
 

 

 

 

 

 

 

 

 

I. Introduction 

 

The general thermodynamic consideration 

allowed Kirchhoff, Boltzmann and Wien to 

derive rigorously a series of important laws 

controlling the emission of heated bodies.  

However, these general considerations were 

insufficient for deriving a particular law of 

energy distribution in the ideal black-body 

radiation spectrum. It was W.Wien who 

advanced in this direction more than the 

others. In 1893 he spread the notions of 

temperature and entropy to thermal radiation 

and showed, that the maximum radiation in 

the black-body spectrum displaces to the 

side of shorter wavelengths with increasing 

temperature; and at a given frequency the 

radiation intensity can depend on 

temperature only, as the parameter appeared 

in the (!") ratio. In other words, the spectral 

intensity should depend on some 

function#$(!"). The particular form of this 

function has remained unknown. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

In 1896, proceeding from classical concepts, 

Wien derived the law of energy distribution 

in the black-body spectrum. However, as 

was soon made clear, the formula of Wien’s 

radiating law was correct only in the case of 

short waves. Nevertheless, these two laws of 

Wien have played a considerable part in the 

development of quantum theory (the Nobel 

Prize, 1911).  

J.Rayleigh (19000 and J.Jeans (1905) 

derived the spectral distribution of thermal 

radiation on the Basis of the assumption that 

the classical idea on the uniform distribution 

of energy is valid. However, the temperature 

and frequency dependencies obtained 

basically differed from Wien’s relationships. 

 According to the results of fairly accurate 

measurements, carried out before that time, 

and to some theoretical investigations, 

Wien’s expression for spectral energy 

When the father denies his son 

 

Mohammad Reza Nouri Darrechi 

Sharif university of technology, Tehran, Iran  

In this article, the author will try to address the basic aspects of blackbody radiation, after a 

brief historical review. In this study, it is shown that any potential (which does not depend 

on time) can be approximated in the first order with a harmonic oscillator potential. 

Using statistical physics and the assumptions of quantum mechanics, it is shown that 

Planck's formula (as the father of quantum mechanics) violates the uncertainty principle (as 

his son). 

Planck's Formula Violates the Uncertainty Principle



distribution was Invalid at high temperatures 

and long wavelengths. This circumstance 

forced Planck to turn to consideration of 

harmonic oscillators, which have been taken 

ass the sources and absorbers of radiation 

energy. Using some further assumptions on 

the mean energy of oscillators, Planck 

derived Wien’s and the Rayleigh-Jeans laws 

of radiation. Finally, Planck obtained the 

empirical equation, which very soon was 

reliably confirmed experimentally on this 

basis, first of all, of the Wien-Lummer 

black-body model. Searching for the theory 

modifications which would allow this 

empirical equation to be derived, Planck 

arrived at the assumptions constituting the 

quantum theory basis (the Nobel Prize, 

1918). 

 

II. Planck’s formula  

 

Planck begins his work with the important 

assumption that black-body radiation is the 

product of oscillation the electrical 

oscillators in the cavity crater. This 

hypothesis was very novel. Because at that 

time, the atom's hypothesis was not accepted 

by all. 

Equation of Planck’s oscillator is 

 

%& ' *+% = 0####(1) 
 

were * are constant is related to the 

oscillator characteristicsis.  

Planck by quanta hypothesis  

 

,- = ./2###(3) 
  

 And using Boltzmann’s expression of the 

second law of thermodynamics, which has 

never used any of it. Receive to her popular 

equation   

 

4 = 85/2+67 /2
9 # :!;<" ' 1####(>) 

 

were u is energy density of oscillators, h is 

Planck’s constant, 2 frequency, c light’s 

speed,?@Boltzmann constant and T is 

temperature of cavity. 

 

III. Statistical approach  

 

From statistical physics we know that 

 

A,B #= C,-9D#E(-);<"
C9FG#H(I)J<K

####(L) 
 

,- = ./2####(M) 
 

A,B = /2
9 # :!;<" ' 1####(N) 

 

This result tell us that oscillator’s number be 

in form 

 



A.B #= 1
9 # :!;<" ' 1####(8) 

 

And its energy be in form 

 

A,B = A.B/2####(O) 
 

This mean that we don’t know a single 

oscillator’s energy. We have just energy of 

oscillator’s collection. This prove exactly 

Einstein point of view where “We just talk 

about averages”.  

 

IV. Viral Theorem 

 

 

To prove that Planck's oscillator is 

inconsistent with uncertainty, we must first 

prove a case. 

The theorem shows that for the coordinate 

oscillator the following relation is 

established. 

 APB = AQB 
 

This suggests that the mean value of the 

potential energy and kinetic energy, which is 

said to be quantum mechanical in the 

expected value, is equal to the coordinate 

oscillator 

To prove this, we define the function G as 

follows 

 

R STU%#####(10)#### 

 

That p is the momentum and x is the location 

Depending on the time from G, it can be 

written 

 VRVW =T(U%X Y UX%)####(11) 
!

Now we compute the average value of 
Z[Z\  in 

the time interval τ as follows 

 

AVRVW B #= 1] ^ VRVW
_
` #VW = R(]) ' R(0)] ####(13) 

 

Let τ be equal to the oscillator period, or 

even if it is very large 

  R(]) = R(0)####(1>) 
 

So we will conclude that 

 

AVRVW B = 0#####(1L) 
 

And according to (2), the following relation 

results 

 

ATU%XB = ' ATUX%B#####(1M) 
 

Use the word to the right 

 a = UX####(1N) 
 

It can be rewritten like this 



 

ATUX%B = Aa%B#####(1b)########## 
!

And in the case of the coordinate oscillator, 

we know that F is as follows 

 a = 'c*+%######(18)!
 

Where m is a mass and ω is a fixed 

component of the intrinsic properties of the 

oscillator 

So (8) can be rewritten as follows 

 Aa%B = 'Ac*+%+B#####(1O)!
 

Planck considers the oscillator's potential 

energy Q = d+c*+%+with respect to this 

subject. 

 Aa%B = '3AQB#####(30) 
 

For the side (6) we can write with respect to P = d+c%X+ 

 

ATU%X B = 3APB#####(31) 
!

So finally, using (20) and (21) it follows that 

 APB = AQB#####(33)!
 

We will use this to show that Planck 

oscillator violates the following relationship 

 

eUe% f g3#####(3>) 
 

Where hU and h% are uncertainties in the 

measurement of location and momentum 

observations 

But to do this, we have to find a way to 

calculate these values. 

 

V. Expecting value for the 

observable 

 

if we want calculate the probability of 

observe “ij” in measurement of �k� (a 

observable) when the system in  “l” state 

we should write 

 

kmnijo = ijnijo####(3L) 
pqrs = ntijnlon+####(3M) 

 

Expecting value of “A” equal to 

kquuuu = Cij pqrsCpqrs ####(3N) 

 

After simple calculate we arrive to 

uncertainty of an observable in the 

measurement to form 

 

vkm = wxyz{km ' AkmB|+zy}~d+ ####(3b) 
 

vkm = �Akm+B ' AkmB+�d+####(38) 



 

VI. Trouble beginning 

 

We should calculate expecting value for 

momentum and position of Planck oscillator 

 

We have 

 

A,B = AP Y QB####(3O) 
 

With due attention to (21) and (9) we have 

 

AQB = APB = A.B/23 ####(>0) 
 

we know that 

 

APB = AU+B3c ####(>1) 
 

If we combine (29) and (28) we have 

AU+B = A.B/23 ####(>3) 
 

Similarly, for V we have 

 

AQB = �3 A%+B####(>>) 
 

A%+B = ./2� ####(>L) 

 

We know from symmetry that 

 

AUB = A%B = 0####(>M) 
 

Know we could calculate v% and vU 

If we put � = c*+ 

 

eU = �AU+B ' AUB+ = �A.Bgc*####(>N) 
 

e% = �A%+B ' A%B+ = �A.Bgc* ####(>b) 
 

Now if we calculate v%vU we have 

 

eUe% = A.Bg#####(>8) 
 

This equation for ground state equal to zero 

that it’s disagree with uncertainty principle. 

This is very bad situation. Statistical physics 

and Bose-Einstein statistics together predict 

this result. 

Although Planck distribution work very well 

in all field of physics but (38) show us that 

this distribution has a fundamental problem. 

The source of this problem is that (3) 

doesn’t predict zero-point-energy    

(Z-P-E). although Planck tried to incorporate 

(Z-P-E) into this formula in 1912, but he 

didn’t succeed.   



Z-P-E is the product of quantum mechanics 

and “uncertainty principle” so if the Planck 

distribution doesn’t predict Z-P-E, then there 

will also underscore uncertainty principle. 
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