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Abstract: In the present paper we provide a general formula which let us easily calculate the number 

of stable digits of any integer tetration base 𝑎 ∈ ℕ0. The number of stable digits, at the given height 

of the power tower, indicates how many of the last digits of the (generic) tetration are frozen. Our 

formula is exact for any tetration base which is not coprime to 10, although a maximum gap equal to 

𝑉(𝑎) + 1 digits (where 𝑉(𝑎) indicates the congruence speed of 𝑎) can occur, in the worst-case 

scenario, between the given upper and lower bound. 
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1 Introduction 

The aim of this paper is to give a general formula which returns the number of stable digits [2, 5, 9] 

of the tetration 𝑎𝑏 ∶= {
 𝑎                if  𝑏 = 1

 𝑎
( 𝑎
(𝑏−1)

)
   if  𝑏 ≥ 2

, for any 𝑎 ∈ ℕ0, at any given height 𝑏 ∈ ℕ − {0} [3]. 

Thus, we are interested in an easy way to find the value of 𝑛 ∈ ℕ0 such that 𝑎𝑏 ≡ 𝑎(mod 10𝑛) 𝑏+1 ⋀ 

𝑎𝑏 ≢ 𝑎(mod 10𝑛+1)𝑏+1 . 

In order to simplify the notations, let us invoke the definition of the congruence speed of 𝑎𝑏  from 

Reference [8], and then (Definition 2) we will extend it to the base 𝑎 = 0. 

 

Definition 1. Let 𝑛 ∈ ℕ0 and assume that 𝑎 ∈ ℕ − {0, 1} is not a multiple of 10. Then, given 

𝑎𝑏−1 ≡ 𝑎(mod 10𝑛)𝑏  ⋀ 𝑎𝑏−1 ≢ 𝑎(mod 10𝑛+1)𝑏 , ∀𝑏 > 𝑎, 𝑉(𝑎, 𝑏) returns the strictly positive 

integer such that 𝑎 ≡ 𝑎(mod 10𝑛+𝑉(𝑎))𝑏+1𝑏  ⋀ 𝑎 ≢ 𝑎(mod 10𝑛+𝑉(𝑎)+1)𝑏+1𝑏 , and we define 

𝑉(𝑎, 𝑏) as the “congruence speed” of the base 𝑎 at the given height of its hyperexponent 

𝑏 ∈ ℕ − {0}. 



Consequently, if 𝑎 = 2, the tetrations for 𝑏 from 1 to 5 are 2 = 21 , 2 = 42 , 2 = 163 , 

2 =4 65536, and 2 =5 . . .19156736 (respectively), so we can see that V(2, 1) = V(2, 2) = 0, 

whereas V(2, 3) = V(2, 4) = 1. 

Definition 2. Let 𝑎 = 1, then 𝑉(1, 1) = 1 and 𝑉(1, 𝑏) = 0 = 𝑉(1) for any 𝑏 ≥ 2. We also define 

𝑉(0) = 0 for any 𝑏 ∈ ℕ − {0}, since it is possible to extend the domain of tetration by considering 

that lim
𝑎→0

𝑎 ∶= 0𝑏𝑏  implies 0𝑏 = 1 if and only if 𝑏 is even and 0𝑏 = 1 otherwise (see [1]). Thus, for 

any 𝑏 ≥ 1, 0𝑏  does not produce any stable digit, and 𝑉(0, 𝑏) = 𝑉(0) = 0 by Definition 1. 

Since, in general, 𝑛 depends on 𝑎 and 𝑏, from here on, let us indicate the number of stable digits 

of all the bases belonging to the congruence class 𝑐(mod 10) as #𝑆𝑐(𝑎, 𝑏) (e.g., if we consider only 

tetration bases which have 3 or 7 as their rightmost digit, we will indicate the number of their stable 

digits, at height 𝑏, as #𝑆{3,7}(𝑎, 𝑏)). 

From [7, 8] we know that, for any given 𝑎 which is not a multiple of 10, exists a unique “optimal” 

value, �̅�  ≔ min𝑏{𝑏 ∈ ℕ − {0} ∶ 𝑉(𝑎, 𝑏) = 𝑉(𝑎, 𝑏 + 𝑘), ∀𝑘 ∈ ℕ0}, of the hyperexponent which 

guarantees 𝑉(𝑎, �̅� + 𝑘) = 𝑉(𝑎) for any 𝑘 ∈ ℕ0 [5], and reaching a height of 𝑎 + 1 represents a 

sufficient but not necessary condition for the constancy of the congruence speed, since 𝑉(𝑎, 𝑎 + 1) =

𝑉(𝑎) is always true. Improved bounds for �̅�(𝑎) will be introduced in the next section. 

For any given pair (𝑎, 𝑏) of positive integers and assuming 𝑐 ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}, by 
definition, we have that 

     #𝑆𝑐(𝑎, 𝑏) ∶= ∑ 𝑉(𝑎, 𝑖) = {
∑ 𝑉(𝑎, 𝑖)𝑏
𝑖=1                                              if     𝑏 < �̅�

∑ 𝑉(𝑎, 𝑗) + (𝑏 − �̅� + 1) ∙ 𝑉(𝑎)    if     𝑏 ≥ �̅��̅�−1
𝑗=1

𝑏
𝑖=1  .   (1) 

Now, in the rest of the present paper, let us assume that 𝑎 ∈ ℕ ∶ 𝑎 ≢ 0(mod 10) does not belong 

to the congruence class 0 modulo 10, since, for any 𝑏 ≥ 1, if 𝑎 ≡ 0(mod 10), then the number of 

stable digits of 𝑎𝑏  corresponds to 0 if and only if 𝑎 = 0 (by Definitions 1&2), and to the number of 

trailing zeros which appear at the end of ((𝑘 + 1) ∙ 10)
𝑏

 otherwise (e.g., if 𝑘 = 1 and 𝑏 = 2, we 

have 𝑎𝑏 = 20 = 220 ∙ 10202 , so that #𝑆0(20, 2) = 20). 

In subsection 2.1 we show an easy formula that returns the exact value of #𝑆𝑐(𝑎, 𝑏) for any 𝑐 

which is not coprime to 10, whereas subsection 2.2 is devoted to study the four remaining cases. 

2 A formula for the number of stable digits of 𝒂𝒃 ∶ 𝒂 ≢ 𝟎(𝐦𝐨𝐝 𝟏𝟎)   

In this section we study #𝑆𝑐(𝑎, 𝑏) assuming that the last digit of the tetration base is not equal to 

zero, so that the residues modulo 10 of 𝑐 cover the whole set {1, 2, 3, 4, 5, 6, 7, 8, 9}. 

For this purpose, let us indicate the 𝑝-adic valuation of 𝑑 ∈ ℕ − {0} as 𝑣𝑝(𝑑). By definition, 𝑣𝑝(𝑑) 

returns the highest exponent 𝑣𝑝 such that 𝑝𝑣𝑝 divides 𝑑 [4]. Now, from [8], we know that the constant 

congruence speed of any given base 𝑎 which is not congruent to 0 modulo 5 is (always) less than or 

equal to the 5-adic valuation of  

• 𝑎 − 1  if  𝑎 ≡ 1(mod 5); 

• 𝑎2 + 1  if  𝑎 ≡ {2, 3}(mod 5); 



• 𝑎 + 1  if  𝑎 ≡ 4(mod 5); 

while, if 𝑎 ∶ 𝑎 ≡ 5(mod 10), we have that 𝑉(𝑎) + 1 = 𝑣2(𝑎
2 − 1) (see [8], Corollary 2, pp. 55-56). 

Moreover, 𝑉(10 ∙ 𝑘 + 2  ⋁  10 ∙ 𝑘 + 8) = 𝑣5(𝑎
2 + 1), 𝑉(10 ∙ 𝑘 + 4) = 𝑣5(𝑎 + 1), and 

𝑉(10 ∙ 𝑘 + 6) = 𝑣5(𝑎 − 1) are true for any 𝑘 ∈ ℕ0. 

Definition 3. Let 𝑎 ≢ 0(mod 10). We define �̃�(𝑎) ∶=

{
 

 
𝑣5(𝑎 − 1)            iff   𝑎 ≡ 1(mod 5)        

𝑣5(𝑎
2 + 1)          iff   𝑎 ≡ {2, 3}(mod 5)

𝑣5(𝑎 + 1)            iff   𝑎 ≡ 4(mod 5)        

𝑣2(𝑎
2 − 1) − 1  iff   𝑎 ≡ 5(mod 10)     

 . 

2.1 The exact value of #𝑺{𝟐,𝟒,𝟓,𝟔,𝟖}(𝒂, 𝒃) 

Assuming radix-10 [2], as usual, we describe the structure #𝑆(𝑎, 𝑏) providing an exact formula for 

any pair (𝑎, 𝑏) such that 𝑎 ≡ {2, 4, 5, 6, 8}(mod 10)  ⋀  𝑏 ≥ 3, and very tight bounds which hold for 

all the bases 𝑎 ∶ 𝑎 ≡ {1, 3, 7, 9}(mod 10). 

Let 𝑘 ∈ ℕ0 and assume that 𝑎 = (20 ∙ 𝑘 + 2  ⋁  20 ∙ 𝑘 + 18). Then, for any  

𝑎 ∶ 𝑎 ≡ {2, 18}(mod 20), 𝑎 ≡ {2, 8}(mod 10)1 , 𝑎 ≡ 4(mod 10)2 , and finally 𝑎3 ≡ 𝑎(mod 10)4  

since 𝑎3 ≡ 6(mod 10). It follows that 

 #𝑆{2,8}(20 ∙ 𝑘 + 2  ⋁  20 ∙ 𝑘 + 18, 𝑏)  =  {
       0                     if     𝑏 = 1
(𝑏 − 2) ∙ 𝑉(𝑎)    if     𝑏 ≥ 2

 = 

           {
        0                                if     𝑏 = 1
(𝑏 − 2) ∙ 𝑣5(𝑎

2 + 1)    if     𝑏 ≥ 2
  .       (2) 

If 𝑎 ∶ 𝑎 ≡ {12, 8}(mod 20), then 

 #𝑆{2,8}(20 ∙ 𝑘 + 12  ⋁  20 ∙ 𝑘 + 8, 𝑏) = (𝑏 − 1) ∙ 𝑉(𝑎) = (𝑏 − 1) ∙ 𝑣5(𝑎
2 + 1), ∀𝑏 ∈ ℕ − {0}.  (3) 

Even if the cases 𝑎 ∶ 𝑎 ≡ 4(mod 10) and 𝑎 ∶ 𝑎 ≡ 6(mod 10) have already been fully described 

in References [6, 8], “repetita iuvant”, and so (for any 𝑏) we have 

       #𝑆4(𝑎, 𝑏) = (𝑏 − 1) ∙ 𝑉(𝑎) = (𝑏 − 1) ∙ 𝑣5(𝑎 + 1);       (4) 

while 𝑎 ∶ 𝑎 ≡ 6(mod 10) trivially implies 𝑉(𝑎, 1) ≥ 1 ⇒ 𝑉(𝑎, 𝑏) ≥ 1, so that (for any 𝑏) 

              #𝑆6(𝑎, 𝑏 ≥ 2) = (𝑏 + 1) ∙ 𝑉(𝑎) = (𝑏 + 1) ∙ 𝑣5(𝑎 − 1)       (5) 

immediately follows from 𝑉(𝑎 ≡ 6(mod 10), 1) + 𝑉(𝑎 ≡ 6(mod 10),2) = 

3 ∙ 𝑉(𝑎 ≡ 6(mod 10), 𝑏 ≥ 3) = 3 ∙ 𝑣5(𝑎 − 1). 

If 𝑎 ∶ 𝑎 ≡ 5(mod 10), then 𝑉(𝑎) = min(𝑣2(𝑎 − 1), 𝑣2(𝑎 + 1)) = 𝑣2(𝑎
2 − 1) − 1, and �̅�(𝑎) is 

always equal to 3, with the only exception of the base 𝑎 = 5 (i.e., �̅�(5) = 4 ≠ 3 = �̅�(10 ∙ 𝑘 + 15), 

∀𝑘 ∈ ℕ0). It follows that 

     #𝑆5(20 ∙ 𝑘 − 5 , 𝑏 ≥ 2)  =  𝑏 ∙ (𝑣2(𝑎
2 − 1) − 1) + 1 ;     (6) 

   #𝑆5(20 ∙ 𝑘 + 5 , 𝑏 ≥ 2)  =  (𝑏 + 1) ∙ (𝑣2(𝑎
2 − 1) − 1) ;     (7) 

             #𝑆5(5, 𝑏)  =  {
1                             iff   𝑏 = 1
4                             iff   𝑏 = 2
8 + 2 ∙ (𝑏 − 3)    iff   𝑏 ≥ 3

  .       (8) 



In order to complete the #𝑆(𝑎, 𝑏) map, we need to study all the tetration bases which are not 

coprime to 10, and this will be the goal of the next subsection. 

2.2 Bounding #𝑺{𝟏,𝟑,𝟕,𝟗}(𝒂, 𝒃) 

Let 𝑎 ∶ 𝑎 ≢ 0(mod 10) ⋀ 𝑎 ≠ 1 be given (bearing in mind that 𝑉(1, 1) = 1, whereas 𝑉(1, �̅�(1)) =

𝑉(1, 2) = 𝑉(1) = 0, and also 𝑉(0, �̅�(0)) = 𝑉(0, 1) = 𝑉(0) = 0), so that, as shown in Reference [8], 

Section 2, 𝑉(𝑎) ≤ �̃�(𝑎). 

Under the abovementioned condition 𝑎 ≠ 1, we note that if 𝑉(𝑎 ≡ {1, 3, 7, 9}(mod 10),   𝑏) = 0, 

then 𝑎 = (20 ∙ 𝑘 + 3  ⋁  20 ∙ 𝑘 + 7)  ⋀  𝑏 = 1, for any 𝑘 ∈ ℕ0. 

Thus, 

 #𝑆{3,7}(𝑎 = (20 ∙ 𝑘 + 3  ⋁  20 ∙ 𝑘 + 7), 𝑏 ≥ �̅�(𝑎) − 1) = {
(𝑏 − 1) ∙ 𝑉(𝑎)  iff  𝑉(𝑎, 2) = 𝑉(𝑎)

𝑏 ∙ 𝑉(𝑎) + 1     iff  𝑉(𝑎, 2) > 𝑉(𝑎)
 , (9) 

(e.g., 𝑉(6907922943,2) = 11 > 9 = 𝑣5(6907922943
2 + 1) ⇒ #𝑆3(𝑎 = (20 ∙ 345396147 + 3),

𝑏 ≥ �̅�(𝑎)) = #𝑆3(6907922943, 𝑏 ≥ 6) = 𝑏 ∙ 𝑉(𝑎) + 1, while 𝑉(107, 2) = 2 = 𝑣5(107
2 + 1) ⇒

#𝑆7(𝑎 = (20 ∙ 5 + 7), 𝑏 ≥ �̅�(𝑎) − 1) ⇒ #𝑆7(107, 𝑏 ≥ 1) = ((𝑏 − 1) ∙ 𝑉(𝑎))). 

In addition, for any 𝑏, the above also implies the bound (10) 

 (𝑏 − 1) ∙ 𝑉(𝑎) ≤ #𝑆{3,7}(𝑎 = (20 ∙ 𝑘 + 3  ⋁  20 ∙ 𝑘 + 7), 𝑏) ≤ 𝑏 ∙ 𝑉(𝑎) + 1 ,         (10) 

and the (weaker) relation (11) follows 

(𝑏 − 1) ∙ (𝑣5(𝑎
2 + 1)) ≤ #𝑆{3,7}(𝑎 = (20 ∙ 𝑘 + 3  ⋁  20 ∙ 𝑘 + 7), 𝑏 ≥ 2) ≤ 𝑏 ∙ (𝑣5(𝑎

2 + 1)). (11) 

Finally, for any 𝑎 ≡ {1, 3, 7, 9}(mod 10) which cannot be written as 20 ∙ 𝑘 + 3  ⋁ 20 ∙ 𝑘 + 7, the 

number of stable digits of 𝑎𝑏  at height 𝑏 ≥ �̅�(𝑎) − 1 is 𝑏 ∙ 𝑉(𝑎), or 𝑏 ∙ 𝑉(𝑎) + 1, or (𝑏 + 1) ∙ 𝑉(𝑎). 

We can also derive the following general bound which holds for any 𝑏 ≥ 2, 

         𝑏 ∙ 𝑉(𝑎) ≤ #𝑆{1,3,7,9}(𝑎 ≠ (20 ∙ 𝑘 + 3  ⋁  20 ∙ 𝑘 + 7), 𝑏 ≥ 2) ≤ (𝑏 + 1) ∙ 𝑉(𝑎) , (12) 

and we additionally state that �̅�(𝑎) ≤ 𝑣5(𝑎
2 + 1) + 2 is valid for every tetration base 𝑎 which is 

congruent to {3, 7}(mod 10). The aforementioned limit on �̅�(𝑎) arises by combining the upper 

bounds by Equations (10)&(12) with the general constraint from Equation (14) (see Section 3), taking 

also into account that if 𝑎 ≢ {0, 2, 8}(mod 10), then 𝑉(𝑎, 2) always assumes a strictly positive value. 

Furthermore, if 𝑎 ≢ {3, 7}(mod 20), then �̅�(𝑎) ≤ �̃�(𝑎) + 1, since we have not to worry about the 

case 𝑉(𝑎, 1) = 0, which cannot happen (the only 𝑎 which is characterized by 𝑉(𝑎, 2) > 0 and such 

that �̅�(𝑎) > �̃�(𝑎) + 1 is the base 5, but we already know that �̅�(5) = �̃�(5) + 2). In general, assuming 

𝑎 ≠ 5, only a maximum of �̃�(𝑎) additional iterations can occur from the first time that the congruence 

speed assumes a strictly positive value (i.e., the first step or the second one for any 𝑎 which is coprime 

to 10) to the last time that 𝑉(𝑎, 𝑏) > 𝑉(𝑎). Thus, for any 𝑎 which is not congruent to 0 modulo 10, 

the maximum theoretical value of �̅�(𝑎) is bounded above by 1 + �̃�(𝑎) + 1. 

Therefore, �̅�(𝑎) ≤ �̃�(𝑎) + 2 for every 𝑎 ∶ 𝑎 ≢ 0(mod 10) (let us observe that 𝑎 = 1 ⇒ �̃�(1) =

𝑣5(0) = ∞ and �̅�(1) = 2 by definition), and this result confirms also Conjecture 1 of Reference [8]. 

We can take a look at the congruence speed of the base 𝑎 = 163574218751 as a random check 

on the upper bound provided by (11). 𝑎 = 163574218751 is characterized by �̃�(163574218751) =

𝑣5(163574218751 − 1) = 13 = 𝑉(163574218751), so we have 𝑉(𝑎, 1) = 12, 𝑉(𝑎, 2) = 19, 



𝑉(𝑎, 3) = 𝑉(𝑎, 4) = 𝑉(𝑎, 5) = 𝑉(𝑎, 6) = 15, and 𝑉(𝑎, 𝑏 ≥ 7) = 𝑉(𝑎) = 13. Hence, by Equation 

(1), #𝑆1(163574218751, 𝑏 ≥ �̅�) = 12 + 19 + 15 ∙ 4 + (𝑏 − (�̅� − 1)) ∙ 13 = 91 + (𝑏 − �̅� + 1) ∙

13 = (6 + 1) ∙ 13 + (𝑏 − 6) ∙ 13 = (𝑏 + 1) ∙ 𝑉(163574218751). 

In addition, some more bases from each one of the four critical congruence classes modulo 10, 

whose #𝑆{1,3,7,9}(𝑎, 𝑏 ≥ �̅�(𝑎)) is uniquely given by (𝑏 − 1) ∙ 𝑉(𝑎), or 𝑏 ∙ 𝑉(𝑎), or 𝑏 ∙ 𝑉(𝑎) + 1, or 

(𝑏 + 1) ∙ 𝑉(𝑎), are shown below: 

• #𝑆1(74218751, 𝑏 ≥ 3) = 𝑏 ∙ 𝑉(𝑎) + 1 = 𝑏 ∙ 8 + 1, 

• #𝑆1(45215487480163574218751, 𝑏 ≥ 13) = (𝑏 + 1) ∙ 𝑉(𝑎) = (𝑏 + 1) ∙ 25; 
 

• #𝑆3(143, 𝑏 ≥ 2) = (𝑏 − 1) ∙ 𝑉(𝑎) = (𝑏 − 1) ∙ 2, 

• #𝑆3(133, 𝑏 ≥ 1) = 𝑏 ∙ 𝑉(𝑎) = 𝑏, 

• #𝑆3(847288609443, 𝑏 ≥ 5) = 𝑏 ∙ 𝑉(𝑎) + 1 = 𝑏 ∙ 2 + 1, 

• #𝑆3(2996418333704193, 𝑏 ≥ 17) = (𝑏 + 1) ∙ 𝑉(𝑎) = (𝑏 + 1) ∙ 16; 
 

• #𝑆7(907, 𝑏 ≥ 2) = (𝑏 − 1) ∙ 𝑉(𝑎) = 𝑏 ∙ 2, 

• #𝑆7(177, 𝑏 ≥ 1) = 𝑏 ∙ 𝑉(𝑎) = 𝑏, 

• #𝑆7(807, 𝑏 ≥ 6) = 𝑏 ∙ 𝑉(𝑎) + 1 = 𝑏 ∙ 3 + 1, 

• #𝑆7(23418092077057, 𝑏 ≥ 15) = (𝑏 + 1) ∙ 𝑉(𝑎) = (𝑏 + 1) ∙ 14; 
 

• #𝑆9(599, 𝑏 ≥ 1) = 𝑏 ∙ 𝑉(𝑎) = 𝑏 ∙ 2, 

• #𝑆9(499, 𝑏 ≥ 2) = 𝑏 ∙ 𝑉(𝑎) + 1 = 𝑏 ∙ 2 + 1, 

• #𝑆9(781249, 𝑏 ≥ 4) = (𝑏 + 1) ∙ 𝑉(𝑎) = (𝑏 + 1) ∙ 6. 

The rules which let us anticipate the value of every #𝑆{1,3,7,9}(𝑎, 𝑏 ≥ �̅�(𝑎)) (including all the 

examples above), can be derived from Reference [8], Equation (2) for 𝑖 = 1, 3, 4, 9, 10, 12, since 

critical bases are originated by those digits of 𝛼′1, 𝛼′3, 𝛼′′3, 𝛼′7, 𝛼′′7, 𝛼′9, and 𝛼′′9 which are 

congruent to 0(mod 5) (e.g.,, let us select one of the aforementioned decadic integers and perform a 

surgical  𝑚𝑜𝑑 10𝑛 cut on that string, just at the right of a casual digit 5, so that the number �̌� we get 

is a pretty special tetration base characterized by �̃�(�̌�) > 𝑉(�̌�), as long as �̌� ≠ 7 – since 

𝛼′7 ≡ 7(mod 10
2) and 𝛼′′7 ≡ 57(mod 10

2)). 

To be fair, as stated in Reference [8], Proposition 6, p. 47, there is also one last fundamental 

intersection which arises from the solution 𝑦15(𝑡) = 1 of 𝑦𝑡 = 𝑦 over the commutative ring of 

decadic integers, considering the corresponding decimal integers modulo 10𝑛 (by the well-known 

ring homomorphism). For this purpose, as a clarifying example, let us show how 𝑦15(5): 1
5 = 1 

works (see [8], pp. 47-48). Let 𝑛 ∈ ℕ − {0, 1}, and let 𝑎(𝑛) ≔ ∑ 𝑠𝑗 ∙ 10
𝑗𝑛

𝑗=1  be such that 𝑠𝑗=1 = 1, 

𝑠1<𝑗<𝑛 ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, and 𝑠𝑗=𝑛 ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}. When 𝑠2 = 0, for any given set 

{𝑠3, 𝑠4, . . . , 𝑠𝑛−1, 𝑠𝑛} as above, we can verify that #𝑆1(𝑎(𝑛), 𝑏 ≥ 2) = (𝑏 + 1) ∙ 𝑉(𝑎(𝑛)) is always 

true, whereas, if 𝑠2 = 𝑠𝑛 is an arbitrary element of the set {1, 2, 3, 4, 5, 6, 7, 8, 9}, then 

#𝑆1(𝑎(2), 𝑏 ≥ 2) = (𝑏 + 1) ∙ 𝑉(𝑎(2)) = 𝑏 ∙ 𝑉(𝑎(2)) + 1 if and only if 𝑠2 ≠ 5 (where 

5 =
𝛼′1(mod 10

2)−𝛼′1(mod 10)

10
 by Equation (2) from Reference [8]). Since 𝑉(51, 1) = 2, 𝑉(51, 2) = 3, 

and 𝑉(51, 3) = 𝑉(51) = 2, it follows that #𝑆1(51, 𝑏 ≥ 2) = 𝑏 ∙ 𝑉(51) + 1 is not equal to 

(𝑏 + 1) ∙ 𝑉(51) (i.e., 𝑉(𝑎) ≠ 1 ⇒ 𝑏 ∙ 𝑉(𝑎) + 1 ≠ (𝑏 + 1) ∙ 𝑉(𝑎)). 



In the end, it is possible to use Equations (6)-(7)-(14)-(15) from Reference [8] to compute the exact 

value of 𝑉(𝑎) for any 𝑎 which is coprime to 10, even if the map of all the bases with a congruence 

speed below 3 can be immediately known by simply looking at (15) of Section 3 of this paper. 

3 Some useful properties of the congruence speed 

The regularity features of the congruence speed [7, 8] can be very useful when performing peculiar 

mental calculations, finding also the precise value of #𝑆(𝑎, 𝑏) by Equation (1). 

We start by saying that, for any 𝑎 ∶ 𝑎 ≢ 0(mod 10) ⋀ 𝑎 ≠ 1, 𝑉(𝑎, 1) ≤ 𝑉(𝑎, 2) always holds, so 

let 𝑎 be such that 𝑉(𝑎, 2) = 0 (i.e., assuming 𝑎 > 1, 𝑉(𝑎, 2) = 0 ⟺ 𝑎 = ((20 ∙ 𝑘 + 2) ⋁ (20 ∙ 𝑘 +

18)), ∀𝑘 ∈ ℕ0). Thus, 

        𝑉(𝑎, 𝑏) ≥ 𝑉(𝑎, 𝑏 + 1), ∀𝑏 ≥ 3 .        (13) 

If 𝑎 ∶ 𝑎 ≢ {0, 2, 10, 18}(mod 20) ⋀ 𝑎 ≠ 5 (i.e., 𝑎 ≢ {0, 2, 10, 18}(mod 20) ⇒ 𝑉(𝑎, 2) ≠ 0), 

then  

        𝑉(𝑎, 𝑏) ≥ 𝑉(𝑎, 𝑏 + 1), ∀𝑏 ≥ 2 .         (14) 

A general rule which is very easy to keep in mind is that 𝑉(𝑎, 1) + 𝑉(𝑎, 2) ≤ 3 ∙ 𝑉(𝑎) ≤ 3 ∙ �̃�(𝑎), 

with the unique exception represented by the very special base 𝑎 = 1 (since 𝑉(1) = 0, whereas 

𝑉(1, 1) > 0). Furthermore, for any 𝑘 ∈ ℕ0, let us underline that 𝑉(𝑎, 𝑏) = 0 if and only if 𝑏 = 1 and 

𝑎 ≡ {2, 3, 7, 12, 4, 14, 8, 18}(mod 20)  ⋁  𝑎 = 0, or if 𝑏 = 2 and 𝑎 ≡ {2, 18}(mod 20)  ⋁  𝑎 =

1  ⋁  𝑎 = 0, or if 𝑏 ≥ 2 and 𝑎 = 1  ⋁  𝑎 = 0 (see Equations (2)-(3)-(4)-(9)). 

Moreover, for any 𝑎 ∶ 𝑎 ≢ 0(mod 10) ⋀ 𝑎 ≠ 1, the periodicity properties of 𝑉(𝑎) (see [8], 

Equation (18)) let us immediately detect if 𝑉(𝑎) ≥ 2 or not, by simply checking the congruence 

𝑎 ≡ {2, 3, 4, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 21, 22, 23}(mod 25); if so, 𝑉(𝑎) = 1, and 𝑉(𝑎) ≥ 2 

otherwise. We can go even further and try to memorize the next set of 900 values, 

1 ≤ 𝑎 ≢ 0(mod 10) < 1000, in order to answer in less than one second (without writing or 

calculating anything) if 𝑉(𝑎) = 0, 𝑉(𝑎) = 1, 𝑉(𝑎) = 2, or even 𝑉(𝑎) ≥ 3 (see [7], pp. 252). 

Knowing that 𝑉(1) = 0 by definition, ∀𝑎 ∈ ℕ − {1} ∶ 𝑎 ≢ 0(mod 10), we have 

       

{
 
 
 

 
 
 

𝑉(𝑎) = 1 ⇔ 𝑎(mod 25) ∈ ℂ∁,

where ℂ∁ ∶= {2, 3, 4, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 21, 22, 23};

𝑉(𝑎) = 2 ⇔ 𝑎(mod 40) ∈ {5, 35}⋁

(𝑎(mod 25) ∈ {1, 7, 18, 24} ⋀ 𝑎(mod 1000) ∉ ℚ∁);

𝑉(𝑎) ≥ 3 ⇔ 𝑎(mod 40) ∈ {15,25} ⋁ 𝑎(mod 1000) ∈ ℚ∁,

where ℚ∁ ∶= {
1, 57, 68, 124, 126, 182, 193, 249, 318,374, 376, 432, 568,
 624, 626, 682, 751,807, 818, 874, 876, 932,943, 999

} .

    (15) 

We can also take #𝑆𝑐(𝑎, 𝑏) and check the stable digits ratio of any integer tetration whose base is 

not congruent to 0 modulo 10. For any given 𝑎𝑏 , the stable digits ratio of is 

        𝑅(𝑎, 𝑏) ∶=
#𝑆𝑐(𝑎,𝑏)

⌈log10( 𝑎𝑏 )⌉
 ,          (16) 

where the ceiling ⌈𝑞⌉ denotes the function which takes the rational number 𝑞 as input and returns as 

output the least integer greater than or equal to 𝑞. 



Lastly, given any tetration base 𝑎 ∶ 𝑎 ≢ 0(mod 10) ⋀ 𝑎 ≠ 1, if we choose beforehand the desired 

number of stable digits (let us indicate it as #𝑇(𝑎) ∈ ℕ0) of 𝑎𝑏 , we will easily calculate which is the 

smallest hyperexponent �̿�(𝑎) ∶= min𝑏{𝑏 ∈ ℕ − {0} ∶ ∑ 𝑉(𝑎, 𝑖) ≥ #𝑇(𝑎)𝑏
𝑖=1 } such that 𝑎�̿�  originates 

at least #𝑇(𝑎) stable digits (see [6], pp. 13-14). 

Thus, 𝑎 ≡𝑏 𝑎�̿� (mod 10#𝑇(𝑎)) for any 𝑏(𝑎) ≥ �̿�(𝑎), and ∑ 𝑉(𝑎, 𝑖)𝑏
𝑖=1  can be simplified using the 

relations shown in the present paper (e.g., by Equation (4), for any 𝑘 ∈ ℕ0, 𝑎 = 10 ⋅ 𝑘 + 4 ⇒

∑ 𝑉(𝑎, 𝑖)𝑏
𝑖=1 = (𝑏 − 1) ∙ 𝑣5(𝑎 + 1) ⇒ �̿�(𝑎) = min𝑏 {𝑏 ∈ ℕ − {0} ∶ 𝑏 ≥ ⌈

#𝑇(𝑎)

𝑣5(𝑎+1)
⌉ + 1}). 

4 Conclusion 

The number of stable digits of any integer tetration 𝑎𝑏  such that 𝑎 is not a multiple of 10 is strongly 

related to the constant congruence speed of the base, and �̅�(𝑎) ≤ �̃�(𝑎) + 2 is a sufficient condition 

to guarantee the constancy of the congruence speed of 𝑎 for any hyperexponent at or above �̅�(𝑎), so 

that 𝑉(𝑎, �̅�(𝑎) + 𝑘) = 𝑉(𝑎) for any 𝑘 ∈ ℕ0. Finally, by combining the 𝑉(𝑎) map shown in 

Reference [8] with a compact set of equations which allows an easy calculation of #𝑆(𝑎, 𝑏), we are 

starting to see some symmetrical harmony in the fascinating, chaotic, behaviour of hyper-4. 
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