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Abstract Since acceleration is invariant under constant-velocity Galilean transformations, a system moving at con-
stant velocity cannot, in Newtonian physics, exert new forces it doesn’t already exert when it is at rest. But a bar
magnet moving at nonzero constant velocity exerts a force on electric charges that it doesn’t exert when it is at
rest (Faraday’s Law), and a charge moving at nonzero constant velocity exerts a torque on the needle of a magnetic
compass that it doesn’t exert when it is at rest (Biot-Savart Law). Thus basic electromagnetic experiments which
are feasible in undergraduate or secondary-school physics labs illustrate the need to replace the Galilean transforma-
tions. That seems pedagogically much more compelling than the standard practice of merely discussing experiments
which use extremely high-precision equipment such as Michelson interferometers. What should replace the Galilean
transformations? A key qualification obviously is compatibility with the electromagnetic Laws. Those Laws can
be presented as wave equations with source terms, and wherever the source terms are zero, the free waves travel
exclusively at the fixed constant speed c. Thus to be compatible with the electromagnetic Laws, the replacements of
the Galilean transformations must preserve the speed c, but they of course must in addition become Galilean when
the ratio of the untransformed speed to c goes to zero.

1. Basic electromagnetic experiments versus Galilean-transformation force invariance

The Galilean transformation of time t and displacement r due to travel at constant velocity v is,

t′ = t and r′ = r− vt. (1.1a)

Therefore the effect on velocity dr/dt of the constant-velocity-v Galilean transformation is to subtract v,

dr′/dt′ = d(r− vt)/dt = dr/dt− v, (1.1b)

and the constant-velocity-v Galilean transformation has no effect on acceleration d2r/dt2—it is invariant,

d2r′/d(t′)2 = d(dr′/dt′)/dt′ = d(dr/dt− v)/dt = d2r/dt2. (1.1c)

Since forces produce accelerations in Newtonian physics, a constant-velocity-v Galilean transformation is
incapable of introducing new forces which were absent before that transformation was made.

This Newtonian/Galilean precept notwithstanding, it was observed hundreds of years ago that the
magnetic-dipole needle of a compass which is lying sufficiently close to a metal wire is deflected away from
its equilibrium position of pointing toward magnetic north upon that wire being connected to a battery. It
is surmised that the battery sets the invisible microscopic free electrons in the metal wire into motion with,
at least on average, a nonzero constant speed that causes them to produce a magnetic field which is absent
when the battery isn’t connected and those free electrons are, at least on average, at rest.

Of course surmises about the state of motion of the completely invisible microscopic free electrons in
a metal wire are hardly immediately persuasive. Such an experiment would be more compelling if the wire
and its invisible microscopic free electrons were replaced by a macroscopic object which has been statically
charged. Issues regarding such an approach include getting enough charge on a macroscopic object and/or
getting its speed high enough to produce a strong enough magnetic field to visibly deflect a magnetic compass
needle. A major concern is too-rapid dissipation of the object’s charge into the air around it, which might
be ameliorated by artificial cooling and dehumidification of that air. The object’s charge may also need to
be shielded from air currents associated with its speed, or which occur spontaneously in its surroundings.

In 1831 Michael Faraday showed that thrusting a bar magnet lengthwise through the center of a metal
wire coil produces a transient current in the coil that is detected by a galvanometer connected to the coil.
Thus a bar magnet moving at a nonzero constant velocity in the direction of its magnetic moment apparently
produces a moving azimuthal electric field that is absent when the magnet is at rest, but transiently drives
the free electrons in the wire coil around that coil when the magnet is moving. Here one moving object, the
bar magnet, is indeed macroscopic, so its motion, or the lack thereof, is plain to see. The moving azimuthal
electric field that its motion supposedly produces is inferred, however, from supposed transient azimuthal
motion of invisible microscopic free electrons in the metal wire coil.

It would be more compelling to instead verify that transient electric field by the visible deflection of a
macroscopic entity which has been statically charged. A low-mass charged object which hangs downward
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by a thread directly above the bar magnet’s horizontal-line trajectory should be deflected horizontally per-
pendicular to that trajectory (i.e., azimuthally), first toward one side and then toward the opposite side,
as the magnet passes beneath it at constant velocity. As might be expected, this concept comes with its
list of caveats and pitfalls. The object’s charge must be great enough and its mass low enough to produce
a visible deflection. (Of course the stronger the moving bar magnet’s electric field is, the greater is the
deflection of the charged object; that electric field strength increases with the magnet’s velocity and the
strength of its dipole moment.) Too-rapid dissipation of the object’s charge into the air around it needs
to be ameliorated, possibly by cooling and dehumidifying that air. The low-mass hanging charged object
would be ultra-sensitive to deflection by stray air currents, and so would need to hang inside an airtight
transparent case.

The deflection of the needle of a magnetic compass by nearby moving charges (but not by such charges
at rest) became in due course the essence of the Biot-Savart Law of electromagnetic theory, and James Clerk
Maxwell distilled Faraday’s demonstration that a moving magnetic field (but not a stationary magnetic
field) produces a moving electric field into Faraday’s Law of electromagnetic theory.

These two Laws of electromagnetic theory obviously flatly contradict the Newtonian/Galilean precept
pointed out below Eq. (1.1c) that a constant-velocity-v Galilean transformation is incapable of introducing
new forces which were absent before that transformation was made.

But the existence of this blatant contradiction of a basic Newtonian precept by the Laws of electro-
magnetism completely eluded the awareness of the physics community until the null result of the Michelson-
Morley experiment challenged another basic Galilean precept, namely the Eq. (1.1b) Galilean subtraction of
the constant transformation velocity v from the untransformed velocity dr/dt—which also clashes with the
electromagnetic Laws. Those Laws can be presented as wave equations with source terms, where the fixed
constant c is invariably the speed of the free waves which can exist wherever the source terms are zero. Since
the completely fixed constant c is the only free wave speed which the electromagnetic Laws permit, physically-
correct transformations dr′/dt′ of untransformed velocity dr/dt must preserve speed c. But the Eq. (1.1b)
constant-velocity-v Galilean transformation of velocity, i.e., dr′/dt′ = dr/dt − v, clearly doesn’t preserve
speed c. That the electromagnetic free wave speed invariably is c is supported by the Michelson-Morley null
result, which, contrary to the Eq. (1.1b) subtraction of the transformation velocity v from the untransformed
velocity dr/dt, found no variation in the speed c of light from sources traveling at various different velocities.

We next develop the constant-velocity-v Lorentz transformation which preserves speed c, but of course
in addition becomes constant-velocity-v Galilean when the ratio of the untransformed speed to c goes to zero.

2. Developing the Lorentz transformations and exploring some of their consequences

The constant-velocity-v Lorentz transformation is required to preserve speed c, i.e., if the untransformed speed
|dr/dt| is c, the constant-velocity-v Lorentz-transformed speed |dr′/dt′| is required to be c as well. In addition,
the constant-velocity-v Lorentz transformation is required to become constant-velocity-v Galilean when the
ratio (|dr/dt|/c) of the untransformed speed to c goes to zero; specifically, the constant-velocity-v Lorentz-
transformed velocity dr′/dt′ is required to become the Eq. (1.1b) constant-velocity-v Galilean-transformed
velocity dr/dt− v when the ratio (|dr/dt|/c)→ 0.

It turns out that the above two requirements for the constant-velocity-v Lorentz transformation can be
satisfied by an appropriately-modified form of the Eq. (1.1a) constant-velocity-v Galilean transformation.

A salient property of the Eq. (1.1a) constant-velocity-v Galilean transformation, t′ = t and r′ = r−vt, of
(t, r) into (t′, r′) is its trivial identity nature for the part of r which is perpendicular to v; only the component
of r in the direction of v is, in conjunction with time t, transformed in a nontrivial manner.

The direction of the constant velocity v is given by the constant unit vector,

û
def
= (v/|v|), (2.1a)

which has the following readily-verified properties,

û · û = 1, v · û = |v| and v = |v|û = (v · û)û. (2.1b)

The component of r in the direction of v is (r · û), and the part of r that is parallel to v is,

r‖ = (r · û)û. (2.1c)
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Subtraction of r‖ from r produces,

r⊥
def
= r− r‖ = r− (r · û)û, (2.1d)

which is the part of r that is perpendicular to v because,

r⊥ · v = (r− (r · û)û) · v =
(
(r− (r · û)û) · û

)
|v| =

(
((r · û)− (r · û))

)
|v| = 0 and r = r‖ + r⊥. (2.1e)

From the Eq. (1.1a) constant-velocity-v Galilean transformation, t′ = t and r′ = r− vt, we obtain,

r′⊥ = r′−(r′ · û)û = (r− vt)−((r− vt) · û)û = (r− (r · û)û)−(v − (v · û)û)t = r⊥−(v − v)t = r⊥, (2.2a)

where we have applied the relation v = (v · û)û of Eq. (2.1b) to reveal the trivial r⊥ identity transformation,

r′⊥ = r⊥, which in greater detail reads, r′ − r′‖ = r− r‖ or r′−(r′ · û)û = r− (r · û)û. (2.2b)

But when the dot product of the displacement part r′ = r−vt of the Eq. (1.1a) constant-velocity-v Galilean
transformation with the unit vector û is taken, it is seen that that transformation also yields a nontrivial
homogeneous linear transformation of the two-dimensional pair (t, (r · û)) into (t′, (r′ · û)), namely,

t′ = t and (r′ · û) = (r · û)− |v|t. (2.2c)

Furthermore, multiplying the second equation of Eq. (2.2c) by the unit vector û yields r′‖ = r‖ − vt, which

added to the trivial Eq. (2.2b) identity transformation r′⊥ = r⊥ produces the displacement part r′ = r− vt
of the Eq. (1.1a) constant-velocity-v Galilean transformation. Thus we see that the Eq. (2.2c) homogeneous
linear transformation of (t, (r · û)) into (t′, (r′ · û)) is the only nontrivial part of the Eq. (1.1a) constant-
velocity-v Galilean transformation of (t, r) into (t′, r′). We likewise expect that the only nontrivial part of the
constant-velocity-v Lorentz transformation of (t, r) into (t′, r′) will be a homogeneous linear transformation
of (t, (r · û)) into (t′, (r′ · û)). We therefore begin with the most general possible form for a homogeneous
linear transformation of (t, (r · û)) into (t′, (r′ · û)), which we conveniently express as,

t′ = λ(t− (σ/|v|)(r · û)) and (r′ · û) = γ((r · û)− κ|v|t), (2.2d)

where λ, σ, γ and κ are dimensionless, and the Galilean Eq. (2.2c) corresponds to λ = 1, σ = 0, γ = 1 and
κ = 1. Multiplying the second equation of Eq. (2.2d) by the unit vector û yields r′‖ = γr‖ − γκvt, which

added to the trivial Eq. (2.2b) identity transformation r′⊥ = r⊥ = r− r‖ produces the displacement part of
the following transformation of (t, r) into (t′, r′),

t′ = λ(t− (σ/|v|)(r · û)) and r′ = r + (γ − 1)r‖ − γκvt = r + (γ − 1)(r · û)û− γκvt, (2.2e)

where the constant-velocity-v Galilean Eq. (1.1a), t′ = t and r′ = r−vt, corresponds to λ = 1, σ = 0, γ = 1
and κ = 1. We next obtain from Eq. (2.2e) its transformation of velocity dr′/dt′ = [dr′/dt]/[dt′/dt]. Since,

dr′/dt = dr/dt+ (γ − 1)((dr/dt) · û)û− γκv and dt′/dt = λ(1− (σ/|v|)((dr/dt) · û)), the result is,

dr′/dt′ =
[
dr/dt+ (γ − 1)((dr/dt) · û)û− γκv

]/[
λ(1− (σ/|v|)((dr/dt) · û))

]
, (2.2f)

where the Galilean Eq. (1.1b), namely dr′/dt′ = dr/dt− v, corresponds to λ = 1, σ = 0, γ = 1 and κ = 1.
One of the two properties required of the constant-velocity-v Lorentz transformation is that when the ratio
(|dr/dt|/c)→ 0, dr′/dt′ becomes the Galilean dr/dt−v of Eq. (1.1b). Therefore, for the constant-velocity-v
Lorentz transformation, when dr/dt = 0, dr′/dt′ = −v, which inserted into Eq. (2.2f) yields,

γκ = λ. (2.2g)

Consequently, for the constant-velocity-v Lorentz transformation, Eq. (2.2f) can be rewritten without κ,

dr′/dt′ =
[
dr/dt+ (γ − 1)((dr/dt) · û)û− λv

]/[
λ(1− (σ/|v|)((dr/dt) · û))

]
, (2.3a)

which of course implies that,

|dr′/dt′|2λ2
(
1− (σ/|v|)((dr/dt) · û)

)2
=
∣∣dr/dt+ (γ − 1)((dr/dt) · û)û− λv

∣∣2. (2.3b)

The other property required of Lorentz transformations is that when |dr/dt| = c, |dr′/dt′| = c as well.
Inserting these equalities respectively into the expanded right side and left side of Eq. (2.3b) produces,
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λ2c2 − 2λ2c2(σ/|v|)((dr/dt) · û) + λ2c2(σ/|v|)2((dr/dt) · û)2

= (c2 + λ2|v|2)− 2λγ|v|((dr/dt) · û) + (γ2 − 1)((dr/dt) · û)2. (2.3c)

Because of the linear independence of distinct powers of ((dr/dt) · û), Eq. (2.3c) implies the three equations,

λ2 = 1
/(

1− |v/c|2
)
, σ = (γ/λ)|v/c|2 and λ2σ2 = (γ2 − 1)|v/c|2. (2.3d)

The insertion of the second equation of Eq. (2.3d) into its third equation allows us to conclude that,

γ2 = 1
/(

1− |v/c|2
)
= λ2 and σ = (γ/λ)|v/c|2. (2.3e)

which leaves the signs of γ, λ and σ undetermined. However, for the constant-velocity-v Lorentz transforma-
tion, when the ratio (|dr/dt|/c) → 0, dr′/dt′ becomes the Galilean dr/dt − v of Eq. (1.1b). Requiring that
of the Eq. (2.3a) expression for dr′/dt′ has the consequence that when c → ∞, γ → 1, λ → 1 and σ → 0.
Comparison of these c→∞ limits of γ, λ and σ with the Eq. (2.3e) results for γ2, λ2 and σ yields,

γ = 1
/√

1− |v/c|2 = λ and σ = |v/c|2. (2.3f)

Insertion of the results given by Eq. (2.3f) into Eq. (2.2g) yields that,

κ = 1. (2.4a)

Insertion into Eq. (2.2e) of the results for γ, λ, σ and κ given by Eqs. (2.3f) and (2.4a) yields that the
constant-velocity-v Lorentz transformation of time t and displacement r is,

t′ = γ(t− (|v/c|/c)(r · û)) and r′ = r + (γ − 1)(r · û)û− γvt, where γ
def
= 1

/√
1− |v/c|2, (2.4b)

which, when c→∞, becomes the Eq. (1.1a) constant-velocity-v Galilean transformation, as it must.
It will later on be easier to extract the widely applicable dimensionless matrix form of the Lorentz

transformation if the two equations of Eq. (2.4b) are made to have the same dimension. We multiply the

first equation of Eq. (2.4b) by c, and then conveniently define (x0)′
def
= ct′, x0

def
= ct and β

def
= |v/c| to produce,

(x0)′ = γ(x0 − β(r · û)) and r′ = r + (γ − 1)(r · û)û− γβx0û; β
def
= |v/c|, γ

def
= 1

/√
1− β2. (2.4c)

We next briefly return to the Galilean transformation, t′ = t and r′ = r− vt, to study its inverse,

the Galilean transformation, t′ = t and r′ = r− vt, is easily inverted to yield, t = t′ and r = r′ + vt′. (2.5)

Thus the inverse of the Galilean transformation has almost the same form as the Galilean transformation
itself except that v → −v. This property of the Galilean transformation, sometimes called relativistic
reciprocity, is a fundamental relationship of the two coordinate systems: they are equivalent except that an
observer at rest in the “moving” system attributes velocity −v to the “stationary” system. Since relativistic
reciprocity is a fundamental relationship of the two coordinate systems, it ought to hold as well for the
Lorentz transformation. We next undertake the cumbersome task of inverting the Lorentz transformation of
Eq. (2.4c), which is also displayed in Eq. (2.6a) below, to check whether relativistic reciprocity holds.

(x0)′ = γ(x0 − β(r · û)) and r′ = r + (γ − 1)(r · û)û− γβx0û; β
def
= |v/c|, γ

def
= 1

/√
1− β2. (2.6a)

The first equation of Eq. (2.6a), taken together with the the result of taking the dot product of the second
equation of Eq. (2.6a) with û, produces the following x0 ↔ (r · û) “mirror pair” of scalar equations,

(x0)′ = γ(x0 − β(r · û)) and (r′ · û) = γ((r · û)− βx0); β
def
= |v/c|, γ

def
= 1

/√
1− β2, (2.6b)

whose solution for x0 and (r · û) in terms of (x0)′ and (r′ · û) is the following x0 ↔ (r · û) “mirror pair”,

x0 = γ((x0)′ + β(r′ · û)) and (r · û) = γ((r′ · û) + β(x0)′); β
def
= |v/c|, γ

def
= 1

/√
1− β2. (2.6c)

The Eq. (2.6c) solution of Eq. (2.6b) is easily verified upon noting that γ2(1− β2) = 1. Also, as is generally
the case for Galilean and Lorentz transformations, r⊥ = r′⊥, which is apparent from the second equation of
Eq. (2.6a). Multiplying the second Eq. (2.6c) equation for (r · û) in terms of (r′ · û) and (x0)′ by û yields,

r‖ = γr′‖ + γβ(x0)′û, (2.6d)

which when added to r⊥ = r′⊥ = r′ − r′‖ produces,
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r = r′ + (γ − 1)r′‖ + γβ(x0)′û = r′ + (γ − 1)(r′ · û)û + γβ(x0)′û. (2.6e)

Combining the first Eq. (2.6c) equation for x0 in terms of (x0)′ and r′ with the Eq. (2.6e) result for r in
terms of r′ and (x0)′ produces the inverse of the Eq. (2.6a) Lorentz transformation,

x0 = γ((x0)′ + β(r′ · û)) and r = r′ + (γ − 1)(r′ · û)û + γβ(x0)′û; β
def
= |v/c|, γ

def
= 1

/√
1− β2. (2.6f)

We note that reversing the sign of û reverses of the sign of v = |v|û. The Eq. (2.6f) inverse of the Eq. (2.6a)
Lorentz transformation has almost the same form as the Eq. (2.6a) Lorentz transformation itself except that
û→ −û. Thus the Eq. (2.6a) Lorentz transformation indeed manifests relativistic reciprocity.

We next investigate time/spatial-coordinate forms which are left invariant by the Eq. (2.4b) time t and
displacement r Lorentz transformation. Since the Lorentz transformation preserves speed c, it necessarily
also preserves the space-time locus of the expanding spherical light surface; i.e., if |r|2 − c2t2 = 0, then
|r′|2 − c2(t′)2 = 0, or in terms of the variables x0 and r used in the Eq. (2.4c) Lorentz transformation, if
|r|2− (x0)2 = 0 then |r′|2− ((x0)′)2 = 0. But the Eq. (2.4c) Lorentz transformation goes well beyond merely
preserving the space-time locus of the expanding spherical light surface |r|2 − (x0)2 = 0; it in fact preserves
the indefinite quadratic form |r|2 − (x0)2 regardless of that form’s value,

|r′|2 − ((x0)′)2 = |r + (γ − 1)(r · û)û− γβx0û|2 − γ2(x0 − β(r · û))2 =

|r|2 − (x0)2γ2(1− β2)− 2γ(1 + (γ − 1)− γ)βx0(r · û) + ((γ − 1)2 + 2(γ − 1)− γ2β2)(r · û)2 =

|r|2 − (x0)2 + (γ2 − 1− γ2β2)(r · û)2 = |r|2 − (x0)2 + (γ2(1− β2)− 1)(r · û)2 = |r|2 − (x0)2. (2.7)

Constant-velocity-v Lorentz transformation applies not only to x0 and r, as in Eq. (2.4c), but as well
to energy and momentum, electromagnetic field components and many other physical entities. That widely
applicable form of the constant-velocity-v Lorentz transformation exists within Eq. (2.4c) as a dimensionless
4×4 matrix. To extract those sixteen dimensionless matrix elements from the Eq. (2.4c) x0 and r form of the
constant-velocity-v Lorentz transformation, we explicitly replace r′ by ((x1)′, (x2)′, (x3)′), r by (x1, x2, x3)
and û by (u1, u2, u3). The sixteen dimensionless matrix elements then are the coefficients of x0, x1, x2 and
x3 in the Eq. (2.4c) x0 and r Lorentz transformation form’s expressions for (x0)′, (x1)′, (x2)′ and (x3)′. For
example, the (x0)′ = γ(x0 − β(r · û))scalar part of the Eq. (2.4c) x0 and r Lorentz transformation form is
its expression for (x0)′, which is parsed as follows to extract the coefficients of x0, x1, x2 and x3,

(x0)′ = γ(x0 − β(r · û)) = (γ)x0 +
∑3
i=1(−γβui)xi = Λ00(β, û)x0 +

∑3
i=1 Λ0i(β, û)xi, (2.8a)

from which we read off the following four of the constant-velocity-v Lorentz-transformation’s sixteen dimen-
sionless matrix elements Λµν(β, û), µ, ν = 0, 1, 2, 3,

Λ00(β, û) = γ, Λ0i(β, û) = −γβui, i = 1, 2, 3. (2.8b)

The remaining r′ = r+(γ−1)(r · û)û−γβx0û vector part of the Eq. (2.4c) x0 and r Lorentz transformation
form encompasses in three-vector-shorthand notation its following expressions for (x1)′, (x2)′ and (x3)′,

(xi)′ = xi + (γ − 1)(r · û)ui − γβx0ui, i = 1, 2, 3, (2.8c)

which are parsed as follows to extract their coefficients of x0, x1, x2 and x3,

(xi)′ =
∑3
j=1

(
δij + (γ − 1)uiuj

)
xj + (−γβui)x0 =

∑3
j=1 Λij(β, û)xj + Λi0(β, û)x0, i = 1, 2, 3, (2.8d)

from which we read off the following twelve of the constant-velocity-v Lorentz-transformation’s sixteen di-
mensionless matrix elements Λµν(β, û), µ, ν = 0, 1, 2, 3,

Λij(β, û) =
(
δij + (γ − 1)(uiuj)

)
, i, j = 1, 2, 3, Λi0(β, û) = −γβui, i = 1, 2, 3. (2.8e)

Combining Eq. (2.8b) with Eq. (2.8e) provides the constant-velocity-v Lorentz-transformation’s sixteen di-
mensionless matrix elements Λµν(β, û), µ, ν = 0, 1, 2, 3,

Λ00(β, û) = γ, Λij(β, û) =
(
δij + (γ − 1)(uiuj)

)
, i, j = 1, 2, 3,

Λ0i(β, û) = −γβui & Λi0(β, û) = −γβui, i = 1, 2, 3. (2.9a)

It is apparent by inspection of Eq. (2.9a) that the Lorentz-transformation matrix Λµν(β, û) is symmetric,

Λµν(β, û) = Λνµ(β, û), µ, ν = 0, 1, 2, 3. (2.9b)
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It is also apparent by inspection of Eq. (2.9a) that the effect of reversing the sign of û is,

Λ00(β,−û) = γ = Λ00(β, û), Λij(β,−û) =
(
δij + (γ − 1)(uiuj)

)
= Λij(β, û), i, j = 1, 2, 3,

Λ0i(β,−û) = γβui = −Λ0i(β, û) & Λi0(β,−û) = γβui = −Λi0(β, û), i = 1, 2, 3. (2.9c)

The principle of relativistic reciprocity implies that reversing the sign of û inverts the Lorentz transformation,
so Λ(β,−û) = (Λ(β, û))−1. That fact can, of course, be confirmed by (rather tediously) verifying that,∑3

σ=0 Λµσ(β,−û) Λσν(β, û) = δµν for µ, ν = 0, 1, 2, 3. (2.9d)

It also follows, however, from the Lorentz transformation’s preservation of the indefinite quadratic form
|r|2 − (x0)2, which was demonstrated in Eq. (2.7). To show that, we begin by extracting a matrix relation
satisfied by Λ(β, û) from the Eq. (2.7) result |r′|2−((x0)′)2 = |r|2−(x0)2 written in vector/symmetric-matrix
format. The two quadratic forms |r|2 − (x0)2 and |r′|2 − ((x0)′)2 are written as follows in that format,

|r|2 − (x0)2 = −(x0)2 + (x1)2 + (x2)2 + (x3)2 =
∑3
µ=0

∑3
ν=0 x

µGµνxν = xTGx,

where G00 = −1, G11 = G22 = G33 = +1 and Gµν = 0 when µ 6= ν, and

|r′|2−((x0)′)2 =(x′)TGx′=(Λ(β, û)x)TG(Λ(β, û)x)=xT
(
ΛT(β, û)GΛ(β, û)

)
x=xT

(
Λ(β, û)GΛ(β, û)

)
x, (2.9e)

where the last equality reflects ΛT(β, û) = Λ(β, û), since Λ(β, û) is a symmetric matrix (see Eq. (2.9b)). The
Eq. (2.7) equality |r′|2 − ((x0)′)2 = |r|2 − (x0)2 in conjunction with Eq. (2.9e) yields the matrix relation,

Λ(β, û)GΛ(β, û) = G. (2.9f)

Since it is apparent from Eq. (2.9e) that G2 = I, multiplying both sides of Eq. (2.9f) by G yields,

GΛ(β, û)GΛ(β, û) = I, (2.9g)

which implies that the matrix GΛ(β, û)G is the inverse of Λ(β, û),

(Λ(β, û))−1 = GΛ(β, û)G. (2.9h)

Because Gµν = 0 when µ 6= ν, the matrix elements of GΛ(β, û)G have the relatively simple form,

(GΛ(β, û)G)µν = Gµµ
(
Λµν(β, û)

)
Gνν . (2.9i)

Since G00 = −1 and Gii = +1 for i = 1, 2, 3, Eqs. (2.9h), (2.9i) and (2.9c) yield that,(
(Λ(β, û))−1

)00
= Λ00(β, û) = Λ00(β,−û),

(
(Λ(β, û))−1

)ij
= Λij(β, û) = Λij(β,−û), i, j = 1, 2, 3,(

(Λ(β, û))−1
)0i

= −Λ0i(β, û) = Λ0i(β,−û) &
(
(Λ(β, û))−1

)i0
= −Λi0(β, û) = Λi0(β,−û), i = 1, 2, 3, (2.9j)

from which it follows by inspection that,

(Λ(β, û))−1 = Λ(β,−û), the principle of relativistic reciprocity. (2.9k)

In this tutorial we will need to Lorentz transform two key differential operators of the electromagnetic
field equations. The most fundamental differential operator of those equations is the space-time gradient,

((∂/∂x0),∇r) = (∂/∂xµ), (2.10a)

which is vital for expressing local charge conservation, and underlies the d’Alembertian differential operator,(
∂2/∂(x0)2−∇2

r

)
=−

∑3
µ=0

∑3
ν=0(∂/∂xµ)Gµν(∂/∂xν), the differential core of basic wave dynamics. (2.10b)

To make our notation more compact, we henceforth assume repeated Greek indices are summed over. We

will also prefer using ηµν
def
= −Gµν to using Gµν . The first part of Eq. (2.10b) is therefore modified to read,(

∂2/∂(x0)2 −∇2
r

)
= −(∂/∂xµ)Gµν(∂/∂xν) = (∂/∂xµ)ηµν(∂/∂xν). (2.10c)

Lorentz transformations of the space-time gradient (∂/∂xµ) are (∂/∂(xµ)′), where (xµ)′ = Λµν(β, û)xν .
We wish to express them as linear combinations of the untransformed partials, i.e., (∂/∂(xµ)′) = Cµν(∂/∂xν).
Since (∂/∂(xµ)′) is a simple first-order differential operator, the Cµν follow from the appropriate application
of the chain rule of the calculus, which is,

(∂/∂(xµ)′) = (∂xν/∂(xµ)′)(∂/∂xν). (2.11a)
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To evaluate the Cµν = (∂xν/∂(xµ)′) of Eq. (2.11a), we need the untransformed xν in terms of the transformed
(xµ)′, That needed relation is formally given by, xν = ((Λ(β, û))−1)νµ(xµ)′, and relativistic reciprocity
implies that (Λ(β, û))−1 = Λ(β,−û) (see Eq. (2.9k)), so xν = Λνµ(β,−û)(xµ)′, which implies that,

(∂xν/∂(xµ)′) = Λνµ(β,−û) = Λµν(β,−û), (2.11b)

where the last equality in Eq. (2.11b) reflects the symmetry of Λνµ(β,−û) in its two indices (see Eq. (2.9c)).
Inserting the Eq. (2.11b) result (∂xν/∂(xµ)′) = Λµν(β,−û) into Eq. (2.11a) yields,

(∂/∂(xµ)′) = Λµν(β,−û)(∂/∂xν), (2.11c)

which when formally compared to the familiar Lorentz transformation of xµ, (xµ)′ = Λµν(β, û)xν , exhibits
only one notable departure, namely the replacement of Λ(β, û) by its inverse (Λ(β, û))−1 = Λ(β,−û).

To evaluate the Lorentz transformation of the d’Alembertian operator (∂/∂xµ)ηµν(∂/∂xν), which is
(∂/∂(xµ)′)ηµν(∂/∂(xν)′), where (xµ)′ = Λµκ(β, û)xκ and (xν)′ = Λνλ(β, û)xλ, we use Eq. (2.11c) both to
replace (∂/∂(xµ)′) by Λµα(β,−û)(∂/∂xα) and to replace (∂/∂(xν)′) by Λνχ(β,−û)(∂/∂xχ), with the result,

(∂/∂(xµ)′)ηµν(∂/∂(xν)′) = Λµα(β,−û)(∂/∂xα)ηµνΛνχ(β,−û)(∂/∂xχ) =

(∂/∂xα)Λαµ(β,−û)ηµνΛνχ(β,−û)(∂/∂xχ), (2.12a)

where the last expression follows from reversing the order of the commuting factors Λµα(β,−û) and (∂/∂xα),
and then applying the Eq. (2.9c) index symmetry of Λµα(β,−û). Eq. (2.9f) implies that, since G = −η,
Λ(β,−û) ηΛ(β,−û) = η, which, when its indices are displayed, reads, Λαµ(β,−û)ηµνΛνχ(β,−û) = ηαχ,
which in turn implies that (∂/∂xα)Λαµ(β,−û)ηµνΛνχ(β,−û)(∂/∂xχ) = (∂/∂xα)ηαχ(∂/∂xχ). Replacing the
last expression of Eq. (2.12a) by the right side of this just-given equality yields,

(∂/∂(xµ)′)ηµν(∂/∂(xν)′) = (∂/∂xα)ηαχ(∂/∂xχ) = (∂/∂xµ)ηµν(∂/∂xν) =
(
∂2/∂(x0)2 −∇2

r

)
, (2.12b)

so the d’Alembertian operator (∂/∂xµ)ηµν(∂/∂xν) =
(
∂2/∂(x0)2−∇2

r

)
is Lorentz-transformation invariant,

just as the Eq. (2.7) indefinite quadratic form −xµηµνxν =
(
|r|2−(x0)2

)
is Lorentz-transformation invariant.

3. Setting static electromagnetic fields into motion at low-speed constant velocity

In this tutorial we are interested in conceivable educational-physics electromagnetic lab experiments which
violate Newtonian precepts. Galilean constant-velocity transformations leave accelerations invariant, so
constant-velocity transformations can’t produce additional forces in Newtonian physics. Nevertheless, a
moving, but not a stationary, charge is accompanied by a moving magnetic field, and a moving, but not a
stationary, dipole magnet is accompanied by a moving electric field.

We shall obtain the electromagnetic fields of point charges and point magnetic dipoles which are moving
at low-speed constant velocity by applying low-speed Lorentz transformation to their at-rest static electro-
magnetic fields. We haven’t so far discussed any of the details of Lorentz transformation of electromagnetic
fields or potentials; those details of course must be compatible with the electromagnetic equations which the
electromagnetic fields or potentials satisfy.

We begin with the four Laws which govern the electric field E and the magnetic field B,

Coulomb’s Law: ∇r ·E = 4πd0, Faraday’s Law: ∇r ×E + ∂B/∂x0 = 0,

Gauss’ Law: ∇r ·B = 0 and the Biot-Savart/Maxwell Law: ∇r ×B− ∂E/∂x0 = 4πd, (3.1)

where d0
def
= ρ, the charge density, d

def
= (j/c), the current density divided by c, and, of course, x0

def
= ct.

When the magnetic field B and electric field E are attributed as follows to a four-potential Aµ = (A0,A),

B = ∇r ×A and E = −∇rA
0 − ∂A/∂x0, (3.2)

then Gauss’ Law and Faraday’s Law are satisfied. Coulomb’s Law and the Biot-Savart/Maxwell Law become,

−∇2
rA

0 − ∂(∇r ·A)/∂x0 = 4πd0 and ∇r(∇r ·A)−∇2
rA +∇r(∂A

0/∂x0) + ∂2A/∂(x0)2 = 4πd. (3.3a)

At this point it is important to take note of the fact that Eq. (3.2) doesn’t determine Aµ = (A0,A) uniquely.
It is readily verified that, given an arbitrary scalar function S(x0, r) (which has the appropriate dimension),
then if (A0,A) satisfies Eq. (3.2), so does (A0−∂S/∂x0, A+∇rS), the “gauge freedom” in (A0,A). We take
advantage of this scalar-function freedom in (A0,A) to simplify Eq. (3.3a) by requiring (A0,A) to satisfy the
scalar-equation “Lorentz condition” ∇r ·A = −∂A0/∂x0. Eq. (3.3a) then reads,
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∂2A0/∂(x0)2 −∇2
rA

0 = 4πd0 and ∂2A/∂(x0)2 −∇2
rA = 4πd. (3.3b)

The d’Alembertian
(
∂2/∂(x0)2−∇2

r

)
=
(
(∂/∂xα)ηαχ(∂/∂xχ)

)
acts on both parts of the four-potential Aµ =

(A0,A) in these two equations, so we also combine d0
def
= ρ and d

def
= (j/c) into dµ

def
= (d0, d) = (ρ, (j/c)), the

charge density/current. The Lorentz condition ∇r ·A = −∂A0/∂x0 reads (∂/∂xµ)Aµ(xσ) = 0 in terms of
the space-time gradient (∂/∂xµ). Therefore the four-potential Aµ equations of electromagnetic theory are,(

(∂/∂xα)ηαχ(∂/∂xχ)
)
Aµ(xσ) = 4πdµ(xσ) and (∂/∂xµ)Aµ(xσ) = 0. (3.4)

If Eq. (3.4) has been solved for Aµ = (A0,A), then the E and B fields can be obtained from Eq. (3.2).
Applying the space-time gradient (∂/∂xµ) to both sides of the first equation in Eq. (3.4) and summing

over the index µ produces zero on the left side because of the second equation in Eq. (3.4), i.e., because of
the Lorentz condition. Therefore this procedure must produce zero on the right side as well, namely,

(∂/∂xµ)dµ(xσ) = 0. (3.5a)

Eq. (3.5a) is called the charge density/current “equation of continuity”; it enforces local charge conservation.
It is physically apparent that any constant-velocity Lorentz transformation (dµ)′(xσ) of a charge den-

sity/current dµ(xσ) is itself a charge density/current. As such, any constant-velocity Lorentz transformation
(dµ)′(xσ) of a charge density/current dµ(xσ) must also satisfy the equation of continuity in order to enforce
local charge conservation, i.e.,

(∂/∂xµ) (dµ)′(xσ) = 0. (3.5b)

It would furthermore be expected of a Lorentz transformation (dµ)′ of a charge density/current dµ that
(dµ)′ is a homogeneous linear transformation of the components of dµ evaluated at the Lorentz-transformed
coordinates, i.e.,

(dµ)′(xσ) = Ωµνdν((xσ)′), where (xσ)′ = Λστ (β, û)xτ . (3.5c)

Putting Eq. (3.5c) into Eq. (3.5b) produces,

(∂/∂xµ)(Ωµνdν((xσ)′)) = 0, where (xσ)′ = Λστ (β, û)xτ . (3.5d)

The question now is, which matrix Ωµνensures that Eq. (3.5d) holds, given that the charge density/current
dµ(xσ) is such that Eq. (3.5a) holds? A radical shortcut to answering this question in fact exists, namely
the systematic replacement of all occurrences of the independent variable xσ in Eq. (3.5a) by its Lorentz-
transformed counterpart (xσ)′ = Λστ (β, û)xτ , which changes Eq. (3.5a) to,

(∂/∂(xν)′)dν((xσ)′) = 0, where (xσ)′ = Λστ (β, û)xτ . (3.5e)

Applying Eq. (2.11c), we replace the differential operator (∂/∂(xν)′) in Eq. (3.5e) by Λνµ(β,−û)(∂/∂xµ)
and then reverse the order of the first two factors to obtain,

(∂/∂xµ)(Λνµ(β,−û) dν((xσ)′)) = 0, where (xσ)′ = Λστ (β, û)xτ . (3.5f)

Comparison of Eq. (3.5d) to the result obtained in Eq. (3.5f) shows that,

Ωµν = Λνµ(β,−û) = Λµν(β,−û), (3.5g)

where Λνµ(β,−û) is, of course, symmetric in its two indices (see Eq. (2.9c)).
We now insert the Eq. (3.5g) result for Ωµν into Eq. (3.5c) to obtain the Lorentz transformation (dµ)′(xσ)

of the charge density/current dµ(xσ),

(dµ)′(xσ) = Λµν(β,−û) dν((xσ)′), where (xσ)′ = Λστ (β, û)xτ . (3.6)

In Eq. (3.4) the four-potential Aµ(xσ) is linked to its charge density/current source dµ(xσ) by only the
d’Alembertian operator ((∂/∂xα)ηαχ(∂/∂xχ)), which is Lorentz-transformation invariant (see Eq. (2.12b)).
Therefore the Lorentz-transformation characteristics of Aµ(xσ) are identical to those of dµ(xσ),

(Aµ)′(xσ) = Λµν(β,−û)Aν((xσ)′), where (xσ)′ = Λστ (β, û)xτ . (3.7)

A consequence of Eq. (3.7) is that (Aµ)′ satisfies the Lorentz condition, i.e., (∂/∂xµ) (Aµ)′(xσ) = 0, just
as (dµ)′ satisfies the equation of continuity, (∂/∂xµ) (dµ)′(xσ) = 0. Therefore the Eq. (3.4) electromagnetic
four-potential equations are form-invariant when Aµ and dµ are Lorentz-transformed to (Aµ)′ and (dµ)′.
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We next write the Eq. (3.7) Lorentz transformation of Aµ(xσ) = (A0(x0, r), A(x0, r)) in the A0 and A
form that is analogous to the x0 and r form of the Lorentz transformation of xµ presented in Eq. (2.4c),

(A0)′(x0, r) = γ(A0((x0)′, r′) + β(A((x0)′, r′) · û)) and

A′(x0, r) = A((x0)′, r′) + (γ − 1)(A((x0)′, r′) · û)û + γβA0((x0)′, r′)û, where

(x0)′ = γ(x0 − β(r · û)) and r′ = r + (γ − 1)(r · û)û− γβx0û; β
def
= |v/c|, γ def

= 1
/√

1− β2. (3.8)

In this tutorial we will Lorentz-transform only static scalar or vector potentials produced by at-rest time-
independent point sources, so there will be no dependence on the variable (x0)′, which we therefore drop. We
will also Lorentz-transform these static potentials to only low speeds, i.e., β � 1, so we drop effects of order
β2 or higher, which entails setting γ = 1

/√
1− β2 to unity. For these special cases, Eq. (3.8) becomes,

(A0)′(x0, r) = A0(r′) + β(A(r′) · û) + O(β2) and A′(x0, r) = A(r′) + βA0(r′)û + O(β2), where

r′ = r− βx0û + O(β2) = r− vt+ O(β2); β
def
= |v/c|. (3.9)

Rewritten in terms of the standard variables (v/c) = βû and t = (x0/c), Eq. (3.9) becomes,

(A0)′(r, t) = A0(r− vt) + ((v/c) ·A(r− vt)) + O(|v/c|2) and

A′(r, t) = A(r− vt) + (v/c)A0(r− vt) + O(|v/c|2). (3.10)

The Eq. (3.10) |v/c| � 1 Lorentz-transformed static vector and scalar potentials also yield the corresponding
|v/c| � 1 Lorentz-transformed static magnetic and electric fields by applying Eq. (3.2). Thus the |v/c| � 1
Lorentz-transformed static magnetic field B′(r, t) = ∇r ×A′(r, t), where A′(r, t) is given by Eq. (3.10),

B′(r, t) = ∇r ×A′(r, t) = ∇r ×
(
A(r− vt) + (v/c)A0(r− vt)

)
+ O(|v/c|2) =

B(r− vt)− (v/c)× (∇rA
0(r− vt)) + O(|v/c|2) = B(r− vt) + (v/c)×E(r− vt)) + O(|v/c|2). (3.11a)

Likewise, applying Eq. (3.2) yields that the |v/c| � 1 Lorentz-transformed static electric field E′(r, t) =
−∇r(A

0)′(r, t)− (1/c)(∂/∂t)A′(r, t), where (A0)′(r, t) and A′(r, t) are given by Eq. (3.10),

E′(r, t) = −∇r(A
0)′(r, t)− (1/c)(∂/∂t)A′(r, t) =

−∇r

(
A0(r− vt) + ((v/c) ·A(r− vt))

)
− (1/c)(∂/∂t)

(
A(r− vt) + (v/c)A0(r− vt)

)
+ O(|v/c|2) =

E(r− vt)−∇r

(
(v/c) ·A(r− vt)

)
+ ((v/c) · ∇r)

(
A(r− vt) + (v/c)A0(r− vt)

)
+ O(|v/c|2) =

E(r− vt)− (v/c)× (∇r ×A(r− vt)) + O(|v/c|2) = E(r− vt)− (v/c)×B(r− vt) + O(|v/c|2), (3.11b)

where the term ((v/c) · ∇r)
(
(v/c)A0(r−vt)

)
, which is of order |v/c|2, was dropped in the next-to-last step.

In précis, Eqs. (3.11) show that the |v/c| � 1 Lorentz-transformed static magnetic and electric fields are,

B′(r, t) = B(r− vt) + (v/c)×E(r− vt) + O(|v/c|2),

E′(r, t) = E(r− vt)− (v/c)×B(r− vt) + O(|v/c|2). (3.12)

For the at-rest point charge of charge q, B(r) = 0 and E(r) = q(r/|r|3). So when the point charge has
low-speed constant velocity v, |v/c| � 1, Eq. (3.12) implies that,

B′(r, t) = q(((v/c)× r)/|r− vt|3) + O(|v/c|2),

E′(r, t) = q((r− vt)/|r− vt|3) + O(|v/c|2). (3.13)

The Eq. (3.13) magnetic field B′(r, t), which vanishes when v = 0 (in contradiction to Newtonian precepts),
is azimuthal, so arranging the trajectory of the point charge to run along a magnetic north-south line should
maximize the deflection of the needle of a magnetic compass placed immediately above that point charge’s
trajectory. The maximum magnitude of the Eq. (3.13) magnetic field at the location of the compass is
(|q||v/c|/d2⊥), where d⊥ is the perpendicular distance from the compass to the point charge’s trajectory.

For the at-rest point magnetic dipole of dipole moment m, E(r) = 0 and B(r) = ((3r(r·m)−m|r|2)/|r|5).
So when the point magnetic dipole has low-speed constant velocity v, |v/c| � 1, Eq. (3.12) implies that,

E′(r, t) = ((−3((v/c)× r)((r− vt) ·m) + ((v/c)×m)|r− vt|2)/|r− vt|5) + O(|v/c|2),

B′(r, t) = ((3(r− vt)((r− vt) ·m)−m|r− vt|2)/|r− vt|5) + O(|v/c|2). (3.14)
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The Eq. (3.14) electric field E′(r, t), which vanishes when v = 0 (in contradiction to Newtonian precepts),
is azimuthal when v is parallel to m. In that case the Eq. (3.14) E′(r, t) is,

E′v‖m(r, t) = ((−3((v/c)× r)((r− vt) ·m))/|r− vt|5) + O(|v/c|2), where m = (|m|v/|v|). (3.15)

The Eq. (3.15) azimuthal electric field E′v‖m(r, t) can transiently propel the invisible microscopic free elec-

trons in a metal wire coil through whose center the dipole passes (Faraday), or it can transiently deflect a
macroscopic charged object which hangs by a thread immediately above the dipole’s horizontal trajectory.
Because of the factor ((r−vt)·m) in Eq. (3.15), where m = (|m|v/|v|), the Eq. (3.15) azimuthal electric field
at r vanishes at time t0(r) = ((r ·v)/|v|2), and its direction thereafter is reversed. The maximum magnitude
at r of the Eq. (3.15) azimuthal electric field occurs twice, at the two times t∓(r) = t0(r) ∓ (d⊥(r)/(2|v|)),
where d⊥(r)

def
= |r − (v(v · r)/|v|2)| is the perpendicular distance from r to the point magnetic dipole’s

trajectory. At its second maximum magnitude at r, the Eq. (3.15) azimuthal electric field’s direction is
reversed. The value of the Eq. (3.15) azimuthal electric field’s two equal maximum magnitudes at r, which
have opposite field directions and time separation ∆t(r) = (d⊥(r)/|v|), is (.85865|m||v/c|/(d⊥(r))3).
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