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Abstract

This paper gives a technique to approximate (relaxation) discrete Markov
Random Field (MRF) using convex programming. This approximated
MRF can be used to approximate NP problem. This also proves that NP
is not equal P because the MRF convex programming and the approxi-
mate MRF convex programming are not the same with removal of some
product terms.

1 Introduction

ANP problem can be represented by a discrete Markov Random Field (MRF) [Tan21].
A constraint satisfaction problem (a NP problem) can also be represented by
Markov Random Field [Sad19].

A discrete MRF has solution if∑
v1,v2,...,vn

∏
i,j

H(ai = vi, aj = vj) > 0 (1)

and if ∏
i,j

H(ai = vi, aj = vj) > 0 (2)

then a1 = v1, a2 = v2, . . . , an = vn is the solution to the MRF.
Note that H(ai, aj) = 0 or 1, H(ai, aj) = H(aj , ai) and H(ai, ai) = 1.
The MRF can also be represented by indexing notation.∑

v1,v2,...,vn

∏
i,j

b(i,j)vi,vj > 0 (3)

Note that these equations mean the same thing:∑
v1,v2,...,vn

∏
i,j

H(ai = vi, aj = vj) > 0 (4)

and ∑
a1,a2,...,an

∏
i,j

H(ai, aj) > 0. (5)
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2 Equation of 3 values 4 variables MRF

The equation below shows the Discrete Markov Random Field with 4 variables.

2∑
a1=0

2∑
a2=0

2∑
a3=0

2∑
a4=0

H(a1, a2)H(a1, a3)H(a1, a4)H(a2, a3)H(a2, a4)H(a3, a4) > 0.

(6)

Each variable can take 3 values. If the variable can only take 2 values, it is
polynomial time solvable, otherwise 3 values or more will take NP time. If
there is a solution, the equation above compute to greater than zero.

The solution of each MRF can be calculated as follows

Ĥ(a1 = v1, a2 = v2)

= H(a1 = v1, a2 = v2)∑
a1=v1,a2=v2,a3=0,1,2,a4=0,1,2

H(a1, a3)H(a1, a4)H(a2, a3)H(a2, a4)H(a3, a4).

(7)

If Ĥ(a1 = v1, a2 = v2) > 0 then a1 = v1 and a2 = v2 is the solution to this
MRF.

The MRF can be solved by a convex programming below

max

2∑
a1=0

2∑
a2=0

2∑
a3=0

2∑
a4=0

Ĥ(a1, a2) + Ĥ(a1, a3) + Ĥ(a1, a4) + Ĥ(a2, a3) + Ĥ(a2, a4) + Ĥ(a3, a4)

such that

Ĥ(ai, aj) ≤
∑

ak=0,1,2,al=0,1,2

Ĥ(ai, ak)Ĥ(ai, al)Ĥ(aj , ak)Ĥ(aj , al)Ĥ(ak, al)

Ĥ(ai, aj) ≤ H(ai, aj)

Ĥ(ai, aj) ∈ {0, 1}
for all i, j, k, l ∈ {1, 2, 3, 4}
and i ̸= j ̸= k ̸= l

ai, aj , ak, al ∈ {0, 1, 2}. (8)
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3 Approximate MRF

The convex programming can be approximately simplified to

max

2∑
a1=0

2∑
a2=0

2∑
a3=0

2∑
a4=0

Ĥ(a1, a2) + Ĥ(a1, a3) + Ĥ(a1, a4) + Ĥ(a2, a3) + Ĥ(a2, a4) + Ĥ(a3, a4)

such that

Ĥ(ai, aj) ≤
∑

ak=0,1,2

Ĥ(ai, ak)Ĥ(aj , ak)

Ĥ(ai, aj) ≤ H(ai, aj)

Ĥ(ai, aj) ∈ {0, 1}
for all i, j, k ∈ {1, 2, 3, 4}
and i ̸= j ̸= k

ai, aj , ak ∈ {0, 1, 2}. (9)

This convex programming is an approximation of original programming.
Approximated MRF can be expanded into

max

2∑
a1=0

2∑
a2=0

2∑
a3=0

2∑
a4=0

Ĥ(a1, a2) + Ĥ(a1, a3) + Ĥ(a1, a4) + Ĥ(a2, a3) + Ĥ(a2, a4) + Ĥ(a3, a4)

such that

Ĥ(ai, aj) ≤
2∑

k=0

Ĥ(aj , ak)

2∑
l=0

Ĥ(ak, al)Ĥ(al, ai)

Ĥ(ai, aj) ≤ H(ai, aj)

Ĥ(ai, aj) ∈ {0, 1}
for all i, j, k, l ∈ {1, 2, 3, 4}
and i ̸= j ̸= k

ai, aj , ak, al ∈ {0, 1, 2}, (10)

then we can derive the recursive solution (later in the paper) using this equation.
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4 Approximate MRF equal to 2 values MRF

This 2 values approximate MRF(MRF approximated with convex programming)

max

1∑
a1=0

1∑
a2=0

1∑
a3=0

1∑
a4=0

Ĥ(a1, a2) + Ĥ(a1, a3) + Ĥ(a1, a4) + Ĥ(a2, a3) + Ĥ(a2, a4) + Ĥ(a3, a4)

such that

Ĥ(ai, aj) ≤
∑

ak=0,1

Ĥ(ai, ak)Ĥ(aj , ak)

Ĥ(ai, aj) ≤ H(ai, aj)

Ĥ(ai, aj) ∈ {0, 1}
for all i, j, k ∈ {1, 2, 3, 4}
and i ̸= j ̸= k

ai, aj , ak ∈ {0, 1} (11)

is the same as 2 values MRF shown below.

1∑
a1=0

1∑
a2=0

1∑
a3=0

1∑
a4=0

H(a1, a2)H(a1, a3)H(a1, a4)H(a2, a3)H(a2, a4)H(a3, a4) > 0.

(12)

2 values MRF is actually a 2sat problem. Note that the approximate MRF for
2sat can only take 2 values, ai ∈ {0, 1}.

5 Approximate MRF tells us NP not equal P

Recursion solution to 2sat in equation 12 is shown below.

H(0)(ai, aj) = H(ai, aj)

H(l)(ai, aj) = H(l−1)(ai, aj)

4∏
k=1

∑
ak

H(l−1)(ai, ak)H
(l−1)(aj , ak)

where 1 <= l <= 4. (13)

All dynamic programming problems are of this form. Same as my NP vs P
solution [Tan21], there is no ‘Not’ operations but only ‘And’ and ‘Or’ operations.

The approximate MRF using convex programming can be converted to a
Boolean algebra with ‘and’ and ‘or’ operations with no ‘Not’ operation. The
approximate MRF convex programming removes product terms or potential
functions from the original convex programming. Removal of terms cause the
convex programming to be polynomial time complexity else it is not polyno-
mial time but NP time. This means than NP problem cannot be simplified to
polynomial problem. This has the same result as my NP vs P paper [Tan21].
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6 Approximate MRF convex programming can
be converted to Boolean algebra and linear
programming

The approximate MRF can also be converted to boolean algebra shown below.

H(0)(ai, aj) ⇐⇒ H(ai, aj)

H(l)(ai, aj) ⇐⇒ H(l−1)(ai, aj) ∧
4∧

k=1

∨
ak

H(l−1)(ai, ak) ∧H(l−1)(aj , ak)

where 1 <= l <= n. (14)

The linear programming formulation of 2sat is

max

1∑
a1=0

1∑
a2=0

1∑
a3=0

1∑
a4=0

Ĥ(a1, a2) + Ĥ(a1, a3) + Ĥ(a1, a4) + Ĥ(a2, a3) + Ĥ(a2, a4) + Ĥ(a3, a4)

such that

Ĥ(ai, aj) ≤ Ĥ(ai, ak = 0) + Ĥ(aj , ak = 1)

Ĥ(ai, aj) ≤ Ĥ(ai, ak = 1) + Ĥ(aj , ak = 0)

Ĥ(ai, aj) ≤ Ĥ(ai, ak = 0) + Ĥ(ai, ak = 1)

Ĥ(ai, aj) ≤ Ĥ(aj , ak = 0) + Ĥ(aj , ak = 1)

Ĥ(ai, aj) ≤ H(ai, aj)

Ĥ(ai, aj) ∈ {0, 1}
for all i, j, k ∈ {1, 2, 3, 4}
and i ̸= j ̸= k

ai, aj , ak ∈ {0, 1}. (15)

Note that in this linear programming formulation, no matter whether the
product term is continuous or Discrete, it leads to the same solution. Whether
ĥ(ai, aj) ∈ {0, 1} or 0 ≤ ĥ(ai, aj) ≤ 1, it leads to the same solution.

7 Conclusion

MRF can easily relaxed (simplified and approximated) by convex programming.
Since relaxed MRF lead to different convex programming with different product
sum of smaller number of product terms, NP is not equal P.

Arbitrary number of variables MRF can also be relaxed in the same manner.

5



References

[Sad19] Charikar Sadigh. https://web.stanford.edu/class/archive/cs/cs221/cs221.1196/lectures/csp1.pdf.
Accessed: 2021-12-22. 2019.

[Tan21] Sing Kuang Tan. “Prove Np not equal P using Markov Random Field
and Boolean Algebra Simplification”. In: https://vixra.org/pdf/2105.0181v1.pdf
(2021).

6


