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Abstract

Assuming quanta of spacetime to be spin-2 particles, after developing a
statistical theory that has no reference to Boltzmann constant, it is argued
that below a certain critical pressure of vacuum, quanta of spacetime form
a condensate. The possibility of explanation of Sonoluminescence as a
quantum-gravitational effect is also envisaged.
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1 Introduction

There are sceptics that doubt the existence of spacetime quanta much like Mach and
his disciples who opposed atoms and killed Boltzmann in despair. We would be far
from a theory of quantum gravity unless we have evidence for the very starting point

*Corresponding author
�3rd Floor - Block No. 6 - Akbari Alley - After Dardasht Intersection - Janbazané Sharghi
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of any such theory. There are already some researchers who pursue this seriously,
most notably among them Bose and colleagues [1] who are testing the possibility of
quantum superposition of spacetime itself. But from quantum phenomena themselves
we know that there are many much more securely-founded quantum phenomena, most
significantly Bose-Einstein condensates, that need not necessarily invoke the problem-
atic notion of quantum superposition. I have some firm reasons to doubt linearity
of quantum mechanics [2] hence prefer not to base serious ontology on the notion of
superposition of quantum states. In this paper I consider the possibility of testing
quantum gravity via directly observing condensates of spacetime quanta. Although
there have been some –misguided– attempts [3, 4] that try to –artificially– enforce this
idea, they all lack the formal insight of this paper: A statistical theory of quanta of
spacetime must

� Not use any notion from anything matter-related, i.e. ‘traditional’ statistical
mechanics.

� Directly involve quantum-gravitational constants such as Planck length lP =√
ℏG/c3.

In this paper we construct a simple statistical theory of quanta of spacetime that does
satisfy these requirements, does not contradict spin-statistics theorem if the gist of the
theorem is understood, and predicts a condensate of volume states of spacetime.
Any attempt of putting together the notion of condensate and ‘statistical mechanics’
in anyway, immediately faces the anger of academic mind, because for that they ‘have
a theorem’ and fail to recognize that the spin-statistics theorem[5] does not imply at
all the exact content of the statistics particles obey. In particular the theorem does not
imply that there is a parameter β = 1/kBT using which the statistics must be built.
As spin-statistics theorem is indifferent to the value of β, one can construct statistical
theories for almost any physical quantity apart from temperature. For example one
can let

β̃ =
1

eφ
,

where e is elementary charge and φ electric potential, to define a statistical theory for
an ensemble particles in ‘electrostatic equilibrium’.
A weak form of this idea was used by Rovelli [6] to calculate the Hawking entropy of
a blackhole using the assumption that area is quantized, in which he took microstates
to correspond to the different number of ways one can ‘make a surface’ in spacetime
with a certain area A; weak, because he ultimately used β (temperature).
To create a theory that satisfies the above-mentioned requirements we must put aside
all the definitions from ‘orthodox’ statistical mechanics, and guided by formality, define
new notions. To that end the first task is to have a clear understanding of what (and
what not) spin-statistics theorem says

Theorem (Spin-Statistics). In three dimensions there are two types of particles

1. Bosons, whose multi-particle wavefunction is symmetric under exchange of any
two particles. Bosons obey a distribution of the form

⟨nr⟩ =
1

eα(Er−ν) − 1
,

in which α and ν are not necessarily thermodynamic quantities.

2



2. Fermions, whose multi-particle wavefunction is anti-symmetric under exchange
of particles. Fermions obey a distribution of the form

⟨nr⟩ =
1

eα(Er−ν) + 1
,

again, in which α and ν are not necessarily thermodynamic quantities.

2 Statistical mechanics of Spacetime Quanta

Definition (Volume of an ensemble of quanta of spacetime). Assuming all the spatial
volumes in physics are quantized in packets of Planck volume l3P , let N(E) be number
of spacetime quanta with a certain fixed energy E. Then we ‘define’ the volume V
occupied by these spacetime quanta by

V = l3P logN(E) (1)

Naturally the next quantity to define is

∂V
∂E

,

which has dimension pressure−1, therefore

Definition (Pressure of an ensemble of spacetime quanta).

1

P =
∂V
∂E

(2)

It is critical to note that this ‘pressure’ is different from the familiar
notion of vacuum pressure, because vacuum pressure is a result of residuals of matter,
while (2) is the result of spacetime itself.

2.1 Equipartition theorem

Above definitions allow us to derive the analogue of equipartition theorem for this
‘new’ statistical theory at once.

Theorem (Equipartition).
E = l3PP (3)

Before going further, it would be instrumental for the viability of this new theory
if we can prove its use in explaining an already-observed phenomenon.

3 Interlude: Towards explaining Sonolumines-
cence

Here I –very– briefly point to a possible application of this theory which will be elab-
orated in another paper.
In short Sonoluminescence is the phenomenon in which sound is transformed to light.
For a detailed review of the phenomenon see [7] which is a collection of important
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literature. Although sound creates light summarizes the quiddity of the effect, com-
plications of observation and our preconceptions based on the medium (fluid) and
conditions in which it occurs, tend to distract us from the essence when attempting a
theoretical consideration. As such

Requirement 1 (Light and Sound). Any theoretical model of sonoluminescence
must have both light and sound at its core of explanation.

This seemingly simple requirement dispenses at once with the ‘hot spot’ models of
sonoluminescence (which are almost the consensus) as they consider sonoluminescence
to be merely a thermal effect. This requirement will prove to be a powerful razor in
excluding remaining theoretical attempts.
To abide by this requirement we must fully understand both sound and light. We
understand light well enough and we know in low energy regimes it behaves as an
electromagnetic wave with energy (density)

u =
1

2
(ϵ0|E|2 + 1

µ0
|B|2) (4)

and at high energies with energy packets (quanta) of energy

E = ℏω. (5)

We have all the reasons to think of sonoluminescence as a high-energy effect. Further-
more since an important aspect of the effect is the spectrum

Figure 1: The spectrum of sonoluminescence in water at 22 ◦C. Taken from [8]
with data originally from[9]. The solid curve is a best line fit of a blackbody
spectrum of a body at 40 000 K.

and no satisfactory quantitative theory of a spectrum of radiated light is possible
without E = ℏω (hence Bose-Einstein statistics), we need
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Requirement 2 (E = ℏω).

Consequently we must consider a Bose-Einstein–like statistics of the radiated light
from sonoluminescence. To the academic mindset this might result in thinking that
we are about to consider a blackbody model of sonoluminescence, but those models
do not satisfy requirement 1: Blackbody models miss the point as they completely
ignore the effect of sound. Nothing happens without presence of sound. If blackbody
models captured the essence of sonoluminescence the effect could well happen for
any blackbody. That is the reason we have used the suffix ‘-like’ for Bose-Einstein
statistics as it does not help to solve the problem. Bose-Einstein statistics is a bridge
between light and heat, not light and sound, while by requirement 1 we need a
statistical bridge between light and sound. We have a firm empirical reason to need
a statistical bridge: a most important failure of the prevailing mathematical model
of sonoluminescence, i.e. Rayleigh-Plesset equation is that it cannot account for the
critical moment

Figure 2: Taken from [10].

The moment closely resembles a phase transition familiar from condensed matter
physics
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Figure 3: Taken from Wikipedia.

Therefore

Requirement 3 (Phase Transition). Any satisfactory theory of sonoluminescence
must predict a phase transition in volume (radius).

This requirement is another reason that we need a statistical theory, but we al-
ready saw that the current statistical physics would not do. We can however look
for formal insights from the Blackbody radiation and its underlying statistical theory.
Blackbody radiation is the radiation of light from a heated body: A medium radiates
light (outcome = light) when heated (income = heat). In other words it is light ≡
heat, just like for sonoluminescence, light ≡ sound. The factor that characterizes the
statistics of blackbody is

exp

(
energy of outcome (light)

energy of income (heat)

)
= exp(

ℏω
kBT

), (6)

according to which we expect the statistics of sonoluminescence to be determined by

exp

(
energy of outcome (light)

energy of income (sound)

)
= exp

(
ℏω

energy of income (sound)

)
, (7)

but we posses no equation for energy of income (sound) which has the same dimension
(= energy; not energy density) as that of ℏω. A mundane possibility is to use the
familiar energy density of sound

u =
p2

2ρ0v2
,

revert to

u =
1

2
(ϵ0|E|2 + 1

µ0
|B|2),

hence write

exp

(
ϵ0|E|2 + 1

µ0
|B|2

p2

ρ0v2

)
;

although the possibility of this above factor exists it cannot satisfy the second and
third requirements.
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An energy (not energy density) expression for sound is in fact not altogether alien to
the studies of sonoluminescence; the expression

E = V p,

where V is volume, is used[10] for energetics of sonoluminescence. Using this expression
along the lines of the ideas discussed in [11] we are led to

Definition (Local energy of a particle experiencing sound wave).

E = l3P p (8)

where l3P is the Planck volume (Planck length cubed).
We can now explicitly write down the bare-bone process of sonoluminescence as

l3P p → ℏω

Appearance of Planck volume l3P in (8) is the main reason that sonoluminescence is
probably a quantum-gravitational effect.
Of course until shown to be in accord with all the experimental data, this explanation
must remain at the level of a hypothesis.

4 Grand Canonical Ensemble of Spacetime Quanta

Definition (Pressure Capacity of spacetime). If one adds a certain amount of energy
to an ensemble of spacetime quanta, the rise in their pressure is given by

C =
∂E

∂P (9)

Definition (Chemical Potential of spacetime). The energy needed to add a spacetime
quantum to an ensemble while keeping V fixed, is

ν = −P ∂V
∂N

(10)

It is now time to ask about the statistics that quanta of spacetime obey. According
to equivalence principle, in absence of all other interactions, gravity is the same as the
spacetime itself. As the quanta of gravity are gravitons which are spin-2 particles, by
the spin-statistics theorem, quanta of spacetime obey Bose-Einstein statistics.
Therefore

Definition (Bose-Einstein distribution for spacetime quanta). Let

α :=
1

l3PP
, (11)

then the grand partition function for a state of spacetime is given by

Zr =
1

1− e−α(Er−ν)
(12)
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Now that we have introduced the grand canonical ensemble for spacetime quanta,
it is a matter of calculation to find the number density of particles in ground state of
vacuum. Since the calculations are formally the same as those in conventional statis-
tical physics, we only mention the result:
The number of spacetime quanta in the ground state of vacuum as a func-
tion of pressure of vacuum is

n0

n
= 1− (

P
Pc

)3/2 (13)

This result might provide a way to test the quantum nature of spacetime as it is stating

Conjecture (Existence of Condensate of Spacetime Quanta in Vacuum). There ex-
ists a state of spacetime in vacuum below a critical temperature Pc, con-
sisting of a macroscopic number of spacetime quanta.

It should be noted again that this ‘pressure’ is different from vacuum pres-
sure which is due to residuals of matter, not spacetime itself.
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