 4)
oU
2
+T / Re (v ( Z]\L OB (o 9) Gy + YN (0,9) - A ) d
Jj=1 v=1
where

- the boundary term is given by

BT(*D’V;C@)’C(?)’B)@ﬁ(y),A), a l-form on U,

n

T (Zn: ( > Dot (y') ¥ (Ci) ) -Gy’ + 2ma’oH(Clo)) - As ) da*

=1

~ 1 (3 (X C) D) ) - #y) - 2malH(Ca)) - An ) de'

* the subsystem associated to variations of y:

M;C(O)C(Z) ,B);dp (907 V)

n

- > RO [1){ 2 (0" () D1 (") Do (y") RO (1 g 2 (2 ()
i.5'=1 d,d,7; |d|=d,i(z dqy=7J

- Z ( D2¢*(y") D1 (Ci) + Do (Cig) Drgh(y') + [Faas ¢ (51)] - £4(Ci) )

+2ma’ Z RC<0)[1]&7 - (p “y)) Fi2 REO[1 la,z
d,d,7; |d|=di (. ay=j

g_h
=
AS)
>
—~
<
S~—"
S~—

* the subsystem associated to variations of V :

C(0));0V C(0));6V
NSO (5 ) = 210/ Dy (Cloy), NSOV (9, V) = — 270’ Dy (Cpo)) -

Note that, as a consequence of Leibniz rule or integration by parts, there are at first
summands

2 i i = . C(0)):0V
—Dadt (i) ¢ (Cyp) (1) + () D (r) HH(Cy)  in N (0, ),
v i . C(9));0V

—H(Ciy) Dig () F ) + S) F(C) D) in N (,9)
respectively. However, they vanish for (¢, V) admissible. Thus, the 2-forms Cy) and B has

(C(0),C(2),B) . . . .
no consequence to the variation of S CS%VZ(Z)’ ) with respect to V. This is anticipated since

(C(0),C2):B)

there is no coupling term between C(o), B and V in S 4 W2

The contribution of the Chern-Simon/Wess-Zumino term SCZ(/”WCZ@)’B) to the equations of
motion for a D-string follows immediately.
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3.2.4 D-membrane world-volume (m = 3)

Denote
é(g) = C(g) + O(l) N B
= > (Ciyr+ CBjy + CiBy + CyByy) dy' @ dy’ @ dy* = > Cindy' ® dy’ @ dy*
.9,k i,5,k

in local coordinates of Y. Then, for D-membrane world-volume, dim X = 3 and

(C1),C3),B)
Scs(/lvixz A
n

=T2/UR€(T7’( Z @ﬁ(éijk)DuPu(yi)Dzﬁﬂu(yj)Dz«;(Pﬁ(yk)

i,4,k=1
toma’ 30 31 (GHC) DagF(y') B ))) d
(Apv)eSym, i=1
locally over X. (Here, F),, := [V, V,v] is the curvature of V.) It follows then from a straight-
forward computation that

d 1:Clays
AR A TN
=T2/URe(Tr< > (so (Cijr) D1¢* (y') Do (y) D3 (y*)
N LG G- (D) — [P ), Ar) - Do () Dat (4)
+ ¢ (Ciji) D1¢*(y") - (D2¢*(y7) — (0% (y7), A2]) - D3 (y")
+ ¢4 (Cijn) Dit(y') Do () - (D (y") — [ ("), As)) )
+271a’ Z Z )‘”'j(' (Ci) Dag* (y') Fu
(Apv)eSym, i=1
FEC) - (DA ) ~ [P0, A) - By + (G DrgH() - (D — DA ) ) die
= Ty [ Re(BD V00 D(giy), A)
oUu
n 3
T / Re (Tr(Z]\L;C(IMC(WB);W(%V) . ¢ﬁ(yj) + ZM£C<1>);6V(%V) ) Au)) a3,
U j=1 v=1
where

- the boundary term is given by

BT(W’V"'C“VC“)’B)((,bﬁ(y), A) , a2-formon U,

1 (32 (30 Dadh() Dagh) ¢ Con) + el Py $4Cy) ) - 467

Jj=1 i,k=1

+471'0/(ng ) D3t (y )) Ay — 4md (Zcp ) Do (y )) Ag)dQ/\dx3

—Tr(Z(

DsgH(y") ¢(Cizn) Drg(y') — dma/ Fig 9H(C) ) - A4 ()
j=1 4,k=1

©*(C) D3 (y) ) Ay + 4md ( z": ©*(Cy) D1o (i) ) - A ) d* A da?

=1

,M:

Il
_

—4ma’ (
1

A ( Z( D #H(Ciry) Dig* (y') Dag? (y*) + dma’ Fia 0*(C)) ) -G (y)
k=

Jj=1

/!

+4ma ©*(Ci) Do (y') ) Ay — Amd ( isﬁ’ci Dig*(y") ) - Ay ) de' A dz?,

VS
X =
[

Il
—

7
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* the subsystem associated to variations of o :

(C1),C3y,B);0p

NL; (¢, V)

= D > RO [y (0% (y)) Dig(y”) Do (i) Dy (¥ ) RO (11l - (o ()
i3k =1 d,d,7; |d|=d,i(z q)=J

-y (thp ) D3 (y*) D1¢* (Cjin) + Da® (y*) Dag?(Cij) D1 (y

9
bR + D3p* (Cinj) D19 (y") Dot (y*) + [Fiz, 0% (y")] - D3 (y") *(Cyiire)
+ [Fas, 68 ()] - #H(Cign) Dig (') + [Far, 68 ()] - Do (1) (Cing) )
toma’ Y Y S CDMIRENE (6 () DarH () Fuw R W0 (9 ()

i=1 (Auv)eSymy d,d,7;|d|=d,i(z qy=7

—2ma’ S ()™ (B DaGH(C) + DaFud () ) |
(Apv)eSyms

* the subsystem associated to variations of V :

(C(l));(SV

MA (307 V)

n

= 210" Y [P*(y) , Fuv b (Cy)]

i=1

410’ Y~ ( DuH(C) Do (y') = Dud(C) D) + 4O - (B 01 )
where (Auv) = (123), (231), (312).

Note that, as a consequence of Leibniz rule or integration by parts, there are at first

summands
n ; ) o C
> [, e () Dad (1) Cign)] in AT (0, 9),
i,5,k=1
- - y ; (Ci1));0V
S P, Dt (M) (Coun) Dt (v)] i NS (0, 9)
i,5,k=1
> W FCo D)D) i NG (0, 9)
i,5,k=1
respectively. However, they vanish for (¢, V) admissible. Thus, the 3-forms C(3 and
Cay A B have no consequence to the variation of Sé%(/l%/vc;’ B) with respect to V. This is
anticipated since there is no coupling term between Cls), C(1) A B and V in S(CCS(/I{/VCZ@)’ )
The contribution of the Chern-Simon/Wess-Zumino term SCS}{,V(;@) ?) to the equations of

motion for a D-membrane follows immediately.

Remark 3.2.4.1 [contribution only to first-order terms in EOM| As observed from these exam-
ples, for lower dimensional D-branes, the Chern-Simons/Wess-Zumino term S (CC; ¥ ) Wz in the action
contributes an additional set of first-order nonlinear differential-expression terms to the system
of equations of motion fo D-branes. In partlcular they preserve the signature of the original

system from the Dirac-Born-Infeld term SD 2B) in the action.
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The current notes lay down some foundation toward the dynamics of D-branes along the
line of our D-project. Solutions to the system of equations of motion from the total action
SD%IQ B)( V) + S(Cck;’f&,z(gp, V) for a D-brane world-volume should be thought of as an Azu-
maya/matrix version of minimal submanifolds or harmonic maps, twisted/bent, on one hand, by
the (dynamical) gauge field V on the domain manifold X with a (noncommutative) endomor-
phism/matrix function-ring and, on the other hand, by the background field (®, g, B, C'), created
by closed (super)strings, on the target space(-time) Y. Further details, issues, and examples are
the focus of the sequels.

4 The standard action for D-branes

We introduce in this section the standard action, which is to D-branes as the (Brink-Di Vecchia-
Howe/Deser-Zumino/) Polyakov action is to fundamental superstrings. Abstractly, it is an en-
hanced non-Abelian gauged sigma model based on maps ¢ : (X* &;V) — Y.

The gauge-symmetry group C*(Autc(FE))

Let Autc(E) be the automorphism bundle of the complex vector bundle E (of rank r) over E.
Auto(FE) C Endc(E) canonically as the bundle of invertible endomorphisms; it is a principal
GL,.(C)-bundle over X. The set

Goauge = CF(Autc(E))

of smooth sections of Auto(FE) forms an infinite-dimensional Lie group and acts on the space of
pairs (¢, V) as a gauge-symmetry group:

9 € Gauge : (¢, V=d+A) — (9, 9V = d1+ 94) 1 1
= (gog ,d—(dg)g~ +9gAg"")

The induced action of Gyqug on other basic objects are listed in the lemma below:

Lemma 4.1 [induced action of G, on other basic objects] (All the Gqyg.-actions are
denoted by a representation pgauge Of Ggauge , if in need.)

(01) on OF : Paange (§) (M) = g'mg ™" form € OF.
(02) on induced connections: D=d+[A ] — 9D :=d+[%, -].
(1) on T*XC @p¢ OF : Poauge(§) (W@ M) = W@ (¢'mg' ™) = g'(w@m)g ™"
(2) for ¢*T.
Y — I T.Y

mu — (g’mg’_1)®v =: g’(m®v)g’_1

(3) for T*X Qo T.Y :

T*X @00 T.Y — T*X ®0, %" T.Y

wRmeu — w®(gmg v = ¢dwemeuv)g "
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(4) for covariant differential: Dy — 9DY% = ¢'Dpg "

(5) for pull-push: (9p)°a = ¢ ag .

The proof is elementary. Let us demonstrate Item (2) as an example.
For m ®v € ¢*T,Y = OF Ryt 0y T:Y
Poange (9) (M B V) = poange(9) (M) @0 = (¢'mg’ ™) @
since Gyauge acts on T.Y trivially (i.e. by by the identity map Idy). The only issue is: Where
does (g'mg’~") ® v now live? To answer this, note that, for f € C°°(Y), on one hand
-1
Pgauge (9 (m® fv) = Pgauge (9" (m(;pﬁ(f) ®v) = (glm(;pﬁ(f)g/ ) ® v,
while on the other hand
—1
Pgauge (9 m® fv) = (¢'mg"") @ fu,
It follows that

(gmg' ™) ® fu
— (dmd(f)gd H@v = (¢mgd gt (N T ev = (¢mg ™ L)) e,

Which says that our section (¢'mg’ ’1) ® v now lives in g{p*fﬁy‘

The standard action for D-branes

Fix a (dilaton field p, metric k) on the underlying smooth manifold X (of dimension m) of the
Azumaya/matrix manifold with a fundamental module (X*, £). Fix a background (dilaton field
®, metric g , B-field B, Ramond-Ramond field C') on the target space(-time) Y (of dimension
n). Here, h and g can be either Riemannian or Lorentzian.

Definition 4.2 [standard action = enhanced non-Abelian gauged sigma model] With
the given background fields (p, h) on X and (®, g, B, C) on Y, the standard action ng&ﬁﬁﬂlg’c)(% V)
for (x;)-admissible pairs (p, V) is defined to be the functional

hi®,g9,B,C hi®,g9,B,C
Shb B (o, V) = SLhEeBO) ()

,h @, h;B ¢.B

map:kinetic
with the enhanced kinetic term for maps

(phi,g) _ 1 o
Srpinatict (@3 V) 1= 3 m_l/XRe(Tr(Dap, Dgp)(hyg)) voly, + /XRe(Tr(dp,gp d<I>>h) voly,

the gauge/Yang-Mills term
. 1 o
ot yul@, V) = =3 /X Re (Tr||2ma' Fg + ¢°B|}) vol,,

and the Chern-Simons/Wess-Zumino term
(if (p, V) is furthermore (*3)-admissible, cf. Remark 2.1.13)

C,B orma. o S ~ ~
Sz (@ V) =Y T, /XRe(Tr(cp<>cAe2 FotetB n \JA(X4) [ A(N gy ) ))(m).

Here,
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(0)

On Re Note that while eigenvalues of p*(f) are all real ([L-Y5: Sec.3.1] (D(11.1))) for
[ € Oy, the eigenvalues of D¢p*(f), £ € T.X, may not be so under the (*;)-Admissible

Condition. Thus, Tr(------ ) in the integrand of terms in szaﬁjlgﬁ C)(go, V) are in general
C-valued and we take the real part Re Tr(------ ) of it.
The enhanced kinetic term for maps The first summand of S"%9) defines the

) ) map:kineticT
kinetic energy

1
EV(@) - Srrilaf))kznetzc@O’ v) = 5 Tmfl/ Re (TT<D()07 D90>(h,g)) ’UOZh

of the map ¢ for a given V and, hence, will be called the kinetic term for maps in the
standard action szaﬁi,%B C)( ¢, V). When the metric g on Y is Lorentzian, then depending
on the convention of its signature (—, 4+, --- +) vs. (+,—, --- —), one needs to add an
overall minus — vs. plus + sign. In this note, for simplicity of presentation, we choose
h and g to be both Riemannian (i.e. for Euclideanized/Wick-rotated D-branes and space-

time).

* The world-volume X“* of D-brane is m-dimensional; 7,,_; is the tension of (m — 1)-

* The second summand of

(2)

dimensional D-branes. Like the tension of the fundamental string, it is a fixed constant of
nature.

S(ph ®,9)

map:kinetict
(p7h§q>) . o
Sdilaton (90) = / Re (TT’ <d,0, ® d@)h) ’UOlh ,

will be called the dilaton term of the standard action S 959, 7y

standard

Note that if let U be small enough and fix a local trivialization of E|y. and assume that
V = d + A with respect to this local trivialization. Then D = d + [A, *] and, over U with
an orthonormal frame (e,),,

Tr{dp, o°d®)y, Z Tr(dp(ey)De, ¢*(®))
S T (dp eu>(w (@) + [Alen), ¢ (@)])) = 3 Tr(dp(e,)(eus’ (@)

Thus, while ¢°d® depends on the connection V, the integrand (7r(dp, ¢°d®),) vol, does
not. This justifies the dilaton term as a functional of ¢ alone.

In contrast, over U with the above setting, Tr(Dy, Dg) 4 4) contains summand
S5 Tr([Alew), F )] [Alen), ()] &(g15))
Wi
which does not vanish in general. Thus, Tr(Dg, D), does depend on the pair (¢, V).

The gauge/Yang-Mills term Sgauge/YM(gp, V) o’ is the Regge slope; 2ma’ is the inverse
to the tension of a fundamental string.

* Fy is the curvature tensor of the connection V on FE; 2ra/Fy + ¢°B is an O;}Z—valued

2-tensor on X; and
|27 Fy + ¢° Bz == (2md'Fy + ¢°B, 2nd' Fy + ¢°B),,

from Sec. 3.2.1. Up to the shift by ¢°B, this is a norm-squared of the field strength of the
gauge field, and hence the name Yang-Mills term. Note that in Sgwge/YM(go, V), V couples
with ¢ only through the background B-field B. When B = 0, this is simply a functional

S;Zige/YM(V) of V alone.
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* In the current bosonic case, the Yang-Mills functional for the gauge term S;Z;i /YM(go, V)

can be replaced any other standard action functional, e.g. Chern-Simons functional, in
gauge theories.

The Chern-Simons/Wess-Zumino term SCS/WZ<QD,V) The coupling constant of
Ramond-Ramond fields with D-branes is taken to be equal to the D-brane tension 7}, ;.
This choice is adopted from the situation of the Dirac-Born-Infeld actlon However, in the
current bosonic case, one may take a different constant. As given here, i oS /WZ (p, V) is only

formal; the anomaly factor \/A XAZ)/A(NXAz/y) in its integrand remains to be understood
in the current situation.

* The wedge product of O5¢-valued differential forms was discussed in [L-Y8: Sec.6.1] (D(13.1)).

An Ansatz was proposed there in accordance with the notion of ‘symmetrized determinant’
for an O4F-valued 2-tensor on X in the construction of the non-Abelian Dirac-Born-Infeld
action 1b1dem Here, we no longer have a direct guide from the construction of the kinetic
term Smap winetic P V) for maps as to how to define such wedge products. However, just
like Polyakov string should be thought of as being equivalent to Nambu-Goto string (at
least at the classical level) but technically more robust, here we would think that ‘standard
D-branes’ should be equivalent to ‘Dirac-Born-Infeld D-branes’ (at least classically) and,
hence, will take the same Ansatz:

Ansatz [wedge product in the Chern-Simons/Wess-Zumino action] We in-
terpret the wedge products that appear in the formal expression for the Chern-
Simons/Wess-Zumino term st P /V%,Z (p, V) through the symmetrized determinant that
applies to the above defining identities for wedge product; namely, we require that

(WA - AW (e A -+ Ney) = SymDet(wi(ej))

1 . ..

for O4¥-valued 1-forms w!, , w® on X. Denote this generalized wedge product by A.

Then, for lower-dimensional D-branes m = 0,1, 2,3, it is reasonable to assume that the
anomaly factor is 1 (i.e. no anomaly) and S (o%fvzfz (p, V) can be written out precisely.

Locally in terms of a local frame (e,), on an open set U C X and a coordinate
(y', -+, y") on alocal chart of Y, one has: (Assuming that B =Y, ; Bi;dy' ® dy’, Bj; =
—Bi;.)

* For D(—1)-brane world-point (m = 0):

c
Seslin(@) = T - Tr(g°Co)) = Tor - Tr(¢H(C)).
* For D-particle world-line (m = 1): Assume that C(yy = Y_I C; dy" locally; then

C oca. "
Stomite) = To [ Re(Tr(eCa)) = 1o [ Re(Tr(30¢HC) - Dey(y) e
=1

(p,h; @)
dilaton

Note that as in the case of the dilaton term S ( ), this is a functional of ¢ alone.

* For D-string world-sheet (m = 2): Assume that Cy) =
with Cz‘j = Cﬂ, then

i j 1 Cl] dy ® dyj locally,

C(0y,C(2y,B
S(CS%Z @ )(80, V) = T1/XRe(TT’(90°C(2) + ¢°(Co)B) + 2/ (Cp)) © Fy))
= Tl/XRe(TT(SOO(C(z) +Co)B) + 1/ ¢ (Clo)) Fy + ma/Fo*(Cyp))))
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togally /Re(Tr( > GH(Cy + Clo)Biy) Der #H5") Deai? )

7,7=1
+ 70/ (Clo)) Fo(er, 2) + 7o' Fy(e1,2) ¢(Clg)) )) €' A €?

- / Re (Tr S GGy + CloyBig) Des(4) Do ()
2,7=1
+27a @ﬁ(C(O))Fv(el,eg) )) et ne?.

Here, the last identity comes from the effect of the trace map Tr.

* For D-membrane world-volume (m = 3): Assume that Cy = it C; dy' and C(3) =
>t ik=1 Cijk dy’ ® dy? @ dy* locally, with Cyj;. alternating with respect to ijk; then

Ci,Cis) B o
S(csflv)vz P v) = T2/ Re(Tr(¢°Csy + ¢°(Cy A B) + 2ma’ ¢°Cyy A Fy))

locally T / Re TT.( Z gp ’l]k’ +CB]]€ +C Bk;’b "I_CkBlj)
k=
= Dey 0% (') Dey 6 (47) Doy (")

YD YD W= (GH(C) Dey (F(51)) Folens e0)
v me t=1 .
(\uv)eSymg —|—Fv(eu,el/)@ﬁ(oi)DEX(pﬁ(yZ)))) el A e2 A D

n
- TQ/URe (7r( Y @H(Cijp+ CiBjg + Cj By + CiByy)
i1 Doy * (') Dey9* (y7) Dey o (yF)

bomd YY) (GG Doy () Foleen)))) ¢ A et A

(Auv)eSyms i=1
Here, the last identity comes from the effect of the trace map Tr.
Their partial study was done in [L-Y8 : Sec.6.2] (D(13.1)).

(4) The background B-field The coupling of (p, V) with the background B-field B on Y

in the part
Sposge s vaa(#: V) + S (0, V)

of the standard action means that we have to adjust the fundamental module £ on X
by a compatible “twisting” governed by ¢ and B. With this “twisting”, £ now lives on
a gerb over X. See [L-Y2] (D(5)) for details and further references. However, since the
study of the variational problems in this note is mainly local and focuses on the enhanced
kinetic term for maps S (p:h;® +, we'll ignore this twisting for the current note to keep

map: kmetzc
the language and expressions simple.

Remark 4.3 |other effects from B-field and Ramond-Ramond field] There are other effects to
D-branes beyond just mentioned above from the background B-field and Ramond-Ramond field
that have not yet been taken into account in this project so far; e.g. [H-M1], [H-M2], and [H-Y].
They can influence the action for D-branes as well. Such additional effects should be investigated
in the future.

Theorem 4.4 [well-defined gauge-symmetry-invariant action] FEzcept the anomaly factor
in the Chen-Simons/Wess-Zumino term, which is yet to be understood, the standard action
SEf;Zﬁ’T%’B’C)(QD, V) as given in Definition 4.2 for (x1)-admissible pairs (¢, V) (and SC%/BV%/Z(QO, V)

for (xq)-admissible (¢, V) ) is well-defined. Assume that the anomaly factor in the Chen-Simons/
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Wess-Zumino term transforms also by conjugation as for OF under a gauge symmetry, then

S(P7h7‘1>>g,B,C)

stomdams (0, V) is invariant under gauge symmetries:

S(p,h;cp,g,B,C)(%v) _ S(p,h;é,g,B,C)(gép7 QV)

standard standard
fO’I” g, € ggauge = OOO(AUtc(E))
For the kinetic term for maps
h; 1
ana?) klnetzc(@? V) = 5 T /X Re (T’I” <D§0 ) D(P) (h,g)) voly, ,

that it is well-defined follows Lemma 3.2.2.4. Under a gauge transformation ¢’ € Gguyuge =

C>(Autc(F)) and in terms of local coordinates (z', -+, ™) on X and ( Loy onY),
‘0 8 -1 o)
DIp = Zd-’ﬂ“@Z "D o 96 (57) o), iyt Zdwﬂ@Z (9 (P2, ' (5y0)) 9 7) @t 57
Thus,

/.

<9D9/ 9D 9, >(h 9

=Y > el (Da%soﬂ(a%)) g4 D%%soﬁ(a%j)) 97" @u, i

KoV 4,5
= X3 (o (D H ) 97 o (D, F ) o) o g
KoV ] .
(ZZhW 52 ) - Da%wﬂ(@%j) : soﬁ(gz'j)) g
WV 4,5

= ¢ (Do, Do) (g 9

It follows that Tr(9D % , 9D %) .o = Tr(Dy, Do), and, hence,

h, / /.
Sinaf)?kinetic( 9907 I V) Smap kmetzc(go? V) .

The other terms in sz(;ztf;%Bc)(gp, V) do not involve a partially-defined inner product and

hence are all defined. That the integrand inside T all transform by conjugation under a gauge
symmetry as for 04 follows Lemma 4.1.
This proves the theorem.

Remark 4.5 [gauge-fizing condition] As in any gauge field theory (e.g. [P-S]), understanding how

to fix the gauge is an important part of understanding sz(;ﬁfl’rgdB C)(<p, V).

The standard action as an enhanced non-Abelian gauged sigma model

Recall that, in an updated language and in a form for easy comparison, a sigma model (o-model,
SM) on a (Riemannian or Lorentzian) manifold (Y, g) (of dimension n) is a field theory on a
(Riemannian or Lorentzian) manifold (X, h) (of some dimension m) with

* Field: differentiable maps f: X — Y,

* Action functional:

1 1 ¥
Si?g’frzamodel (f) = :l:§ /X<df’ df>(g,h) UOlh = :l:i/ Hf ngZLUOZh
1 m n V ) i j -
= 45 [ 3 3 @ 1@) 2 @) 95 (@) ldeth(@)] dma
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in terms of local coordinates = (2!, --+ , ™) on X and y = (y*, - -+, y") on Y; cf. [GM-L] and
see e.g. [C-T] for modern update and further references. (The =+ sign depends on the signature
of the metric.) At the classical level, this is a theory of harmonic maps; cf. [E-L], [E-S], [Ma],
[Sm].

Back to our situation. To begin with, the kinetic term

. 1
St inetie(9, V) = 5 T /X Re(Tr(Dy, Dg)n,g)) voln

(p,h;®,9,B,C)

cromind ' (p, V) to be regarded as a sigma model, now based on

qualifies the standard action S
* Field: (%1)-admissible differentiable maps ¢ : (X%, &;V) =Y.

The fact that S 2959, 7Y is invariant under the gauge symmetry group

standard
Gyauge = C°(Auto(F)) and that the latter is non-Abelian justify that this sigma model is indeed
a non-Abelian gauged sigma model (nAGSM). However, compared with, for example, the well-
studied d = 2, N = (2,2) (Abelian) gauged linear sigma model, e.g. [H-V] and [Wil], the gauge

(p,h;®,9,B,C)

cromind ' (p, V) does not arise from gauging a global group-action on the target

space Y. (For this reason, one may call ng&ﬁﬁﬁl’ﬁo)(gp, V) a sigma model with non-Abelian gauge
symmetry as well.) For D-branes, its additional coupling to the background Ramond-Ramond
field C' on Y is essential ([Pol]) and, hence, the Chern-Simons/Wess-Zumino term S (CCS%%,Z(@, V).
Also, we like our dynamical field (¢, V) coupled to the background dilaton field ® on Y as well

so that the essence of the other important action — the Dirac-Born-Infeld action — for D-branes

symmetry of S

can be retained as much as we can. This motivates the dilaton term S((jfl’fg;) (). In summary,
h;®,9,B,C . h;®,9,B C.,B ;@
Sifandargd )(QD, v) = szilGS]\i][ )(907 v) + S(CS/I/%/Z (SO7 V) + S((iﬁi)laton)(gp)
h;®,9,B,C
57(51031\% (.V),

which explains the name enhanced non-Abelian gauged sigma model (nAGSM™).

5 Admissible family of admissible pairs (o7, V1)

In this section we introduce the notion of one-parameter admissible families of admissible pairs
and rephrase the basic settings and results in Sec. 3.2 in a relative format for such a family. Some
curvature tensor computations are given for later use. The natural generalization (without work)
to two-parameter admissible families of admissible pairs is remarked in the last theme of the
section. This prepares us for the study of the variational problem of the enhanced kinetic term
for maps S 9 (o V) in the standard action S 95, 7Y for D-branes.

map:kineticT standard

Basic setup and the notion of admissible families of admissible pairs (o7, V7)

Let T = (—¢e,e) C R', with coordinate ¢t and ¢ > 0 small, be the one-parameter space and
0, := 0/0t and dt be respectively the tangent vector field and the 1-form determined by the
coordinate t on T. Let (X, F) be a manifold X of dimension m with a complex vector bundle F
of rank r. Recall the structure sheaf Ox of X and the Ox-module &£ from FE.

Consider the following families of objects over T':

* Xp := X xT, with the structure sheaf Oy, and regarded as the constant family of manifolds
over T' determined by X. Xy is equipped with the built-in projection maps pry : Xy — X
and prp : Xp x T — T. For U C X an open set, we will denote by Ur the corresponding
openset U xT'C X xT over T.
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* T, X7 := the tangent bundle of X7 and T,Xp := the tangent sheaf of Xr;
T* X7 := the cotangent bundle of Xy and T *Xp := the cotangent sheaf of Xr;
T.(X7/T) := the relative tangent bundle of X7 over T' and
T.(X1/T) := the relative tangent sheaf of X1 over T}
T*(Xr/T) := the relative cotangent bundle of X over T' and
T*(Xr/T) := the relative cotangent sheaf of Xr over T.
When X is endowed with a (Riemannain or Lorentzian) metric h, h induces canonically
an inner-product structure on fibers of 7T,(X7/T) and its dual, T*(Xr/T), over T. These
induced inner-product structure will be denoted by (-, -)5.

* Ep = prk E the pull-back vector bundle of E to X, regarded as the constant 7-family of
vector bundles over X determined by E; and &p := pr & the corresponding Ox,.-module,
regarded as the constant T-family of Ox-modules determined by £.

The projection map pry : Xp — X induces a projection map pry : Er — E between the
total space of bundles in question. T, Er (resp. T.Er) denotes the tangent space (resp. the
tangent sheaf) of the total space of Er.

C(XEEr) = (Xp, OF, = Endpc (Er),Er), regarded as the constant T-family of Azu-
T

maya/matrix manifolds with a fundamental module determined by (X* &). There is a
trace map
Tr Of}ZT — O)?T

as Ox,-modules, which takes Id¢,. to r.
and take the following notational conventions:

* Through the product structure X; = X x T, a vector field £ (resp. 1-form w) on X and
the vector field 0; on T lift canonically to a vector field (resp. 1-form) on Xr, which will
still be denoted by & (resp. w) and 0 respectively.

* For referral, the restriction of Xp, X4, Er, ---p to over t € T will be denoted X;, X, E,,
-+ respectively.

Definition 5.1 [connection/covariant derivation trivially flat over 7] A connection V7
on Er (equivalently, connection/covariant derivative V7 on £r) is said to be trivially flat over T
if the horizontal lifting of J; to T E7r lies in the kernel of the map pry, : Tu Er — T E. For such
a VT, we will denote the covariant derivative Vgt simply by 0;. The curvature tensor of V1 will
be denoted by Fyr.

Note that any connection on FEr is flat over T" and hence, due to the topology of T', can be
made trivially flat over T" after a bundle-isomorphism. Thus the notion of ‘trivially flat’ is only a
notational convenience for our variational problem, not a true constraint. However, caution that
while V7 is always flat over T, its restriction V! to X, varies as t varies in 7. Thus, in general,

For(d, ) #0.

Definition 5.2 [admissible family of admissible pairs (o, V)] A T-family of maps with
varying connections from (X% &) to Y is a pair (o7, VT), where

or 1 (X* &) — Y
is a map from (X4%,Er) to Y defined contravariantly by a ring-homomorphism

o C°(Y) — C®(Endc(Er))
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over R C C and V7 is a connection on &7 that is trivially flat over 7. gogf induces a homomorphism
Oy — O;}'ZT

between equivalence classes of gluing systems of rings, which will still be denoted by cpﬁT.

Let A,, C OF, = Ox, (Img%). Then (o7, VT) is said to be a (%;)-admissible T-family
of (x;)-admissible pairs if (o7, V') satisfies Admissible Condition (x;) along 7" and Admissible
Condition (*;) along X, for 4,5 =1,2,3.

Example 5.3 [(x2)-admissible T-family of (x;)-admissible pairs] A (x3)-admissible T-
family of (x;)-admissible pairs (@7, VT) is a T-family of maps ¢ with a varying connection
V7T trivially flat over T such that

(x2) : 0yComm (Ay,,) C Comm(Ay,,) and (+1) : ViA,, C Comm(A,,)
for all £ € T.(Xr/T). Here, Comm (A,,) is the commutant of A, in O .

Three basic Ox,-modules with induced structures

Let X be endowed with a (Riemannian or Lorentzian) metric h and Y be endowed with a
(Riemannian or Lorentzian) metric g. Denote the canonically induced inner-product structure
from h and g on whatever bundle applicable by (-, -), and (-, -), respectively. Denote the
induced connection on 7,(Xr/T) and T*(X7/T) by V" and the Levi-Civita connection on 7,Y
by V9. The associated Riemann curvature tensor is denoted by R" and RY respectively.

Let (¢r, V') be a (%;)-admissible T-family of (%;)-admissible pairs. The basic O§ -modules
with induced structures from the setting, as in Sec. 3.2, are listed below to fix notations.

(0) 0%, : the noncommutative structure sheaf on Xr

* The induced connection DT from V7, which is also trivially flat over T,

* An O;}ZT—Valued, O¢-bilinear (nonsymmetric) inner product from the multiplication
in OF ;
an 0§ -valued, O ¢-bilinear (symmetric) inner product after the post-composition with
Tr.

* Both inner products are covariantly constant with respect to DT and one has the
Leizniz rules

D"(mgm7) = (D"mgp)my + my D'm7;
dTr(mrm2) = TrD"(mim?2)
= Tr((D"m})m3) + Tr(my D'm?).
(1) T(X7/T) ®@XTO3‘}ZT ;0% -valued relative 1-forms on Xq /T
* The induced connection VZ-#P") .= Vh @ Id + Id @ DT, trivially flat over 7.

* An O -valued, O -bilinear (nonsymmetric) inner product (+, *);
an O¢-valued, O¢-bilinear (symmetric) inner product Tr (-, * ).

* Both inner products are covariantly constant with respect to V(D" and one has
the Leibniz rules

D (+, W = (VT’(h’DT) o+ (e \ARCE '/>g,
dTr(*, "V, = Tr(DT(*, ) = Tr(VH®mPD .« g e ghiDD 0y,

for =, *" € T*(X¢/T) ®@XTO§ZT.
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(2) e TY = OF, ®(ng7oy7;Y . O, -valued derivations on Oy

* The induced connection V279 .= DT @ Id + Id - 7, DT¢4(y') @ VY, (in local

Ayt

expression), trivially flat over T

* A partially defined O}‘}ZT—Valued, O¢-bilinear (nonsymmetric) inner product (-, *)g;
a partially defined O¢-valued, O¢-bilinear (symmetric) inner product 7r (-, *),.

* Both inner products, when defined, are covariantly constant with respect to V7:(#7:9)
and one has the Leibniz rules

DT<_7 _l>g = <VT’(¢T7Q)_7 _l>g + <_a VT’(GOT’Q) _l>g7
dTr(—, ")y = TT(DT<77 g) = TT<VT7(¢T79)*> g + Tr(-, vhlers) g

whenever all (-, "), and Tr(-", "), involved are defined.

(3) T"(X7/T) ®oy, o7 T.Y : (O, ~valued relative 1-form)-valued derivations on Oy

This is a combination of the construction in Item (1) and in Item (2).

* The induced connection

vithers) = Ve ldeld + [deD"®Id + Id®1d - DTeh(y) @ V9,

i=1 oy’
(in local expression), trivially flat over T
* A partially defined O}‘}zT—valued, O¢-bilinear (nonsymmetric) inner product (-, * ) s.4);
a partially defined O§-valued, O¢-bilinear (symmetric) inner product Tr(*, * )(n.g)-

* Both inner products, when defined, are covariantly constant with respect to V7>(h:¢1:9)
and one has the Leibniz rules

D'~ Mg = (VEBPT0) N 4 (), VBT Ly
dTr(~, ~)ng = Tr(D"(~, ~)ng)
= Tr(Vhhera) ~hg + Tr(~, v herg) ~)(hg)

"

whenever the (~", ~")q, oy and Tr(~" ~") oy involved are defined.

Curvature tensors with 0, and other order-switching formulae

Let (o7, VT) be a (*;)-admissible T-family of (x;)-admissible pairs. A very basic step in (partic-
ularly the second) variational problem involves passing 0, over a differential operator on X;’s. In
general, a curvature term appears whenever such passing occurs. In this theme, we collect and
prove such formulae we need.

First, passing d, over a differential operator usually means the appearance of a curvature term
by the very definition of a curvature tensor:

Lemma 5.4 [curvature tensor with 0;] Let (o1, V7T) be a (x;)-admissible T-family of (*;)-
admissible pairs. Let & be a vector field on an open set U C X small enough so that orp(Ui¥)
is contained in a coordinate chart on'Y , with coordinates (y', - -+ ,y™). The standard lifting of &
to Ur is denoted also by &. Note that, by construction, [0, &] = 0 and all our connection V' in
Theme ‘Three basic O%-modules with induced structures’ are trivially flat; hence, Fv' (0, &) =

atvg‘ — Vé@t. One has the following curvature expressions with 0y on the basic Ox,-modules:
(Below we adopt the convention that the Riemann curvature tensor from a metric is denoted by
R while the curvature tensor of a connection in all other bundle situations is denoted by F'.)
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(01) For sections wr of T*(Xr/T): Ryn(0,&)wr = 8tV’ng — Vé‘@th = 0.

(02) For sections mp of OF, : Fpr(9,,§)my = 0, Dfmy — DEOyme = [(0:VT)(€), mr] .
As a consequence of this, if (o7, V1) is furthermore a (x3)-admissible T-family of (*2)-
admissible pairs, then

0, V)(¢) € Innf, ((’)X) ie. [(O.VT)(€), A, ] € Comm(A,,).

(1) For sections wr @ mp of T*(Xr/T) ®oy,. 0%, :

FVT’(thT) (8757 g) (wT ® mT)
= atvg7(h,DT)(wT ® mT) - Vg7(h,DT)at<wT & mT) = wr® [(ath)<€>7 mT] .

(2) For sections my @ v of o3 T.Y = OF, B4 oy T.Y :

(v on the coordinate chart of Y above, with coordinates (y*, --- , y™))

FVT,(¢T,Q) (815, f)(mT ® U) = 8tV§T’("°T’g) (mT X ’U) — VgT’(W’g)at(mT & 1})

= (V) (&), mr]®v + mTi[(atVT)(é),gogu(yi)]®Vgavv

i=1 oy*

+ mr Z <D§ @T( )&%DT( NV V9 v — &%PT( )Dg @ﬁT( Vo Vi, Vi, U)'

3,7=1 oyl oyl oyt oy

If (7, VT) is furthermore a (x3)-admissible T-family of (,)-admissible pairs, then the
last term has a 'Y -coordinate-free form

The last term = mp Y 0o (y') D (y') ® RO (55, ) v = ma ((95.R%)(0r, &)

i?j

(3) For sections wr @ mr @ v of T*(Xr/T) @ ¢pT.Y := T*(X7r/T) ®oy, 0%, Byt 0y T.Y :
(v on the coordinate chart of Y above, with coordinates (y*, --- , y™) )
Fortner.o (0, &) (wr @ mp ® v)
= @V?’(h’w’g) (wr @ mp Qv) — VT’(h""T’g)ﬁt(wT ® mr Q@ v)
= wr® (FVTv(WTvQ)(8t7 5)(mT & U)) .

Statement (0;) follows from the fact that Xr is a constant family over 7. Statement (0s),
First Part, follows from a computation with respect to an induced local trivialization of &7 from
a local trivialization of &£

ODfmr = 0i(Emp + [Ayr(€), mr))
= &0y + [0hAyr (§),mr] + [Agr(€),0imr] = DEdmr +[(0,V")(€), mr].

For Second Part, if (o7, VT) is furthermore a (*3)-admissible T-family of (x3)-admissible pairs,
then for fi, fo € Oy, by First Part and the (x;)-Admissible Condition,

[@VT)E), D f1)], D (f2)] = [0:DL D (1), & (f2)] — DL O (f1), D(f2)] = 0

Which says that (3,V")(€) € Inn (O)A}ZT)
Statement (1) is a consequence of Statement (0;) and Statement (0y). Statement (3) is a con-
sequence of Statement (0;) and a property of the induced connection on a tensor product of
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O¢ -modules with a connection. Let us carry out Statement (2) as a demonstration of the

covariant differential calculus involved.
Let mpr ® v € 5 T.Y. Then, by Statement (05),

8tvg:(§0T79) (mr ®v) = 0 (ngT ®v + mp Z DgTSOﬁT(yl) ® Vgiv)

ayt

ayt

= (D{oymr +[(0:VT)(€),mr]) ®v + (Dfmr) ZatgoﬁT(yi) @V, v

+ (Oym7) ZDg Py ® V‘qiiv + mTZ (DL 0 (y)) + 1BV T)(€), P(y)]) ® V95 v

oy?

+ mr ZDﬁ goT )&g(pﬁT(yj) ® vf;,vgiv

i oyl Byt
while

Vg’(w’g)ﬁt(mT ®v) = Vg,(w,g) (8tmT v + mr Z Brph(y') ® V“’iv)

oy

= Dg omr @v + (Oymr) ZDE (pT )®V“lv + (ngT)ZGtcpgﬂ(yi) ®V%v

+mTZDgatSDT( )®Vg U+mTZatSDT )DgTSDg“( )®Vg Vi v.

oy* ij oyl oyt

Thus,
Fororo (0,8 (mr @v) = (8,V1#9) - vTEr99,) (mr @ v)
— (@YY€, mr)@v + mp S (OVT)E), b (y)] @ Vp v

i oy*

+mTZ (DEG W) @ V2o V9, v — 0dlp(y?) DY hnly’) @ V9, V9, )

oyl oyt oyt oyl

as claimed, after a relabeling of i, j.
If (¢, V) is furthermore a (;)-admissible T-family of (;)-admissible pairs, then Df o4 (i)

and ,¢%(y7) commute since [Df o5 (1), b (y7)] = 0 by the (s;)-Admissible Condition along X
and, hence,

0 = DIk, ()]
= [0, DF 5 (y), D(y?)] + DI (), (7)) = DIy, Bedl(y?)]

by the (*;)-Admissible Condition along X and the (%3)-Admissible Condition along 7. The last
summand of Fur,ier.0 (0, §)(mr ® v) is then equal to

mr Y Oty ) DY o @ (V70 V75 = V95 V9 Jo = mr (¢7R9)(0,€) v
i

8y] c’hﬂ Byi ayj
This proves the lemma.

The following lemma addresses the issue of passing 0; over the covariant differential Dyp of
1. Though such passing is not a curvature issue in the conventional sense, it does carry a taste
of curvature calculations.

Lemma 5.5 [0,D7¢r versus VI@1:90,07] Let (o7, V) be a (x1)-admissible T-family of (x,)-
admissible pairs. With the above notation and convention, let & be a vector field on X. Then,
for a chart of Y with coordinates (y', --- , y™), one has

ODfpr = VI D900 — (ad® V) Dier + SI0V)E) dhly))] © 2.

=1
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Here, only as a compact notation,

(ad® Vouer Deor = 3[04, DE P (W) © V2o 57
i,7=1
0
= - Z [DESH(Y), Dy )]®V9 oy = —(ad®@Vi)pr,, Opr.
i,j=1

If (o7, V1) is furthermore a (xo)-admissible T-family of (xo)-admissible pairs, then the last
term has a Y -coordinate-free expression

ad (5,v7) ()T -
Under the given setting and by Lemma 5.4 (0),
T 8

= > EatgoT<y>+[<ath><s> AN ® g + 3 DI () © Vs 5

i b w

while
ngv(wT,g)at(PT _ Vg’(w’g)(z&cpgﬂ(yi) ® 8?41)
S D0 ® gy + 2o WIDE) © V%, o
i %)
Thus,
Othgo VT Aer.g) Opr
= YI@vH©.¢h) e &
+ ZDg Py Oy )®ng ZatSOT JDE Py j)®vi% 8?/1'

Either apply the identity VY, 8%1. =V a - to the second term and relabeling i, j of the third,

ByJ Byz

or apply the identity VL o=V’

to the third term and relabeling 7, j of the second,

57 a?, e
ZDwT 0P (v) @ Vs, ZatgoT )DL (y )®Vi(zja‘zi
= %:[Dg (') Ol (o )]®Vizigfyj (= (adoV)pr o0 )
=~ Y0 (y"). Divirly )]®Vg8 a?,] (= —(ad ® Vo Dier ).

This proves the First Statement in Lemma.
The Second Statement in Lemma is a consequence of Corollary 3.1.10 and Lemma 5.4 (05).
This proves the lemma.

Before continuing the discussion, we introduce a notion that is needed in the next lemma.
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1 . . .
Definition 5.6 [half-torsion tensor Tor, | Recall the torsion tensor Torys of a connection
VionY

Torv:(vy,v2) = V, v — Vi, vy — [v1, 0]

for v1,v9 € T.Y. For the Levi-Civita connection V9 associated to a metric g on Y, Torys = 0
by construction. Thus, in this case, for a & € C>(Y),

(Vgl Vg — vlvg)CD = (ng v — Ugvl)q)
for v, v9 € T.Y. This defines a symmetric 2-tensor on Y
La
Torg, : T.Y xyT.Y — Oy

(Ul,UQ) — (Vgl Vg — Ulvg)q)

called the half-torsion tensor of (the torsion-free connection) V9 associated to ® € C*(Y).

The following lemma addresses the issue of passing 0; over ‘evaluation of an O;‘}ZT—Valued
derivation on C*°(Y')’, and another similar situation:

Lemma 5.7 [0,((Dfor)®) versus (9,Dor)®; DE((dipr)®) versus (Vi 79 8,07)@]
Let (o7, V) be a (*1)-admissible T-family of (x1)-admissible pairs. Continue the notation and
convention in Lemma 5.4. Under the canonical isomorphism (’)XT ® o0y Oy ~ (’)XT,

0:((D¢ pr)®)
) 9
= (OD¢pr)® + Z DE(y) O (y) @ (ayi@@ - (Vga Tyﬂ')@)

i,7=1

= (athT<PT)‘I> - (SOTTOTW )&, 0);

and

DY (0or)®)
= (VET 9000 + 3 0h(y) DEGY) © (e — (V0 2)e)

i,j=1

= (Ve D00r)® — (5 Tor &) (91, €).

For the first identity,

(D or)®) = at(ZDgsoT ® 7 ®)

0 0
> oDl k@ az<1>+ZDwT N0 () @ 5,7 5y
7

while

(@:Dfpr)® = (atZDwT ®ay)‘1’

(ZathsoT )@ g7 + ZD£¢T ERCAQ )®V‘}a(zi)‘1"

yJ
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Thus,

O((Df or)®) — (8:Df or)®

_ Tt iVt () & (0.0 g9 O
= LDEAWIEW @ (970 — Via o)
0 0 1,0
ZDgsoT 050 @ (g7 — Vi) = — (@ Torgs )€ 0)
and the first identity follows.
For the second identity,
((&S‘PT = (ZatSDT ®5y )
6
while
(s (s i 0
(VI 000) = (vg(wmzat@@f(y)@ yi)cb
0
(S Dladh(s) @ g + Yoy DLy )@vga%ay,»)@.
% 7,7 v
Thus,
DE((9rpr)®) — (Vg7 drpr)2
E (DT o (0 0 9 g 0
Zat(pT(y )De ¢r(y’) @ <0yj gyt V% 8yi>q)
o 0 0 1.0
ZatsaT )DL W) @ (g7 — Vo 57)® = — (5 Tor3,)(01,€)

and the second identity follows.
This proves the lemma.

Remark 5.8 [for (xo)-admissible family of (x1)-admissible pairs] If (o7, VT) is furthermore
a (*2) admissible T-family of (#;)-admissible pairs, then, as in the proof of Lemma 5.4 (2),
DYk (y') and 9k (y7) commute for all 4, j. In this case,

(" Tor&l)(€.0) = (¢° Tor&l)(0.6).

Two-parameter admissible families of admissible pairs

Let T = (—¢,e)? C R?* ¢ > 0 small, be a two-parameter space with coordinates (s,t). The
setting and results above for one-parameter admissible families of admissible pairs generalizes
without work to two-parameter admissible of admissible pairs. In particular,

Definition 5.9 [two-parameter admissible family of admissible pairs] A (x)-admissible
T-family of (x,)-admissible maps is a (x;)-admissible map @7 : (X4F, Er; VT) — Y, where &r is
trivially flat over T, such that 0, Comm A, C Comm (A,,) and 0;Comm A, C Comm (A,,).

The following is a consequence of the proof of Lemma 3.2.2.5:
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Lemma 5.10 [symmetry property of Tr(Fgr.or.0(0s, £2)0or, D£4g0T>] Let
7 (XFEErVT) = Y be a (*2)-admissible T-family of (*1)-admissible maps. Let &,&4 € T.X
and denote the same for their respective lifting to T.(Xr/T). Then,

Tr(Fyr.or.a (05, &2)0pr , Déor)y = — Tr{pr, Fyriers (0s,&2)De,pr)g
= —Tr <FVT’(<PT’9) (83752)D2;90T7 a1590T>g = 1Tr <FVT7(A0T79) (527 s)D&lSOT, atQOT>g-

Let & be & or &. Since d;Comm (A,,) C Comm (A,,) and and 0:A,, C Comm (A, ), both
dsDf pp and 9,07 lie in Comm (A,,) @yt 0,T.Y . Locally explicitly,

0
0,Dfor = ZaD§<pT ®aZ+ZD§¢T () 05 ) © Vo 57

OsOppr = ZasatSOT )®3az +Zat90T as%f’( )®Vg 3i

Now follow the proof of Lemma 3.2.2.5, but under only the (x;)-Admissible Condition on

(¢r, V), to convert  Tr(Fyr.er.a (0s, £2)0i0r , DEor)y to Tr(dwer , Fyrier.a(0s,&2)De,pr) g -
Since Tr(-, '), is defined as long as one of —, ~' is in Comm (Ay.) ® s , T.Y, one realizes
T

that all the terms that appear in the process via the Leibniz rule are defined except
— Tr(Vg(wT’g)ﬁtng, 3SD£QDT>Q + Tr{0s0upr, Vg(@T’g)Dggpﬂg.

Under the additional (x;)-Admissible Condition on (¢, V1) along T', both 85D§T4g0T and 00,7
now lie in Comm (A,,) ® T.Y; and the above two exceptional terms become defined.
The lemma follows.

<Pﬁ70Y

6 The first variation of the enhanced kinetic term for
maps and ......

Let (¢, V) be a (*;)-admissible pair. Recall the setup in Sec.5. Let T = (—¢,e) C R', for some
e > 0 small, and (p7, VT) be a (*;)-admissible T-family of (*;)-admissible pairs that deforms
(0, V) = (pr, V1) |t=0. We derive in Sec.6.1 and Sec. 6.2 the first variation formula of the newly
introduced enhanced kinetic term for maps

i, 1
Sfrlzoap:kiggtiﬁ(go? V) = 5 T /X Re Tr <D907 Dgp) (h,9) volp, + /X Re Tr <dp7 @qu)>h volp,

in the standard action for D-branes. As the ‘taking the real part operation Re(------ ) is a

Ox-linear operation and can always be added back in the end, we will consider

S(phfg) (o, V)Y = 1Tm_1/ Tr(Dy, D) pg) voly + / Tr{dp, o°d®);, voly,
map:kinetic 2 X ) X
so that we don’t have to carry Re around.

The first variation of the gauge/Yang-Mills term is analogous to that in the ordinary Yang-
Mills theory and the first variation of the Chern-Simons/Wess-Zumino term is an update from
[L-Y8: Sec.6] (D(13.1)). Both are given in Sec. 6.3 under the stronger (*2)-Admissible Condition.
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6.1 The first variation of the kinetic term for maps

Recall the (complexified) kinetic energy EV' ()¢ of ¢, for a given Vi, t € T := (—¢, ¢),

1
EVt((p ) = Smap kmetzc(gptv vt)C’ = 5 Tm—l /X Tr<Dt90t ) tht>(h79) UOlh :
As t varies, with a slight abuse of notation, denote the resulting function of ¢ by
1
EVT (QO ) - Smtg))kmetzc(spT’ VT)C = 5 Tm—l A TT<DT90T ) DTQOT>(ha9) UOlh )

with the understanding that all expressions are taken on X; with ¢ varying in 7.
Let U C X be an open set with an orthonormal frame (e,),=1,...,m. Let ("),=1

m be the

dual co-frame. Assume that U is small enough so that ¢7(U#¥) is contained in a coordinate chart

of Y, with coordinates (y!, --- , y™). Then, over U,
d vT C 1 T T
%E (pr)” = B mfl/UatT'r<D o1, D™ 91) (1) VOl
1
= 5 m—l/ TT8t<DT(pT, DT(pT>(h7g)’Uolh
1
= 3 ml/TratZ eng,De o) gvolp

pn=1

m
= Tm_l/U "> A0DZ, o1 . D&, pr)gvoly
pn=1

— TnH/UTrZN 9907, DL or) g vol,
o

+ Ty /U Tr Z((ad ®V9)DZM@T8MT, DZLLQOT>9 voly,

n
—|—Tm_1/UZ ; (@97 )(ep), Py © g, D o)y voly
— @1 + (12) + (13).
(I1) = / Z Tr ( (Ot D (pT> — (Owpr s VZ;;(@T’Q)DEMQDTM) volp,

= Tm—l/UZeuT7"<at<PTa Dz;goﬂg volp + Tm_1/U Tr{Over , —Zuvg;(“"T’g)Dz;goﬂg volp
I

= (L1.1) + (L1.2).

Summand (I.1.1) suggests a boundary term. To really extract the boundary term from it,

consider the T-family of C-valued 1-forms on U

Oéa,atw) = Tr{Ower, D or)y,

which depends C°°(U)%-linearly on ;7. Let

m

g(ji,atgoT) = Z (Tr<at90T7 DZ;QDT>9> €u

p=1
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be the T-family of dual C-valued vector fields of aa dipr) O U with respect to the metric h.
Note that 5 1 oyp) depends C>=(U)%-linearly on 0y as well. Then

(L.1.1) = Tmfl/ljzeu@(TL&m)’ eu)n voly,

= T,._ 1/ Z Iat@T ) eun voly + T 1/ 5(1 upr) » o vh e#>hvolh

The first term is equal to

(L, 0¢ )

T1 /U(— div 5(17@%)) voly, = T, 1/ dzg(l Bth)volh = T, /aszT voly,

which is the sought-for boundary term, whose integrand satisfies the requirement that it be
C*>(U)%-linear on d;p7. The second term is equal to

Lo [ Tr(Opr . D& i 1) voly

by construction, which is C°°(U)%-linear in d;¢7 and hence in a final form.

The integrand of Summand (1.1.2) is already C°°(U)®-linear in d;pr and hence in a final
form.

Summand (I.2) can be re-written as

(I.2) = —Tm_l/U Tr%j((ad ®V9)at¢TDi¢T,D;¢T>gvolh.

Thus, its integrand is already C(U)%-linear in 9,01 and hence in a final form.
Finally, since the built-in inclusion OF C OfF identifies OF with the center of OfF, Summand
(1.3) is C°°(U)%-linear and hence in its final fom.

Altogether, we almost complete the calculation except the issue of whether all the inner
products 7r(*, *), that appear in the procedure are truly defined. For this, one notices that
wherever such an inner product appears above, at least one of its arguments is either 0y or
DeTM T, for some p. It follows from Lemma 3.2.2.4 that they are indeed defined.

In summary,

Proposition 6.1.1 [first variation of kinetic term for maps] Let (o7, VL) be a (¥)-
admissible T-family of (x1)-admissible pairs. Then,

d _or d
thv (er)¢ = dt( T 1/ Tr(D"or, D" or)(hg) UOZh)
- Tm 1/ 7/5(7; attﬂT)
YT / Tr@rpr, (Dym <o, = Sy, VEEIDL ) or), vol,
— T 1/ Trz ((ad ®V9)3M,TD cpT,D goT) voly,
pn=1
 Tor [ 3 (M@ 04 (6)] © g . D or) ol
p=1 i=1
Here, the first summand is the boundary term with &f o .y = X (Tr(Owpr, DI or)g)en

C>=(U)C-linear in O,pr; the integrand of the second and the third terms are C*(U)C-linear in
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Oppr and their real part contribute first-order and second-order terms to the equations of motion
for (¢, V); the integrand of the last term is C°°(U)C -linear in O,V and its real part contributes
terms, first order in ¢ but zeroth order in the connection 1-from of V, to the equatwns of mo-
tion for (¢, V) in addition to those from the first variation of the rest part of Sstpaz(i%B C)(go, V).

These lower-order terms contribute to the equations of motion for (¢, V) but do not change the
signature of the system.

Remark 6.1.2 [for (x3)-admissible T-family of (xq)-admissible pairs] If furtheremore (¢, V) is
(x9)-admissible and (@7, V1) is a (*;)-admissible T-family of (x;)-admissible pairs that deforms
(¢, V), then the third summand of the first variation formula in Proposition 6.1.1 vanishes and
the fourth/last summand has a Y-coordinate-free form

Tin—1 /U Z <ad(6tVT)(eM)90T7 DeT#SDT>g voly, .
pn=1

In this case, the first variation with respect to ¢ alone (i.e. setting 9,V? = 0), cf. the first two
summands, takes the form of a direct formal generalization of the first variation formula in the
study of harmonic maps; e.g. [E-L], [E-S], [Ma], [Sm)].

6.2 The first variation of the dilaton term
We now turn to the (complexified) dilaton term in S\ ®959) (, 7)C.
Let o7 : (X*,Er;VT) — Y be a (*1)-admissible T-family of (x;)-admissible pairs. Then,

over an open set U C X,

5&%3(%)0 = /UT7”<dp,<,DQTd<D>hvolh

d on m
GGl en® = [ 103 dp(e,) ((DFr)) voli
= /U Ir Zdﬂ(eu) ((atDZ;SDT)q)) volp,

/Trzdp o) Y DL )®<3§]agq> (v7a %)@) vol

4,j=1 oyl

= (IL1) + (IL2).

The integrand of Summand (I1.2) is C°°(U)%-linear in 9,7 and hence in a final form.

’ - " €u Cen((pT’g)at V0
(I.1) /UT zﬂ:dp( ) (V2 1)) vol
_ /U T?"de(eu) (((ad @ V) o,00De goT)CI)) voly,

+ T X dote (S 0V, ] @ ) ) vl

= (IL.1.1) + (IL1.2) + (I1.1.3).
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Both Summand (II.1.2) and Summand (II.1.3) vanish since
Tr([a,blc) = 0 if [b,c] = 0

for » x r matrices a, b, c.

(IL1.1) = /U Y dplen) DT ((9r)®)) vl
m

- /U Tr Y dpley) > dih(y') DL Sh(y)) ® (a‘ziaayfb ~ (V% ) <I>> vol
I

4,j=1

= (IL.1.1.1) + (II.1.1.2).

The integrand of Summand (I1.1.1.2) is C*(U)®-linear in d;p7 and hence in a final form. It can
be combined with Summand (I1.2) to give

(I11.1.2) + (IL.2)

= - /U Tr Y dple,) Y 10:5(y') . DL Sh(y)] @ (agiazjcb - (vga,a;jj)<b> voly,
"

ij=1

which again vanishes due to Tr.

(IL1.1.1) = /[]de(e#)Tng((ath)é)volh
7

— /UE dp(ey) e, Tr ((Oppr)®) voly,
M

= /U;eu(dmey) Tr ((Orpr)®) ) voly, — /U (geudm@))%((@m@) voly,

= (IL1.1.1.1) + (IL1.1.1.2)

The integrand of Summand (I1.1.1.1.2) is C°°(U)%-linear in d;¢7 and hence in a final form. To
extract the boundary term from Summand (I1.1.1.1.1), consider the T-family of C-valued 1-forms
on U

Al oo = dp Tr((Oppr)®),
which depends C°°(U)%-linearly on ;7. Let

m

rown = 2 (dplen) Tr((Gpr)®)) e,

p=1

be the T-family of dual C-valued vector fields of aal,&sw) on U with respect to the metric h.
Note that §(TH78MT) depends C°°(U)%-linearly on 9,7 as well. Then

(IL1.1.1.1) = /UZBM@(j;L@MTw@MhUOZh
w

= /UXMXVZM&(TH,&@T)v eu)n volp + /[]<§gl,8th)’ >u vIel,ﬁu)h volp,

The first term is equal to

— div € vol, = /diT vol, = / LeT vol
/U( f(ILat‘PT)) h U §(II,6t<pT) h oU g(llﬁwﬂ fos
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which is the sought-for boundary term, whose integrand satisfies the requirement that it be
C*>(U)%-linear in 0,7 . The second term is equal to

[, dp(=, V8 ) Tr((Dror)@) vol,

by construction, which is C°°(U)%-linear in d;¢7 and hence in a final form.
In summary,

Proposition 6.2.1 [first variation of dilaton term] Let (o7, VT) be a (;)-admissible T-
family of (x1)-admissible pairs. Then,

d  (ph:® c d
&Séflaton)(sp’f) = %/U Tr{dp, ¢7d®), voly,

p— ) l
/8U Z§<7£L 0t<PT)UO h
[ (oS ) = Simieudote,) Tr(Gupr)®) vols.

Here, the first summand is the boundary term with o .0 = Sy (dpley) Tr((Owpr)®))ey
C>=(U)C-linear in Owpr; the integrand of the second summand C>®(U)C -linear in dwpr and they
contribute additional zeroth-order terms to the equations of motion for (¢,V). In particular,
while the dilaton term of the standard action modifies the equations of motion for (v, V), it does
not change the signature of the system.

6.3 The first variation of the gauge/Yang-Mills term and the Chern-
Simons/ Wess-Zumino term

To make sure that differential forms on Y of rank > 2 are pull-pushed to (O4¥-valued-)differential
forms on X (cf. Lemma 2.1.11), we assume in this subsection that ¢z : (X4, Er; VT) — Y is a
(#2)-family of (x;)-admissible maps. (Note that as the gauge/Yang-Mills term is defined through
a norm-squared, (*)-admissible family of (x;)-admissible (¢7, V1) is enough for the derivation of
the first variation formula of the gauge/Yang-Mills term but the result will be slightly messier.)

6.3.1 The first variation of the gauge/Yang-Mills term

Let (e1, - -+, e;) be an orthonormal frame on U. Then, over U,
St pyadler, VI 1= =5 [ Trl2ma For 4 o7 Bl voli
- — % /U Tr uz; ((27To/FVT + ¢5B)(e,, ey))Qvolh :
Applying the following basic identities:
diFgr(en,e) = DL ((0VT)(e) — D0V (en) — BV )(lewse]),
K((B)ewen) = D0 (Bi) DL, () Do (v)
Uy > e (By) (DL, 0k () + [0 ) (). 5 (4] DE, e ()

2y
+ > By DL (') (DL () + (V) (e), ()] -
(2
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and proceeding similarly to Sec. 6.1, one has the following results.

%Sﬁf;fj)/m( or, Ve / Tr@t ((2ra/Por + ¢3B)(ep, ey))Qvolh
= — /U Tr Zat((zm For + goTB)(e,“ e,,)) : ((zm’FVT + ¢5B)(e,, e,,))volh
o
- /U Tr " 2ma'0y(Fyr (e e0) - (270! For + ¢5B) (e e0) ) ol
"
- /U Tr ZV O3 Bepner)) - ((2n0' For + ¢3B) (e, e.) ) voly
= (IIL1) + (I11.2). :
(IIL.1) = - /U Tr) 2/ 0y (Fyr(ep, ev)) - ((27TO/FvT + go%B)(eu,e,,))volh
o
= o [ > (D@ ) = DE@T)e) = @ e e))
7 ((2ma' Fgr + ¢3.B) (e e0) ) vol
= —Adxd / Zg(m BNT)’UOlh
—drd /U Tr (097 (e) - ( (20 For + ¢3B) (S, V" ep 1)
V — 3 DT (270! For + ¢5B) (e )
-
— % 2; e’ (leu, ex]) (2w Fyr + ©5B)(ey, €) )volh )
i,
Here,
owr) = Z Tr((0V")(e,) - (270’ For + 67 B) (e, e0)) en € T(Ur/T)C

is OF-linear in 9, VT and the second summand contributes to the equations of motion for (¢, V).
The latter are standard terms from non-Abelian Yang-Mills theory with additional terms from

©°B.

(I11.2)

= = [ Y oot Blee)) - ((2ra/ For + ¢5.B) ey e,) ool
8%

= _/UTTZ(Zat(‘Pg“(Bij))Diwg“(yi)ngwg“(yj)
RN
+ > Ph(By) (DL o (y') + [0V ) (en), i (v')]) DL ()
7:7j
+ 30 B DL ) (DL ok o) + 107 e )] )

-((2770/FVT + ¢7B)(ey, ey)>volh
= (II12.1) ++ ((IIL2.2.1) + (I[1.2.2.2)) + (IIL2.3.1) + (II1.2.3.2)

in the order of the appearance of the five summands after the expansion.

(II1.2.1) = / P 0 (Bij) DL o (v DL (1)

BV,
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-((2m’FVT + o7 B)(ey, eu)) volp,
= / Tr 33" ((Bupr)Biy) DY, (') DL, (3
Y 45
-((27TO/FVT + QO%B)(G;“ Gu))UOZh

has an integrand OF-linear in ;7 and hence in a final form.

(II1.2.2.1) + (IIL2.3.1)
= / TTZ(ZSOT i) D at‘PT( Z')DeTu‘pﬁT@/j)
pv i
+ 2 P (By) DL (v D aud ()
.((QWavaT + ¢7B)(ey, ey)>volh

= —2/ Tr ZDT8t<PT( )‘Pgﬂ(BZJ)DeV‘Pg“(y)

WV o1,
((2ma’ Fyr + ¢7B)(ep, ev))vol,
= =2 z§ - BwT)UOlh
-2 / T’)” ZatQOT
v @7]
(4 (Bi) DLk () - (20 Fer + 3B)(S, Tl )
ZDT (90T<Bzy) DL G (y’) - (27’ Fgr + @%B)(eu,ey)))>1’0lh_
Here,
III Depr) = (Z Z O (y' (Bij) D, SOT( 7) - ((2md/ Fyr + ¢7B)(ey, ev)))%

“ v 7-]

in 7.(Ur/T)¢ is OF-linear in dyp7; and the second summand contributes to
5S p,h@gBC)(gp

standard

V)/dp-part of the equations of motion for (¢, V).

(111.2.2.2) + (I11.2.3.2)
= = ), (S AENOT ). AL )
T A B AWOT e )
'((27TO/FvT + 3 B)(ey, ey)) voly, .

has an integrand OF-linear in 9;V? and hence in a final form.
In summary,

Proposition 6.3.1.1 [first variation of gauge/Yang-Mills term] Let (o1, V7T) be a (x9)-
admissible family of (*2)-admissible pairs. Then

d (B
S0 er VO = =3 G [ Trlena’Fer + 6Bl vl
= —471'&’/ Zg voly, — 2 15 voly,
oU ~(11,o,vT) oU “(ILdgpT)

- 471'0//U Tr Z(@tv )(ey) - ( (2ma Fgr + QO%B)(Z“VZHGM, )
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= > DI ((2rd For + ¢5B)(eps €1))
I

1 v
=3 2 e (lew x))(2ma For + ¢3-B)(en, ex) )volyy
LA

= [ (S e BIOT e I ()

o + DG (By) DL (1)OVT) (e0), i (y)])

-((2770/FVT + 7 B)(ey, e,,))volh
/TTZZ (Do) Biy) DL, o4 (y)) DL ()

BV 4]
.((27ro/FvT + p7B)(ey, e,,)) volp,

_2/ 7YY oy

v 7,]

(soﬁp(Bi-)Deuso%( 7). (2ma For + 93B) (X, V" e en)
ZDT (SDT(BU) DT ( N ((2ra’For + SDTB)(eM,el,))))volh.

Here,
f(TIH,aNT) = Z Tr ((@VT)(el,) (2’ Fyr + ¢7B)(ey, 61/)) €us

faII,BtLpT) = Z (Z > O (y' (Bij) D¢, <PT(Z/ ) ((2ma/ For + ¢7.B) ey, ev)))eu

v Zj

in T.(Ur/T)C, with the first OF -linear in O,VT and the second OF -linear in dypr.

6.3.2 The first variation of the Chern-Simons/Wess-Zumino term for lower dimen-
sional D-branes

This is an update of [L-Y8: Sec.6.2] (D(13.1)) in the current setting. Let @7 : (X, Ep; VT) —
Y be an (xg)-family of (%3)-admissible maps. We work out the first variation of the Chern-

Simons/Wess-Zumino term S(CCL;%,Z (p, V) for the cases where m := dimX = 0,1,2,3. As the
details involve no identities or techniques that have not yet been used in Sec. 6.1, Sec. 6.2, and /or
Sec. 6.3.1, we only summarize the final results below.

6.3.2.1 D(—1)-brane world-point (m = 0)

For a D(—1)-brane world-point, dimX = 0, V = 0, and Sag(;%/g/z(SOT> =71, - Tr(go?p(C(o))). It

follows that

d (C
Seiier) = T Tro¢h(Cry) = To1 Tr((Grpr)Clo)) -

6.3.2.2  D-particle world-line (m = 1)
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For a D-particle world-line, dim X = 1. Let e; be the orthonormal frame on an open set U C X;
el its dual co-frame. Then, over U,

n

c
Sgs%)/)z(‘PT)C = TO/U Tro7Cay = TO/U TT(Z‘PﬁT(Cz‘)' DI b (y )) e

i=1

It follows that

d .(c i
Se(e) = To(Tr > oty ) (Ci)) law

—To/ Tr(ZﬁtgoT DeISOT(Ci))el + TO/U Tr(;DelwﬁT(yi) : (atSOT)Ci>€1-

6.3.2.3  D-string world-sheet (m = 2)

Denote y A - ] ‘ A
Cy = Coy+CoB = > (Cy+CoBy)dy' @dy’ = 3 Ciydy' ® dy’
] i,j
in a local coordinate (y!, -+, y") of Y. For a D-string world-sheet, dim X = 2. Let (e1, e3) be

an orthonormal frame on an open set U C X; (e!,e?) its dual co-frame. Then, over U,

S(C<0),C(2>,B)( VT)C

cs/wz

- /TT(Z P4(Coy) DI (o) DL )
+ O‘/‘PEF(C( )) Fyr(e1,ez) + ma/ Fyr (e, eo) @ﬁT(C’(O))) el A e?
= Tl/UTT( Z i (Ciy) DL (u) DL () + 270/ (Clo)) Por(er, e2)) e A e?.
It follows that

(C(0),C2),B) T\C
7503%/2 @ (o1, V")

n

- Tl/U Tr 8,5( Z w,jjT(Cu'LJ)DeTlgouT(yl) DeTchuT(yj) + Qﬁa’w,jjr(C(o))FvT(el,eQD et Ae?

ij=1

=T /w ier 8m)(el Ae?) + 2md'Th /GU iE(TMNT)(el Ae?)
+ T1/ TT( > oty ( Pl ()P (Cig)e" — Dﬁ@%(yj)w%(%)ez)(v’;el + ngez)) et Ne?
i,j=1
_Tl// Tr(Z&sz (DL (DL () - 4(Ciy)) — DE, (Dele”T(yj)-w%(%))))elmz
+T1/U Tr(Z@@T(C@)De b (") DL ok (y )) et e
]
+2ra! Ty /U T (aﬂpﬁp(cm)) - Fyr (el eg)) el A e?
+ 21’ Ty /U Tr (&T(C(O)) (((ath)(@)el — (8 VD) (e1) €2) (VP er + VI eo) — (ath)([el,eg]))) el A e

— 271’ T1/U Tr (DeTl(PﬁT(C(o)) (0:V")(e2) — DL%(Co)) - (ath)(el)) e ne?.

Here,
Evioen = TS0 )DL W) (Cij))er — Tr(S ;005 ()DL o5y ) (Cij)) €2
ivasry = Tr(@h(Co) - @V )(e2))er — Tr(&h(Croy) - @iV )(er)) e

in 7.(Ur/T)C, with the first OF-linear in d;pr and the second OF-linear in 9, V7.
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6.3.2.4 D-membrane world-volume (m = 3)

Denote
é(g) = 0(3) + C(l) NB
= Z(C”k + CzB]k + CJB]CZ + CkBij) dyz X dyj X dyk = Z é’wkdyz X dyj X dyk
irgik irjik
in a local coordinate (y', ---, y™) of Y. For D-membrane world-volume, dimX = 3. Let

(€1, €2, €3) be an orthonormal frame on an open set U C X; (e!,¢e?, e?) its dual co-frame. Then,

over U,

C(1y,C
Steis @ (o, 97T
= nf m (Z 3#) DL (y') DL gh0P) D i)
k=1

+2ma’ Z Z YA (p C’)DMD?F( ") Fyr(ey, ey) )) el AP AP
(Auv)€Symsg i=1

It follows that

a4 o(Ca),Cs),B) T\C
SCS/IWZ ’ ( 7,V )

n
= TQ/U Tron( Y ¢ (Cin) DL o5 (y') DE G J>D£w§<yk>
irj k=1
+ 2ma’ Z Z )M (G (C3) DT o5 (y") For (e, e0) )) et Ne? AeP

(Apv)eSym, i=1

= T2/ ier (e* ANt ned) + 47T0/T2/ gt (e* Ne? Ae)
ou

IV, 8¢1:C(3)) (IV,94»3C (1))

+2770/T2/ ier (e* Ne? Ae?)
U (1v,8,vT)
" TQ/U <(Tr > w?(éijk)atqu(yi)Déw?(yj)DeTgsﬂ”T(y’“)) e!
ik
— (1Y A (Cunad(y) DL () DL ()
1,5,k
= (1 X G DA DL G ) € ) (S5, T e e e e
1,7,k
- Tz/ Try 0wy’ ( P (Cijt) D, o7 ()DL (7)) — DI (9%(Cije) DL @i (v ) DL 0 (4"))
1,5,k

— DI, (¢ (Cosn) DL (57 ) DT, b (7)) ) € A €2 1 €

LT / Tr' 3" Gk (Cige) D b (47) DL (57 DL, b (4 €1 A 2 A 2
1,5,k

+ama'my [ ((Tr 3 (OO (1) For (en.es) )

(TTZ@T )0l (y )FVT(61v63)> e

(Tr Z o7 (C 8,590T (y") Fyr(eq, 62)) 63) (Zizlvgue#) el Ae? Aed
- 47TO/T2/U TrzatsﬁT(yi)(Dgl (#5(Ci) Fyr(ez,e3)) — DI (% (Cy) Fyr (e1, e3))

+DZ; (‘pﬁT(Ci)FVT(el,@))) et Ae? ned
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+ 27d/ Tg/ Tr Z )X g, of, )DEX@T( N Egr(ey,en)et Ae Ae?
U

(Apv)eSym, @
+2na' Ty [ (10 Y4 (C) (DL ()07 ) ea) = DL ()07 (e3)) )

+ (TrZso%(cn(DiwﬁT(y")(aNTxel) + DL () (097 )(es) ) )

# (1 S (G (DA GHOT ) = DGO en)) ¢ ) (Thn e
el ne? Aed

voma'Ty [ S0 ST O (O [0 en) o )] For(eynen)

(Apv)eSym, @

@5 (C) DL ) Gror)([enren)) € A A,

Here,

(TTZSDT at(p )Deng( )De390T( k)) €1
1,5,k

f(IVﬁt ©o1;C3))

P> D (Ciin) 0l () DT, b (y7) DT o (5F) ) e
- (7

1,7,k

(TrZSDT 8“0 )Desz( )DZ;‘PﬁT(yk)> €3,

1,5,k

v ovorcay) (T’“Z@ﬁT (Ci)Oh(y i)FVT(GZve?))) er
(TrZwT DU IFererses)) a + (T e COAHWIForersen)) e
hvown = (TrZsoT Co) (DL e )@ ) (e2) — DEPhly )(aNTxeg)))el
. (7r b () (DL WOV )er) + DLk @9 )(es)) ) e
+ (TriSOuT(Cz')(DeTﬁPﬁT(Z/i)(atVT)(@?) — DL )0V )(er)) ) es

in 7.(Ur/T)¢, with the first two OF-linear in 9y and the third OF-linear in 9, V7.

7 The second variation of the enhanced kinetic term for
maps

Let T = (—¢,e)*> C R? with coordinate (s,t), and (@7, VT) be an (*;)-admissible family of
(*1)-admissible pairs, with (©(0,0), V0,0)) = (¢, V). Assume further that

D¢0s;A,, C Comm(A,,) for all £ € T.(X7/T).

We work out in this section the second variation formula of the enhanced kinetic term
(0hi®9) (5 V) in the standard action S%"P95) (7).

map:kinetict standard

7.1 The second variation of the kinetic term for maps

Recall
T (h 1
Ev (90T) - Sma?))kznetw((pTv VT) = 5 Tm—1 /X Tr <DTSOT ’ DTQDT)(hvg) UOlh ’
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with the understanding that all expressions are taken on X, with (s,?) varying in 7T'.
Let U C X be an open set with an orthonormal frame (e,),=1,...,m. Let (€*),=1,.. m be the
dual co-frame. Assume that U is small enough so that ¢7(U#?) is contained in a coordinate chart

of Y, with coordinates (y!, - -+, ¥™). Then, as in Sec. 6.1, over U,
0 vT _ < T,(p1,9) T
aE (pr) = Tm_l/U Tr;<veu ower D€u90T>g voly,
T
+ Tt /U Tr MX:I <(ad ®V9)D5H@T8tg07’ , D6M¢T>g voly,

+ Tt / fxz (@) (en), 95y ® 5, DY, soT> voly,
p=1 =1
= (I%1) + (1%.2) + (12.3);

and 0? 0 0 0
vT _ Y (12 Y72 v
8satE (1) B (I=.1) + 55 (I%.2) + pR (12.3).

Which we now compute term by term.

The term 2 (I1%.1)

d oy 0 T (or0) T
s (I%1) = Tha %/U Tr Z:: <Veu“’ Do, D6H¢T>g voly,

s
= T, /TrZ@<VT ‘pTgatgoT,D <pT> voly,

= T,_ 1/ Tr VT(“"TQC?QDT,D ng> voly,

+ T /U )’ <V6T,;(“0T’g)8tsom 88D290T>g volp,

= (I%1.1) + (I%1.2). }

(a) Term (1%2.1.1)
2 — T\(¢1,9) T
(12.1.1) = Tm_l/U Tr§<ﬁsveu L
= Tm,l/UTrZ<V6T;(“DT’9)858t<pT, D290T>g voly,
o
+ Tm—l/U TT%:<FVT,(¢T,9)(85,€M) atQOTa Dz;CPT>g UOlh
= (I*2.1.1.1) + (I*.1.1.2).

For Term (1%2.1.1.1), as in Sec. 6.1 for Summand (I.1.1), consider the 1-form on Uzp/T

aa27asat<pT) = Tr(@sﬁtcpT, DTQOT>Q

and let
552,856“@) = Z Tr{0s0vpr , D;j';goﬂg ey

47



be its dual on Ur/T with respect to h. Then,
(121.11) = T, 1/ voly
ou 02.0.0000)
+ Tm_lZJ TT’ 858t()0T7 (DTZHVQ;LEM - ZMVZ;(¢T79)DZ;)(;0T>Q UOlh.
For Term (1%.1.1.2), recall Lemma 3.2.2.5. Then,
1%2.1.12) = — Tm_l/U Tr<0t<,0T, ZFVT,((pT,g)(aS,GM)DZ;('DT>g voly,
I
+ Tmfl/U Tr Y [Fy(8s,e4) , (Bipr, D @r)g] voly,

I

= — Tm_l/U Tr<at<,0T, ZFVT,(SOT,Q) (88,6M)D6T!L<,0T>g voly, .
I

Here,
n i 0
Foriora (Bs,eu)DawT — (asveT;(soT,g) _ VeT;(WT’g)as)zileeuSOﬂT(?/ ) ® oy
= Y10V )(en), De, P ()] ® oy e, P () Y105V (), D ()] ®VZ% Dy
=1 . j=1 v
o)
+ Z eMSOT Z( assoz_jr( )®vg % Iy
i=1 Gk=1 oyk oyl ' 5
— O () DL ) 0 V9, V0 o)
oyl oayk
explicitly.
(b) Term (1%2.1.2)
(12.1.2) = Tm,l/U TrZ<V£;(“’T’g)8tg0T, 8SDZH<pT>g voly,
m

—_— T7( ’. ) T7( ’. )
= T /U Tr <V€H DOy, Vo I 3590T>g volp,

I

+ T /U Tr Z <VZ;(“”T’9)8t90T, (ad ® Vg)DeTMngasSOT>g voly,
o

+ T /U Ir Z <vzﬁi(wT’g)aﬁOT7 E@ 1[(8 Vv )( ) Sog“(yz)] ® azi >g voly, .

s

As in Sec. 6.1, consider the 1-forms on Ur /T,

aaz,at@T,VTvQPTvg)) Tr <at90T ) vT7((pT7g) @S(PT>9 ’

aaaamDT@T) = Tr{Owr, (ad ® Vg)DT(pT(()SgoT)g ,
i 0
ar(1;2,8t<ﬂT,6sVT) = Tr<@t90T7 E?:l[asvTv Spg“(y )] X ayi>g

and let

5(7;275%01“7VT’(“’T’5)) = Z Tr <at¢T7 VZ;(wT’g)aSQOT>g €us
o

5(7;2,8t¢T’DTSOT) = Z Tr{Owpr, (ad ® Vg)DgucpTasng)g e,
i 0
e oioravT) = Z Tr(Oupr , Xieq [(0V7)(en), o (y')] @ Byi)g Cn
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be their respective dual on Ur/T with respect to h. Then,

12.1.2) = T_/z
( ) mlaUgT +&T

12,0y, v T (#7:8))

T,(e1.9) T,(o1,9) T, (o1,9)
+ Tm_l/U T7"<(9t<,0T, ( E geueu ZuVeM or.g Veu or,g )GS@T>9 voly,

€T voly,

+
(12,0000, DTor) * ~(12,0507,0sVT)

+Tm_/Tr oor ., ((ad ® V9
1 . <t<PT (( )DTZ#V&&#W

_ ZMVeT;(@T,g)(ad ® Vg)DeTuwT)88g0T>g volp,
+ Tmfl/U Tr<0tcpT, P ([(a VI, VE e), ¢ (y)]
_ T\ (¢1,9) T L 9
Z“veu PT,9 [(8sv )(e“)agOT(y )]) & ayl >g 'Uolh .

The term 2 (1%.2)

0 0 =

%(12.2) = Tm*l%/{] Trz:1<(ad ®V9)D6TMW8WT, Di(pT>g voly,

= Tm_1 /U Tr Z <85((ad ® Vg)DEMTatgoT) ,Dz;gDT>g ’UOlh
m

+ T 1 /U Tr Z <(ad & Vg)DwsoTatSOT , 8sDz;g0T>g voly,
o

= (I12.2.1) + (1*.2.2).

(a) Term (1%2.2.1)

(12.2,1) = Tm_l/U T""z#:<(ad®vg)pgu(asat90T),DZ;SOT>9 voly,

; 0
+ T [ 3 (S IDL0h W), 0] © V%o g5 Dlgr) wol

“ Z7j

+ Tm—l/ TTZ<Z( Poly), 0 (00w (8") © R (505 50

1,5,k
i j 0
— 0 ()DL, (), st ()] @ V95 V9, 5)),

oyl oyk Y

D;tFMQDT>g voly,

+ Tm—l/U TTZ<Z lad (9,97)(c, P (1), ()] © V95 ayL 7 Dg;w>g volp, .

B 2!

The integrand of the first summand captures a related part in the system of equations of motion
for (¢, V). The integrand of the second summand is tensorial in d;r and first-order differential
operatorial in ds¢r. The integrand of the third summand is tensorial in both 0,p7 and Ospr.
The integrand of the fourth summand is tensorial in 0,7 and 9,V7.

(b) Term (12.2.2)

(12.2.2) = Tm_1 /U Tr Z <(ad ® VQ)DEH@T@@T, 8sDeTH<PT>g voly,
n
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= T_1 /U Tr Zﬂ: <(ad ® Vg)DeH@T&%PT, VZZ(“’T’g)GScpT% voly,

— m_l/U Trz<(ad ®V9)DEM¢T3“,0T, (ad ®Vg)aS¢TDz:Lg0T>g voly,

iz
+ Tuer [ 103 ((0d @ V), ppdhor . SO Ne,)s (] © i) vl
o %

The integrand of the first summand is tensorial in d;pr and first-order differential operatorial in
Osr. The integrand of the second summand is tensorial in both 07 and Ospr. The integrand
of the third summand is tensorial in 9,7 and 9,V7.

The term 2 (I2.3)

m

0 0 n .
s (123) = T, s /U Z <Z [(0: V) (e,), goﬁT(y’)] ® B?ﬂ' , DeT“goT>g voly,
i—1

= T /Uuil&as( e, ] ® ). DLer) woly

(2

—1
+ Tt /U Z_: <Z @?(y’)] ® 3‘; , 05DZHQOT>9 voly,

pu= =1

= (I%3.1) + (I*.3.2).

(a) Term (12.3.1)

(12.3.1) = Tm,l/UZ<Zas([(ath)(eu),¢ﬁT(yi)]®azi),D;¢T>gvozh
p=1 =1
= Toor [, 3 (210N 01 ® g Do), vl

+ T UZ<Z< [(0:VT) (ep), as‘PﬁT(yi)]@’aiyi
p=1 =1

; . 0
O ), S0 T 0neh) @ V0 22), DF ) woly.
oyJ

The integrand of the first summand captures a related part in the system of equations of motion
for (¢, V). The integrand of the second summand is tensorial in 97 and 9; V7.

(b) Term (1%2.3.2)
(I*3.2) = Tm_l/UZ

i 0
(@Y (ep). )] @ 57 0DL o) vl
= T [ 3 (MO © . VE Daupr) v,

m n i 0
= Tt [ 32 (SO ). )] © iy (ad © V9)o. 0 DL or) vols

T 3030 (0@ 0 g (05 ) e )] 1) vols.
U Y Y /lg

p=lij=1

The integrand of the first summand is tensorial in 9;,V? and first-order differential operatorial
in O,¢7. The integrand of the second summand is tensorial in ¢ and 9,VT. The integrand of
the third summand is tensorial in both 9,V” and 0,V7.
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Finally, recall Lemma 3.2.2.4 and note that with the additional assumption at the beginning
of this section, all the inner products Tr(

)¢ that appear in the calculation above are defined
In summary,

Proposition 7.1.1 [second variation of kinetic term for maps] Let (o1, V") be a (x2)
admissible T-family of (x1)-admissible pairs with the additional assumption that
D¢0s Ay, C Comm (A,,) for all £ € T.(Xp/T). Then,

0 0 T 0 01
Gotn™ (o0 = Gygi(3Tmer [, D e DTerions vin)

= m_1/ ZET voly,
ou ~(12.050¢07)

+ Tm_l / ZgT
ou

(12‘3t4’T7VT’(WT'g)) +

voly,
12,0y 07,DT o) +

T
5(I%wT,aﬁvT)

+ Tm_l/ Tr<853t<pT, (DTZ oo = ZMVGT;(“”T’Q)DGTM)W> volp,
U wooent

+ Tm—l/ TTZ<(ad ®V9)Dg (8sat<pT)7Dg;SDT> UOlh
U P # g

+ Ty /Uidj [(0:0:V7)(e), Phu(y)] ® a?ﬁ , D§‘,¢T>gvozh
= o
+ Tos /U Tr (O, (vg*”vf) - TV Oy D)o on) ol
T, /U 1 {dhpr . ((ad @Vﬂ)DTZMvgl e
=X, Ve (ad @ V) py )
D

+ T [ 153 (DL 06 ). 0h )] © V7 00

H %] o y ) (pT> UOlh
T # (g Lo # g0 0\ 0
+ Ty UTrZ<Z<[D@“s0T(y ), 00 ()] 05k (4") © RO (5% 5,7)
1

Ayk Oyi /) Oyt
i %)
- () [DE e (v, 0t ()] @ V%, 97, 55)

SgoT> voly,

DCTM<pT> volp,
g
Tr Z< (ad @ V9) De, or 0T VZ;(¢T’9)8S@T> voly,

m

Trz< ad @ V9)p, @TatapT, (ad @ V9)o, @TD <pT> volp,
uw

— Tm—l Tr

?

Orpr . Y Forer (9s,u)DEor) vl
"
+ Toea [ 1 (0npr, S ([0S, h 0. 640

B ZuveT,l #T,9) [(aSVT)(e“% Wg“(yz)D ® a(zﬂ

> voly, .
g

- 9
+ Tone 1/ Iy ad(asvT)(e,‘wﬁT(yj),3t30ﬁT( H] ® v, Dyt DeT,L‘PT> volp,
U o ayd g
D
+ T 1/ 13" {(0d @ V)b, o dhor, 3 (0.7 )(ew). ()] © 327 ) woli
U " - Y /g
m n a
=y z S ([0 en): Os6)] © g1
=1

; - 9
+ (@6, o )] 04 07) © 7 ) Dhpr) ol
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i g T
[((%VT)(BM),SOuT(y )] ® By VeT;(sa ,g)assOT>g volp,

{
— T / i <E:'L:1 [(ath)(eﬂ)aSDﬂT(yi)] ® a?yz' , (ad @ Vg)GSLpTD.Z;SpT>g volp,

U =1
=y é;l<[<aﬂ><eu>,w§p<yiﬂ @ gy [0:.9)(e). 4] @ ,5) vl
Here,
552,353t¢T) = Zn:l Tr <asat<PT7 DZ;‘PT)g €u
o
§(1£27at@T’vT,(gaT,g)) = Y Tr(oer, VEET9Do0r) e,
"
5(711273WT’DT¢T) = Z Tr(Ower , (ad ® Vg)D;ru(pTasgoT)g ey s
n
65278t90T785VT) - Z Tr(vpr Z?:l[(asVT)(eu)WﬁT(yi)] ® 521')9 €u
"
and

; 0
FVTV(LPTyg) (65, eu) D(Z;LSOT = (6 VT (pr.9) _ V (@T,Q s) Z;hblee‘uQOg—v(yz) & ayl

€u

n n

0 i 0
= Z[(asVT)(eu),Dequ(y ) ® oy’ + ZDeHSDT )Z[((%VT)(%),@?(Z/)] ® vgi_ Iy
i=1 i=1 j=1 9yJ

+ XDl 3 (D) 0k () 9 9% s 6{3,
i=1 §k=1 ayJ
9 w9 O
SSDT( ) ( )® Vayﬂ Vayk 8yz>
The summands

+ Tums [ {0000, (DE: gy, = SVEE DL )or) voly

+ T /U Tr <(ad ® Vg)DeTM (0s0vpr) Dz;SOT>g volp
m
+ T [ 3 (10,056, 046 @ g5 - Dlipr), vols
p=1 =1

will vanish when imposing the equations of motion for (¢, V).
If (o7, VT) is furthermore a (x)-admissible T-family of (x2)-admissible pairs, Then, the above
expression reduces to

T 0 0 /(1
%&Ev ( )C = %E(ﬁTm*l/UTT<DT(’DT’ DT(,DT>(h7g) ’UOlh)

= Tm,l/ 15 voly,
12 3sat<PT)

+ T / ler +er +
U (2,007, 1(#T:8)) 12,8y, DT o)

+ qu/ Tr<836t<p:r, (DZ Ve T 2 VET;(“”T’Q)DQ)SDTL volp,

+ Tin- 1/2 Z [(8:0:V Py )]®£1,D6TFSDT>gvolh

p=1 =1

€T voly,
12,0y 1,05 V')

T\(er,9) T\ (er,9) 7T (¢1,9)
+ Tm—l/UTT<8tSOT, (Vzuvgueu ZMVG# TN T )8s<ﬂT>g voly,
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+ Tm_l/U Tr{orer. ((ad @V pr. .

Z# Vg,u. eu

- Zuvg(@m)(ad ® vg)DeTucpT)aS‘pT>g volp,

— Im-1 /U Tr<at80T ) Z FVT,(qug) (Os, eu)Dz;‘PT>g volp,

+ T [ 1 (Brer . iy (097N, Vh e, 0]
=~ S VECTI[@.9 e 5 )]) @ i) vl

n

+ T [, z > (07w, b () @ 5
ifl

VT (e), P ()05 () © V9

ayJ

322- ) ; Dz:fPT>g volp,

m n

+ T / Z <Z [(OtVT)(eH),cpti (yH)] ® 8yl , VT (e7.9) ), SOT> voly,

Up=1 i=1

n i 0
- Im-1 /U Z < ¢:1[(3tVT)(6u),<ng(y ) ® oyt (ad ® Vg)BSwTDzL‘PT>g volp,

+ T [ 330 (@9 e ] © g [(O:9)e). 5] © g5 ) voli

If one further imposes the equations of motion on (¢, V), then the expression reduces further
to

9 0 T 0 0 (1
S B (pr)¢ = %E(ﬁTm—l/U Tr(D" o1, D" or) (ng) ”Olh)

= Tm—l/ Z.ET @Olh
AU ~(12,858¢e7)

+Tm71/ e T voly,
ou

(12,8ypp,v 1 (#T:8)) g(IQ,Bch,DTwﬂ +£(127at¥’TﬂasVT)
" Tm—1/UTT<3t<PT,( g:(sogj: 5 ZMVZL(S@T,Q)VZL(S@Tﬂ))35@T>g voly,
+ Tm1/UTr<6tg0T, ((ad@Vg)DTZ oh e or
- Z,NQ #1:9) (ad @ Vg)DeTN¢T)65<pT>g voly,
_ m_l/UTr<8t<pT,ZFVT,(wT,g)(ﬁs,e#)DinL'uolh
+ Do [ T (Bror . Ty (09, VE e, )
- VD0V, o)) © 7)ol

~ Ty [ 3 (SO en). 0] @ g (0d © V9o, 0p DE o) wols

+ Toer [ 3030 (@)@, 500] @ g (09N e) )] @ g5), vl



7.2 The second variation of the dilaton term

We now work out the second variation of the (complexified) dilaton term

S (7)€ = /UTNdp,w%d@hvf)lh
_ /U Tr (3 dp(e,) (DX or)®) ) vol,,.
"

for an (*;)-admissible family of (*;)-admissible pairs (o7, V1), T := (—¢,€)* C R? with coordi-
nate (s,t).
It follows from Sec. 6.2 that, due to the effect of the trace map Tr,

0 : “
= Sl ®) (0 )C = /UTerp(eM)at((DeTung)(I))volh

dilaton
ot ]

= /Terp e,)D ((8tg0T) Yvoly, .

Thus, due to the effect of the trace map Tr again,

0 0

sy @
aiasa(lgaton )(SOT)C = /U T?" zﬂ: dp(eﬂ)ang; ((8tSDT)q))(UOZh

_ /U Terp(eu)Dg (D, 7)) voly,

-/ T Y dples) D (@:0rer)®) ol

+/Terp (e, DT(ZatpT 0504 (y7) @ ( yiaiyj—vgaaiaiyj)@)vozh
y

= (I1%.1) + (11%.2).

For Summand (II2.1), repeating the same argument in Sec.6.1 for Summand (I.1.1), one
concludes that

2 _
(II 1) N /8U 5(H2 3q3t50T)UOZh

+ /U Z Vgueu -> eudp(e“)) Tr ((0s0wpr)P)voly, ,
0 n

where

e oonen = Z(dp(eu)Tr((asatgoT)Cb))eu e T.(Up/T).
w

The second summand of Summand (II2.1) above is the term that captures the Sdfl:tf;z (p)-

contribution to the system of equations of motion for (¢, V).

With 8,0, replaced by Y ;9,05 (1)) 050 (1) @ ( 821' 8%1 -V a%j)q), one has similarly
oy?

2 _
(ir.2) = / Zgaﬂamasw)wlh

+ /U ZVZNQH - Zeudp(eu» .

TT(Z e ()0 (y) @ (3,

2]
Ty T V2

Ay’

aiyj)(b)volh,

where

5,(1;1278“:9T7854PT Z (dp €u Tr(zaﬁOT )aSSDuT(yj) ® (321 5%] -V %)q)>)eu

B i,j %

o4



in 7.(Ur/T). The second summand of Summand (I1?.2) above contributes to the zeroth order
terms of the differential operator on (O, Oyor) from the second variation of szc’ﬁi,ﬂlB ©) (o, V).

In summary,

Proposition 7.2.1 [second variation of SU"") ()] For the (complexified) dilaton term

dilaton

St (0)° = [ Tridp. ¢*d®)y vol,.,

its second variation for a (x,)-admissible family of (x;)-admissible pairs (pr,VT), T := (—¢,€)* C
R? with coordinate (s,t), is given by

9 0 S(p,h;fb)

8 at dilaton (@T)C

/ GeT voly,
(112, asacLPT) (H2 Ot OspT)

+ [ (Zvhen- > eudplen)) T (0:01pr)®)vol
w
+ [ (ZVZHeH—ZeudP(euD'

Tr(zatsoT N0up (1) ® (

y1% -V, T)@)volh,

Byi yj

where

£ 2,000m) Z( plew) Tr(s0rp1)®) e
5512,at¢T,as<pT) = Z ( (Zat‘PT s‘PT y) @ (
w

in T.(Ur/T). The integral

/U (%: vgue“ - zﬂ: eﬂdp(eu>> Tr ((0s0pp7) @) vol ),

yiaiyj B vgi@iyj)q)))e“

oy

would vanish when imposing the equations of motion of (v, V) after the combination with other

Equations-of-Motion capturing parts from the second variation of other terms in SSfL’LZi’rgdB ©) (o, V)C.

8 Conclusion

The current notes lay down some foundation toward the dynamics of D-branes along the line of
our D-project. Solutions to the system of equations of motion from the total action SD .9-5) (o, V)+

S (c%fvzfz (p, V) for a D-brane world-volume should be thought of as an Azumaya/matrix version of
minimal submanifolds or harmonic maps, twisted/bent, on one hand, by the (dynamical) gauge
field V on the domain manifold X with a (noncommutative) endomorphism/matrix function-ring
and, on the other hand, by the background field (®,g, B, (), created by closed (super)strings,
on the target space(-time) Y. Further details, issues, and examples are the focus of the sequels.
At the classical level Polyakov superstring or its generalization, a sigma model, is a theory of
harmonic maps on the mathematical side. We construct all the building blocks to generalize
the existing theory of harmonic maps to a theory of maps ¢ : (X* &;V) — Y, which describe
D-branes. It will turn out that both the connection V and the Admissible Condition (%) chosen
are needed to build up a mathematically sound theory for such maps ¢. We introduce a new
action SM9BC) £ D branes that is to D-branes as the Polyakov action is to fundamental

standard
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superstrings. This ‘standard action’ is abstractly a non-Abelian gauged sigma model based on
maps ¢ : (X%, E; V) — Y from an Azumaya/matrix manifold X** with a fundamental module £
with a connection V to Y enhanced by the dilaton term, the gauge-theory term, and the Chern-
Simons/Wess-Zumino term that couples (¢, V) to Ramond-Ramond field. In a special situation,
this new theory merges the theory of harmonic maps and a gauge theory, with a nilpotent type
fuzzy extension. With the analysis developed for such maps and an improved understanding of
the hierarchy of various admissible conditions on the pairs (¢, V) and how they resolve the built-
in obstruction to pull-push of covariant tensors under a map from a noncommutative manifold
to a commutative manifold, we develop further in this note some covariant differential calculus
needed and apply them to work out the first variation and hence the corresponding equations of
motion for D-branes of the standard action and the second variation of the kinetic term for maps
and the dilaton term in this action. Compared with the non-Abelian Dirac-Born-Infeld action
constructed in the article along the same line, the current note brings the Nambu-Goto-string-
to-Polyakov-string analogue to D-branes. The current bosonic setting is the first step toward
the dynamics of fermionic D-branes and their quantization as fundamental dynamical objects,
in parallel to what happened to the theory of fundamental superstrings. It’s by now a history
that as the built-in structure of a string is far richer than that for a point, a physical theory
that takes strings as fundamental objects has brought us to where a physical theory that takes
only point-particles as fundamental objects cannot reach. Now that a D-brane carries even more
built-in structures, are these even-richer-than-string structures all just in vain? Or is a physical
theory that takes D-branes as fundamental objects going to lead us to somewhere beyond that
from string theories? Besides a theory in its own right, a theory that takes D-branes as funda-
mental objects has deep connection with other themes outside. In particular, at low dimensions,
that there should be the following connections are “obvious” but most details to realize these
connections remain far from reach at the moment.
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