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The ΛCDM is frequently referred to as the standard model of Big Bang cosmology because it is

the simplest model that provides a reasonably good account of most cosmological observations. This

model is based on the assumption of the cosmological principle, which states that the universe looks

the same from all positions in space at a particular time and that all directions in space at any point

are equivalent. One can define the surface of simultaneity of the local Lorentz frame (LLF) with a

global proper time in the Friedmann–Lemâıtre–Robertson–Walker (FLRW) universe. The Lorentz

invariance is locally exact along the worldline and well defined on the hypersurface at a given time

tk. However, it is meaningless to argue the validity of the local Lorentz invariance along the geodesic

in the manifold. We show that the speed of light on each hypersurface (LLF) is constant but its

value should be the function of a scale factor (i.e., cosmological redshift) to define the null interval

consistently. This means the varying speed of light as a function of cosmic time. Also, the entropy

of the Universe should be conserved to preserve the homogeneity and isotropy of the Universe. This

adiabatic expansion condition induces the cosmic evolutions of other physical constants including

the Planck constant. We conclude that the conventional assumption of the constant speed of light

in the FLRW universe should be abandoned to obtain a consistent and accurate interpretation of

cosmological measurement.
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I. LOCAL LORENTZ FRAME

A point in the Minkowski spacetime is a time and spatial position called an “event”, or sometimes the

four-position, described in some reference frame by a set of four coordinates

xµ =
(
ct , xi

)
, (1)

where c is the speed of light, t denotes the coordinate time along a worldline, and xi is the three-dimensional

space position vector on the Minkowski spacetime (i.e., Lorentz frame). The path followed by an object in

spacetime is termed the worldline for the object. If xi is a function of coordinate time t in the same frame, (i.e.,

xi = xi[t]), this corresponds to a sequence of events as t varies. One can define the differential four-position on

a worldline dxµ

dxµ =
(
dx0 , dxi

)
= (cdt , dx , dy , dz) , (2)

where we adopt the assumption that c is a constant and dx ≡ x[t + dt] − x[t]. In Minkowski spacetime, the

square of the infinitesimal distance ds2 between two points (i.e., the line element) is given by

ds2 = ηµνdx
µdxν = −c2dt2 + dx2 + dy2 + dz2 ≡ −c2dt2 + dl2 . (3)

The line element (3) defines a cone. The lightcone is a 3-dimensional surface in the 4-dimensional spacetime.

If ds2 = 0, then the interval is called lightlike (or null).

ds2 = −c2dt2 + dl2 = 0 ⇒ dl

dt
≡ v = c . (4)

This means that events in Minkowski space separated by a null interval are connected by signals moving at

light velocity. The tangent to the worldline of any particle at a point defines the local velocity of the particle

at that point and constant velocity implies straight worldlines.

All observers in Newtonian mechanics share a universal (or absolute) time, and in special relativity (SR),

the time has a well-defined meaning within an inertial reference frame (IRF). However, it is impossible to

define a global time in general relativity (GR) due to the absence of global IRF. Nevertheless, it is well known

that a global time for the Universe can be defined when a following set of requirements is satisfied, and a

metric embodying the cosmological principle meets those requirements. Then, one can define a global time by

a foliation of spacetime as a sequence of non-intersecting spacelike three-dimensional (3D) surfaces [1–3]. We

briefly review this in the following.

All galaxies are assumed to lie on a hypersurface so that the surface of simultaneity for the local Lorentz

frame (LF) of each galaxy coincides locally with the hypersurface. Thus, one may regard a hypersurface as

consisting of the smoothly meshed LF of all the galaxies, with the four-velocity of each galaxy orthogonal to

the hypersurface. One may label this series of hypersurfaces by a parameter t that can be regarded as the

proper time of any galaxy defining a universal time.

It is assumed that the worldlines of galaxies are a bundle of geodesics in spacetime. The bundle of geodesics

possesses a set of spacelike hypersurfaces orthogonal to them. The proper time along a geodesic is chosen as a

parameter τ such that each of these hypersurfaces corresponds to τ = τk = constant. Thus, the worldline of a

galaxy is given by

xµ [τk] =
(
x0 = cτk , x

1 = const , x2 = const , x3 = const
)
, (5)
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where τk is the proper time along with the galaxy. We emphasize that the conventional assumption that the

speed of light is constant on every hypersurface is used in this equation. Under these conditions, one can write

the metric as

ds2k = −c2dτ2 = −c2dt2 + hij [tk, x
k]dxidxj . (6)

The proper time τk along the galaxy is equal to the coordinate time tk because dxi = 0 along the worldline

(i.e., dsk = cdτ = cdt). One can understand this easily from the fact that a vector along the worldline given

as Aµ = (cdt , 0 , 0 , 0) and the vector Bµ = (0 , dx1 , dx2 , dx3) lying in the hypersurface t = tk are orthogonal.

Thus, one can regard the worldline at each tk as a local LF. Additionally, the worldline xµ satisfies the geodesic

equation

d

dx0
dxµ

dx0
+ Γµνλ

dxν

dx0
dxλ

dx0
= 0 where

dxµ

dx0
=
dxµ

ds
= (1, 0, 0, 0) . (7)

However, the metric (6) does not incorporate the cosmological principle of space. By adopting the postulate

of homogeneity and isotropy, one can write the spatial separation on the same hypersurface t = tk of two nearby

galaxies at coordinates (x1, x2, x3) and (x1 + dx1, x2 + dx2, x3 + dx3) as

dσ2
k ≡ a2[tk]γijdx

idxj . (8)

Thus, one can define the standard form of the FLRW metric as

ds2k = −c2dt2 + a2[tk]

(
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

))
. (9)

One can conclude that a global cosmic time for all galaxies on the hypersurface, but only if the space is

homogeneous and isotropic (which implies further that the spatial curvature is constant). Cosmic time is the

time measured by a comoving observer who sees the Universe expanding uniformly around her. This is shown

in Fig. 1. The upper surface is a hypersurface at the cosmic time t0 and the lower one is a one at ti. Each

hypersurface is an LF with a constant value of c[ai] on that surface.

To proceed further we focus on the radial direction (dθ = dφ = 0) for the flat universe (k = 0). Then the

square of the infinitesimal distance ds2k between two worldlines at that time, xµ[tk] and xµ[tk + dt] is given by

ds2k = −c2dt2 + a2kdr
2 ≡ −c2dt2 + a2kdl

2 ≡ −c2dt2 + dσ2
k , (10)

where r is the circumferential radius defined by r ≡
√
x2 + y2 + z2. If one regards a null ray on the FLRW

metric (i.e., dsk = 0), then one obtains

vk ≡
dσk
dt

= ak
dl

dt

?
= c . (11)

This result leads to the conclusion that events on an FLRW metric at a given time, tk separated by a null

interval are connected by signals moving at light velocity, vk = c. However, one needs to be careful about

quantities in the above equation (11). dl in Eq.(10) is the spatial interval on the hypersurfaces at t = tk.

Contrary to this, dσk is the so-called physical spatial interval and its magnitude is different at different epoch

by a factor, ak. Thus, vk in Eq. (11) can be different from each other at each epoch. This contradicts the

universality of the speed of light when one uses the coordinate cosmic time, t. One might solve this problem

by rescaling the time interval dt = akdη [4, 5].

vk ≡
dσk
dt

=
dσk
akdη

=
dl

dη
= c . (12)
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FIG. 1: The surface of simultaneity of local Lorentz frame (LLF) on the spacelike hypersurface. The time

interval along the geodesic between two hypersurfaces given at ti and t0 = ti + dt is given by dt.

However, one should notice that dη = dt/ak is not the conformal time (dη = dt/a) but just the rescaling of the

time interval.

The cosmic time t is defined universally in the FLRW metric. Thus, after one fixes the cosmic time at one

moment, it should be used without rescaling it. Also, one usually uses the coordinate cosmic time when one

expresses the cosmological distances including comoving distances [6]. Thus, one needs to worry about the

consistency problem when the metric is written by Eq. (10).

One can cure this contradiction in Eq. (11) by abandoning the assumption that speeds of light written by

the coordinate cosmic time are the same on all hypersurfaces. Then, one can redefine x0 as

x0k = c[ak]tk , (13)

by allowing the evolution of speed of light as a function of coordinate cosmic time, c[a(tk)]. Then one obtains

dx0k =

(
d ln c

d ln a

∣∣∣
k
Hktk + 1

)
c[a(tk)]dt ≡ c̃kdt . (14)

By using this, one can rewrite Eq. (10) as

ds2k = −c̃2kdt2 + a2k

(
dr2

1− kr2
+ r2dΩ2

)
≡ −c̃2kdt2 + a2kdl

2 ≡ −c̃2kdt2 + dσ2
k , (15)

to obtain

vk ≡
dσk
dt

= ak
dl

dt
= c̃k . (16)
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We should emphasize that Eq. (15) is satisfied at one specific time tk. From equation (16), one can conclude

that events in an FLRW universe separated by a null interval are connected by signals moving at the value of

the speed of light vk = ck written in terms of the coordinate cosmic time. It is a constant value at each tk.

However, its value varies as ak does.

One can generalize the infinitesimal interval on a given hypersurface (i.e., t = tk) given in Eq. (15) into the

one along the geodesic on the entire manifold as

ds2 = −c̃2[a[t]]dt2 + a2[t]

(
dr2

1− kr2
+ r2dΩ2

)
≡ −c̃2[t]dt2 + a2[t]

(
dr2

1− kr2
+ r2dΩ2

)
, (17)

where t is the cosmic time defined along the geodesic on the manifold.

One can obtain a consistent conclusion of LLF for the null signal by abandoning the conventional assumption

of the constant speed of light on the FLRW metric. Thus, one can conclude that c̃ in Eq.(14) is a function of a

scale factor a[t]. Recently, we propose the so-called minimally extended varying speed of light (meVSL) model

where c̃ is given by [7]

c̃[a] = c̃0a
b/4 where c̃0 ≡ c̃[a0] and b = const . (18)

However, this is not the end of the story. One should guarantee the homogeneity and the isotropy of the

hypersurface to keep the validity of the cosmic time through the foliation of the hypersurface. If one permits

the cosmic evolution of the speed of light, then homogeneity and isotropy can be broken. Next, we show the

necessary condition to keep this cosmic principle in the VSL model.

II. ADIABATICITY

The first law of thermodynamics (law of conservation of energy), dQ = dE + PdV where dQ is the heat

flow into or out of a volume, dE denotes the energy change, P is the pressure, and dV means the change of a

volume. If the Universe is perfectly homogeneous, then for any volume dQ = 0, that is, there is no bulk flow

of heat. Processes for which dQ = 0 are known as adiabatic processes. A homogeneous, isotropic expansion of

the universe does not increase the universe’s entropy [8].

Adiabaticity is a necessary condition to maintain the homogeneity and isotropy of the Universe. Net flux of

energy would falsify the isotropy if there is a preferential energy flow direction of homogeneity if the outward

(inward) flux is isotropic.

One infers that the early Universe was in the local thermal equilibrium from the perfect blackbody spectrum

of the cosmic microwave background (CMB). Also, because the photon is the dominant component to contribute

the entropy of the Universe, we consider both the energy density and the pressure of photon obtained from

statistical mechanics [7]

εγ =
π2

15

(kBTγ)
4

(~c̃)3
≡ σ̃γT 4

γ , Pγ =
1

3
εγ , (19)

where kB is the Boltzmann constant, ~ is the Planck constant, and σ̃γ is the so-called blackbody constant. They

are local quantities and the cosmological evolutions of them are embedded in that of the photon temperature

Tγ and physical constants including c̃. To use the first law of thermodynamics, we use the following relations

Eγ = εγV , Tγ = Tγ0a
−1 , V = V0a

3 , (20)
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where subscript 0 denotes the corresponding value at the present epoch (i.e., a0 = 1). From Eqs.(18)-(20), one

writes the entropy change as

dQ = Eγ

(
d ln σ̃γ + 4d lnTγ +

4

3
d lnV

)
= Eγd ln σ̃γ , (21)

where we use d lnTγ = −d lnV/3 = −d ln a. If one just adopts the cosmic evolution of the speed of light without

allowing that of the Planck constant, then the entropy of the Universe is not conserved as shown in the above

Eq.(21). Thus, to satisfy the adiabaticity expansion of the Universe, σ̃γ should be constant as a cosmic time.

One of the possible choices to satisfy this condition is

~̃ = ~̃0a−b/4 , k̃B = k̃B0 ≡ kB , (22)

as determined in meVSL model [7].

III. SPEED OF LIGHT

In Sec. I, we introduce a series of non-intersecting space-like hypersurfaces, that is, surfaces any two points

of which can be connected by a curve lying entirely in the hypersurface which is space-like everywhere. We

assume that all galaxies lie on such a hypersurface in such a manner that the surface of simultaneity of the LLF

of any galaxy coincides locally with the hypersurface. Thus the four-velocity of a galaxy is orthogonal to the

hypersurface. The proper time, τ along the galaxy is, in fact, equal to the coordinate time t. This is because

the spatial infinitesimal interval dxi = 0 along with the worldline yields ds = ˜̃cdτ = c̃dt, so that τ = t.

The speed induced in Sec. I can be interpreted as the speed of signals connecting two events in the LLF. In

this sense, it is more accurate to say that it is the speed of the massless particle mediating the gravitational

force (i.e., graviton) [4]. However, ck is the speed of light on the hypersurface at tk. This speed is defined

on the local Lorentz transformation to be used in Maxwell’s equation. Thus, one might identify the speed of

a massless particle with that of a photon. Under this assumption, one may obtain the cosmic evolutions of

permittivity, ε̃ and permeability, µ̃ of vacuum

ε̃ = ε̃0a
−b/4 , µ̃ = µ̃0a

−b/4 , (23)

as shown in meVSL model [7].

IV. CONCLUSIONS

Consideration of the time variations of dimensional constants is occasionally claimed to be meaningless

because they might be just human-constructed values coming from the different choices of units [9]. However,

the possibility of the cosmic time evolutions of dimensional constants has meaning only when the principle

of locality of the given theory is considered. Einstein’s general relativity (GR) is a local theory. A solution

of Einstein’s field equations is local if the underlying equations are covariant. Thus, all classical physics laws

by using dimensional constants at one given cosmic time, t1, can be rewritten by using the same dimensional

constants at another cosmic time, t0. Then, time evolutions of dimensionless quantities related to the ratio of

dimensional constants can be obtained by admitting cosmic evolutions of dimensional constants. For example,
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the gravitational constants at different cosmic times G(t1) and G(t0) can be written by

G0

G1
=

(
a0
a1

)b
. (24)

With this principle, we recently proposed the so-called meVSL model [7]. With these relations, we can establish

thermodynamics, electromagnetism, and special relativity which are consistent with those obtained from general

relativity. The cosmological evolutions of physical quantities are determined by the value of b. And one can

constrain the value of b from both cosmological observations and blackhole thermodynamics [10–13].

Most of the current cosmological observations are measured under ΛCDM cosmological model. This is based

on the FLRW metric and it is quite important to clarify the meaning and the consistent form of the speed of

light in that model. We show that the speed of light with cosmic time evolution is consistent in the FLRW

Universe. To keep the homogeneity and isotropy of the Universe, other physical constants including the Planck

constant also should evolve as a function of cosmic time.
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Appendix: Speed of light

As pointed out in [5], the central issue relating to the varying speed of light is that one has distance and time

units set up to measure the speed of light. Generally, there are no global inertial frames in general relativity.

However, one can still define a moment in general relativity which is valid globally if the homogeneity and

isotropy of the Universe are satisfied [1–3].

One can write the square of radial infinitesimal interval on a given hypersurface at t = tk as in (17)

ds2k = −c2kdt2 + a2[tk]dr
2 . (A.1)

where we focus on the flat space k = 0. The scale factor in this equation is the one at one specific hypersurface

a[tk] instead of a[t]. This point has been missed in the pioneering work, E07 [5]. The squared infinitesimal

interval at two different epochs are given in E07 as

ds2 = −c20dt2 + a2[t]dl2 = −c21dt2 + a2[t]dl2 . (A.2)

It is claimed that one obtains

a[t]
dl

dt
= c0 or c1 , (A.3)

for the null ray. It is claimed that the difference is just due to the different choice of a unit on t and they

become the same if one changes the coordinate t → (c0/c1)t. The confusion stems from the missing fact

that each hypersurface is a local Lorentz frame and the infinitesimal interval is given by Eqs. (A.1) instead of

Eq. (A.2). We summarize this in table. I.
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defined on null interval time Lorentz invariance consequence

LLF ds2k = −c̃2kdt2 + a2kγijdx
idxj = 0 at a t = tk

locally c̃k = akdr/dt

c̃k = const on a hypersurface

manifold
ds2 = −c̃2[t]dt2 + a2[t]γijdx

idxj at any t
meaningless

comoving distance:

= 0 along geodesic
∫ t

0
(c̃/a)dt

TABLE I: LLF denotes the local Lorentz frame at a given moment t = tk. The Lorentz invariance is locally

exact on each hypersurface defined at a given time tk.
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