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Abstract

Observations of astronomical objects include vectors that are transverse, perpendicular to the direction from the objects to us. The 
Hub Test judges how well transverse vectors on the sky align by calculating their mutual alignment angle to each point on the sky. 
Then the most focussed and least focussed values constitute two measures of the collective alignment of these transverse vectors.  
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here has 294 sets of probability distributions with the number of sources ranging from 9 to 900, 14 values total, and the nominal 
sample radii ranging from 0.14° to 64°, 21 values total. We apply the Library to the problem of estimating the significance of the 
values obtained by the two Hub Test correlation measures. For a given experimental sample, the Library can be used either by an 
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1. Introduction

Given a set of transverse vectors on the sky, one may ask if their directions are correlated. Applications include the polarization 
direction of electromagnetic radiation and the direction of asymmetries such as jets. The Hub Test of alignment extends the transverse 
directions, making Great Circle geodesics on the Celestial Sphere. The transverse directions are perfectly aligned if they intersect at 
some point H on the sphere. The directions are well-aligned when they converge in a small area near some point Hmin . The Hub Test 

can find correlations for samples with hubs Hmin that are near the sources as well as the distant Hubs that other alignment tests would 

also detect.
The Hub Test differs from other tests that evaluate the correlations of transverse vectors dispersed over the Celestial Sphere. The 

notion of alignment is different. The idea that transverse vectors can align with a point on the sphere, focussed as in Fig. 3, differs 
from the requirement that transverse vectors align because they point in the same direction. ‘Pointing in the same direction’ means 
having the same position angle, parallel. Being parallel is not required with the Hub Test when, as in Fig. 3, the transverse vectors 
focus on a nearby point. The `S’ and `Z’ tests, and similar tests, are used to find alignments by comparing polarization position 
angles. Comparing position angles directly at different points on the curved surface of a sphere is complicated by parallel transfer. 
Such complications have been faced and resolved and the `S’ and `Z’ tests are well documented and reliably detect that type of 
alignment. Refs. 1,2,3.

The basic quantity that measures the convergence of the Great Circles is a function of position on the Celestial Sphere, denoted  
η(H ).  The function η(H ) is an acute angle defined at all points of the Celestial Sphere, except at the sources.  The smallest alignment 

angle  ηmin
obs and the largest avoidance angle  ηmax

obs  provide two independent measures of the correlation of the set of transverse 

vectors. Given a sample, its alignment correlations are determined by the values of ηmin
obs and  ηmax

obs for the sample.

By definition, the significance of  the smallest alignment angle  ηmin
obs is the likelihood that random transverse directions would 

deliver an equal or smaller value ηmin
random  than ηmin

obs ,  i.e. better ηmin
random <=  ηmin

obs  than the observed value. The significance is 

also called the “p-value”.
The most direct process of determining significance is appropriately called here the ‘direct’ method, “Direct Method A”. For the 

given sample, replace the observed transverse vectors with randomly directed vectors and duplicate the calculations to find the 

smallest alignment angles ηmin
random. Repeat many times to get a distribution of values that can be fit by a formula that approximates 

the probability distribution of  ηmin
random from the random runs of data.  Assuming that the fitting formula is accurate along the ‘tail’ 

of the distribution, we can estimate the significance by integrating the probability distribution to find the likelihood that random 

results ηmin
random have values below the smallest observed alignment angle  ηmin

obs. Direct Method A is the most reliable, but least 

convenient, of the three methods considered in this article. 
To avoid the inconvenience of Direct Method A, we present two alternatives. In separate software, to be presented in an up-

coming article, we construct random data for simulated samples that we call a “Library”. The probability distributions for random run 

results  ηmin
random are calculated by applying Direct Method A to the simulated samples. The process, discussed in Sec. 4. gives us a 

Library, a set of probability distributions. The distributions can be reconstructed by two-parameter fitting functions, two-parameters 

just like Gaussians. We record the location of the distribution’s peak, η0
min , and its half-width σmin. 

We identify the simulated sample by the number of sources N  and the root-mean-square radius ρRMS of the sample region. For 

each case of (N, ρRMS) we have the two parameters  η0
min and σmin that describe the probability distribution of the   ηmin

random . And 

two more, η0
max and σmax , for the avoidance distribution of the    ηmax

random .

Thus, the Library consists of the two properties N and ρRMS of the samples that we consider relevant and the four parameters, 

η0
min, σmin, η0

max and σmax, which are needed to replicate the probability distributions of the two metrics of correlation  ηmin
random and  

ηmax
random. The Library also includes the standard errors for these parameters, so that estimates of the accuracy of the process can be 

made. Some vestigial, irrelevant quantities are also collected in the record for each case of  (N, ρRMS). 
Once the Library is uploaded, an interpolation determines the probability distribution required for an observed sample whose 

properties N and ρRMS are known. This  method of estimating significance is termed “Interpolation Method B”. Method B is 
presented in Sec. 5 just after the Library is described. 

Formula Method C finds functions that fit the Library data, the peak η0
min and half-width σmin, as well as the avoidance distribu-

tion parameters for the other measure of correlation, ηmax
obs. The functions η0

min and σmin depend on an observed sample’s number of 

sources N and its root-mean-square radius ρRMS. Formula Method C is discussed in Sec. 6.

Once values of the two parameters  η0
min and σmin are determined for an observed sample, the probability distribution can be 

constructed and integrated to find the chance that random runs have smaller values of ηmin
random than the observed sample’s ηmin

obs. 
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We have previously studied three observed samples whose significances were estimated with Direct Method A, the best, but 
least convenient method. The papers are accessible, already appearing in the on-line non-refereed literature, viXra and ResearchGate. 
Two samples have 27 and 13 QSO radio sources and one sample has 99 stars from our Galaxy  with polarized visible starlight; see 
Refs. 4,5,6. 

In Sec. 7 of this article, for comparison, the significances of the three samples are determined with Interpolation Method B and 
Formula Method C. Version 1 of the Library, Interpolation Method B and/or Formula Method C, has been applied to two catalogs, 
one of polarized starlight and one of radio QSOs, Refs. 7,8. These are examples of how the Hub Test can assist in identifying 
interesting samples for detailed study when confronted with enormous datasets.  

Concluding remarks appear in Sec. 8. One hopes that Methods B and C make the application of the Hub Test more convenient 
by offering alternative options for determining the significance of correlation results.

 
 

2. The Hub Test 

The Hub Test, Ref. 9, is based on the alignment of transverse directions with directions toward other points on the Celestial 
Sphere. In Fig. 1, the “alignment angle” η  is the acute angle η between two great circles at S,  0° ≤  η  ≤  90° . The alignment angle η 
measures how well the polarization direction  vψ matches the direction vH  toward the point H.  Perfect alignment occurs when η  =  0° 

and the two great circles overlap. Perpendicular great circles, η   =  90°, indicates maximum “avoidance” of the polarization direction 
vψ with the point H on the sphere. The halfway value, η   =  45°,  favors neither alignment nor avoidance.

N

E

Source S

vψ

vH

ψ

η

Figure 1: The Celestial sphere is pictured on the left and on the right is the plane tangent to the sphere at the source S. The linear 
polarization direction  vψ lies in the tangent plane and determines the purple great circle on the sphere. A point H on the sphere 

together with the point S determine a second great circle, the blue circle drawn on the sphere. Clearly, H and S must be distinct in 
order to determine a great circle. The angle η measures the alignment of the polarization direction ψ with the point H. 

With N sources Si, i  =  1, ..., N, there are N alignment angles ηiH at each point H . One can calculate an average alignment angle 

η at H,

η(H)  =  1

N
∑i=1

N ηiH  , (1) 

where 
cos( ηiH  ) = | vψ.vH  |  , (2)

cos( ηiH  ) = | 
cosδS cosψ sinδH + cosδH sin(αH-αS) sinψ - cos(αH-αS) cosψ sinδS

1 - cos(αH-αS) cosδH cosδS + sinδH sinδS 
2

| , (3)  
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where α and δ are the longitude and latitude of the ith source S and the point H. Each angle ηiH is taken to be the acute angle solving 

(2) or (3). Then the average alignment angle η(H) at the point H must also be acute. 

The alignment angle η(H) is a function of position H on the sphere. See Figs. 2 and 3. It is symmetric across diameters,  η(H)  =  

η(-H), because H and -H lie on the same great circle through each S.  The points opposite S and H are located at (α,δ,ψ)  →  (α ± π, -δ, 

π - ψ). Substituting into the formula on the right in Eq. (3), and simplifying, shows that each angle ηiH is invariant when S  moves to 

-S or when H moves to -H. It follows that the sum in Eq. (1) and the alignment angle function η(H) are invariant across diameters as 

well.  
For random polarization directions, the average  η(H) should be near 45°, since each alignment angle ηiH  is acute, 0° ≤ ηiH  ≤ 90°, 

and random polarization directions should not favor large values nor small values of ηiH , and, therefore, average to about 45°. Since 

the sum in Eq. (1) on the right is then a sum over random angles ηiH  scattered above and below 45°, by Random Walk theory, the sum 

of (ηiH  - 45°) goes like N1/2. So η(H) should differ from 45° by an amount proportional to N-1/2. Therefore as N grows larger for 

randomly directed samples, the average  η(H) should approach nearer to 45°. This is confirmed by the Library, see Figs. 8, A1, A3.

Points H where the average alignment angle  η(H)  is smaller than 45°, the great circles tend to converge and where  the angle 

η(H)  is larger than 45°, the great circles can be said to diverge. The extremes of the function  η(H)  measure extreme convergence and 

extreme divergence of the great circles determined by the polarization directions. 
In this article and notebook, we often use “min” to label the smallest alignment angle ηmin, the minimum value of the function 

η(H), Eq. (1). We have  ηmin  =  η(±Hmin) ≤  η(H), for all H.  The associated points on the Celestial Sphere are the “alignment hubs” 

Hmin and -Hmin. Thus “min” is associated with convergence of the polarization directions. For divergence, the “avoidance hubs”  

Hmax and -Hmax locate places where the polarization directions most avoid, as indicated by the largest alignment angle ηmax, the 

maximum value of the function η(H). We have  ηmax  =  η(±Hmax) ≥  η(H), for all H. Thus, we very often label an avoidance related 

quantity with “max”.

N

Equatorial Coordinate System

Hmax Hmin

Hmin Hmax

η(H), °

13
19
25
31
37
43
49
55
61

Figure 2: For the sample of 13 QSOs in Ref. 5, the alignment angle function η(H) mapped on the Celestial Sphere (Aitoff plot, 

centered on (α,δ)  =  (180°,0) , East to the right). The QSOs are shaded green . The largest avoidance angle, ηmin  =  62.7°, is located 

at the hubs Hmax and  -Hmax . The smallest alignment angle, ηmin =  10.86°, is located at the hubs Hmin and -Hmin, where the polariza-

tion directions converge best. One of the two alignment hubs Hmin is located very close to the QSOs. 
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Figure 3: The region near the QSOs in Fig. 2. The QSOs are located at the green dots. The short black lines through the QSOs 
indicate the polarization directions. Measuring polarization directions ψ clockwise from North toward East, one sees that the angles ψ 
range from more than ψ  =  90° for the northern-most QSOs to 45° or so for the southerly QSOs. Thus, the QSOs display parallax: all 
are in the general direction of the alignment hub Hmin, but their directions depend on where they are located.

3. Significance, Direct Method A 

Once a measure of alignment is made, it is important to judge its significance. The significance of the smallest alignment angle 
ηmin is defined as the likelihood that randomly directed polarization vectors would produce a smaller value of  ηmin . By this defini-

tion, one way to determine significance is to repeat the process of making Great Circles from random polarization directions, 
calculating the alignment function η(H), and finding ηmin, all for randomly directed vectors. Each completion makes a “random run”.

The most reliable method of determining significance that we consider is called “Direct Method A”. One  generates many 
random runs with randomly directed transverse vectors assigned to the sources, replacing the observed polarization directions. A 
histogram of the random-based results  for ηmin is then approximated by a suitable fitting function. Aside from a scale factor that 

normalizes the distribution, the fitting function of the histogram is the probability distribution of the random results ηmin. Having 

found a function that approximates the probability distribution, one calculates the likelihood that random runs return a smaller value 

than the observed ηmin
obs and that is the significance of  ηmin

obs. 

One of the samples we discuss here has 27 QSOs and has been treated elsewhere, Ref. 4. The significances of ηmin and ηmax for 

the 27 QSO sample were found by generating 10,000 random runs with Direct Method A. The histograms are displayed in Fig. 4.  
The histogram for the smallest alignment angle  ηmin on the left in Fig. 4 and the histogram on the right for the largest avoidance angle 

ηmax are fit by functions proportional to the probability distributions.

There is much in common between convergence and divergence, ηmin and ηmax, both are extremes of the alignment angle 

function η(H). For brevity and because mutual alignment is of central interest in the literature, convergence is emphasized in this part, 

Part I the Article. Both are treated equally in Part II the Appendix.
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Figure 4: Direct Method A applied to a sample of 27 QSOs, Ref. 4. Histograms for both the smallest alignment angle ηmin and the 

largest avoidance angle ηmax are displayed. Adding the heights of the bars in a histogram yields the total number of random runs, here  

Σ ΔR  =  R  =  10,000 runs. The height ΔR of each bar is the number of runs with results in the indicated bin, so the fraction ΔR/R is 
the probability that a random run value of  ηmax lands in the bin. Once normalized, the solid curve is the probability distribution 

obtained by fitting the fractions ΔR/R with Eq. (6).  The blue and red arrows locate the values determined with the observed polariza-
tion directions. Very few random runs do better than the observed data, so the observed polarization directions are very significantly 
correlated, both for convergence and for divergence. 

4. A Library of Random Run Results

One way to avoid generating and analyzing thousands of randomly directed samples is to generate and analyze thousands of 
artificially created simulated samples beforehand and collect parameters sufficient to estimate probability distributions. With a 
sufficiently wide range of samples, the parameters for a particular observed sample can be found by interpolation. The collection of 
parameters can be called a “Library”. The process is called “Interpolation Method B”.

To begin with, we must create a set of samples to analyze. An article devoted to the construction is expected to be available 
soon. We arrange the sources in square arrays, so that they are spread out uniformly over the region. This forces the number of 
sources N to be a perfect square.  Currently, the Library has fourteen values of N ranging from N  =  9  to N  =  900, in detail:

 N  =  9, 16, 25, 36, 49, 64, 81, 100, 121, 225, 256, 324, 625, 900  . (4)
 

It is convenient to pretend that the square samples can be approximated as circular regions with a “radius”.  Thus, to this end, we 
build the square arrays using a nominal radius, “ρNominal”. The size of each square is determined by averaging two square arrays, a 
large square with the nominal circle inscribed and a smaller square that has vertices on the nominal circle. The side of the square 
array for the simulated sample is the average of the inscribed and superscribed squares. We choose values for the radii ρNominal and 
construct the square arrays of samples. As of this writing,

 ρNominal  = 1

7
°, 1

6
°, 1

5
°, 1

4
°, 1

3
°, 1

2
° , 1°, 3

2
°, 2°, 3°, 4°, 6°, 8°, 10°, 15°, 16°, 24°, 32°, 42°, 52°, 64°,   (5)

 
twenty one values in total. 

For calculations and comparing different samples, a suitable measure of the sample’s size is the root-mean-square radius ρRMS. 
The RMS radius is a well-recognized, often employed, measure of the effective size of a region containing sources. For large regions, 
there can be a problem due to the symmetry of η in Fig. 1 across a diameter. By Eq. (3), a source S located at (α,δ,ψ), with longitude 

α, latitude δ,  polarization direction ψ, has the same alignment angle  ηiH with point H as the diametrically oppose source -S at (α + 

180°, -δ, π-ψ). When S is beyond 90° from the sample’s center, the virtual source at -S is closer to the sample center than 90° and the 
root-mean-square radius ρRMS should be instead calculated with -S. Therefore, in constructing simulated samples for the Library, we 
should keep all sources in the square arrays within 90° of the sample’s center point on the Celestial Sphere. Well, we should, but we 
don’t. Some of the most far flung sources for ρNominal  =  64° are a couple of degrees beyond 90°. We ignore this discrepancy.

For observed data, the use of the Library is complicated by this problem of calculating ρRMS for an observed sample that 
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extends more than 90° from the sample’s center on the Celestial Sphere.  For example, one might want to apply the Library methods 
to a whole sky sample. In such cases the sources should be gathered  into one hemisphere by creating equivalent, though virtual,  
sources. If an actual source S is more than 90° from the sample’s center, replace the longitude, latitude and polarization directions 
(α,δ,ψ) for a virtual equivalent source by (α ± π, -δ, π-ψ), the corresponding values on the opposite point -S on the Celestial Sphere. 

This is not necessary with Direct Method A, because Direct Method A does not use the Library and the root-mean-square radius 
ρRMS is not needed with Direct Method A. But, Interpolation Method B and Formula Method C need a value of ρRMS to compare 
with the Library data. Moving sources to  a single hemisphere may be necessary to obtain good results with Methods B and C.

For the Library, we calculate the RMS radius of the square arrays that we construct for the Library. The RMS radii ρRMS are 
then used in calculations. However, we organize the samples by the nominal radius ρNominal.  Fig. 5 displays one of the samples 
constructed for the Library. It has a nominal radius of 16°, i.e. ρNominal  =  16°, and a smaller RMS radius,  ρRMS  =  12.5°.

Figure 5:   Grid, source array, and circles. An artificial sample of  N  =  81 sources (green) arranged in a square array on the surface of 
the Celestial Sphere. The square approximates a circle (red) with a ‘nominal’ radius ρNominal  =  16°.  The blue circle has the root-
mean-square radius of the square array, here  ρRMS  =  12.5°.  For each random run, the sources (green) are assigned random 
polarization directions (not shown). Then the alignment function η(H), Eq. (1), is calculated at the 21,400 grid points H (brown). 

In total, there are 14 values for N and 21 values of ρNominal, so there are 294  combinations (N, ρNominal), each with its own, 
unique ρRMS. Once the samples are created, the sources are given randomly directed transverse vectors. The function  η(H) , Eq. (1), 

is calculated and the smallest alignment angle  ηmin and the largest avoidance angle  ηmax  are determined. At the time of writing, there 

are 294 samples and each is processed with 10,000 or more random runs.  Some of the histograms for the square array of  N  =  25 
sources are displayed in Fig. 6 and 7.
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Figure 6: Three histograms for the values of  ηmin from random runs with  N  =  25 and various nominal radii. The plots are labelled 

with the nominal radius ρNom. Functions, Eq. (6), that fit the distributions are plotted as blue lines. Note that all the distributions tilt 
as if to avoid  ηmin  =  45° . They are distorted from a symmetric Gaussian shape. 

A glance at Fig. 6 above reveals that the distributions for ηmin are steeper on the high side toward η → 45°.  This behavior is 

repeated for all such distributions and appears to be an inherent property of the statistics.   

N = 25

R = 10000

25 ° 30 ° 35 ° 40 ° 45 ° 50 °
0

500

1000

1500

ηmin

Δ
R

1. ° = ρNom

Figure 7: Enlarged view of the histogram and fit for N  =  25  and  ρNom  =  1°, the distribution of the R  = 10,000 values of the 
smallest alignment angle ηmin  from the random runs. As noted above with Fig. 4, the histogram approximates the shape of the 

probability distribution, aside from a normalizing scale factor. These distributions are fit by a Gaussian multiplied by a step function. 
The step function vanishes to the right of the peak and is unity on the more important left side where the smallest alignment angles 
ηmin for well-aligned samples are found. Thus the tail of the curve for small ηmin drops off like a Gaussian on the important low side 

of the distribution.

A histogram of the smallest alignment angles ηmin from R  =  10,000 runs is displayed in Fig. 7. The height of a bar in Fig. 7 is 

the number ΔR of the random runs that gave a value of ηmin in the interval δη, the width of a bin. Thus, the quantity ΔR/R is the 

likelihood that random runs give a value of  ηmin in the bin. The histogram has the shape of the probability distribution  Pmin(η) for 

ηmin.  The probability distribution is normalized, 1  =  ∫ Pmin η .  Since the sum Σ ΔR  =  R, it follows that 1  =  Σ ΔR

Rδη
δη and that 

Pmin(η)  ≈ ΔR

Rδη
 . Therefore, by fitting the histogram, we obtain the probability distribution Pmin(η), within a numerical factor.

There is a complication. Look closely at the distribution in Fig. 7. The right side, the side toward  ηmin → 45°, has a steeper slope 

than the left side, the side  toward  ηmin → 0. Thus, the low ηmin  side is favored and probability is pushed from the right side to the left 

side.  A simple, symmetrical Gaussian would not fit the data well. The fitting curve shown in blue in Fig. 7 combines a Gaussian with 
a unit step-function, that is unity to the left of the peak, and zero to the right. We have 

Pmin(η)  =   norm

σ (2 π)1/2
 1 + 

4
(η-η0-σ)

σ 
-1


-
1

2


η - η0

σ

2

, (6)

where “norm” is a scale factor that normalizes the probability density. One finds that norm  ≈ 1.22, which is about 20% above unity 
which is the Gaussian value. 

There are two free variables that can be chosen to fit a random run histogram like the one shown in Fig. 7. We call η0 the ‘peak’ 
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value and σ is the ‘half-width’. The presence of the step function  1 + 
4

(η-η0-σ)

σ 
-1

 moves the peak and half-width a little from 

their Gaussian values without the step function. It is remarkable that the fitting function has two parameters just like a Gaussian, 
namely the peak η0 and the half-width σ. The step function is introduced without an associated parameter. 

Given the form in Eq. (6), the problem of determining the significance of an observed ηmin reduces to estimating the values of 

two parameters,  η0 and σ, since those two values determine the probability distribution Pmin(η). Once determined, the probability 

distribution can be integrated to obtain the significance of an observed  ηmin.

For small N one confronts a common issue with distribution formulas. Probability distributions like that in Eq. (6) return 
non-zero probabilities for unphysical values of the variables. The acute angle  ηmin can not be negative even though the probability 

distribution in Eq. (6) assigns a probability to negative values of  η. The problem is unimportant when there are a sufficient number of 

sources because low values of  ηmin are then unlikely. With more sources, the likelihood of alignment decreases, as is evident from the  

ηmin plot in Fig. 8 top. Thus, having valid statistics requires setting a minimum number of sources; we take 7. The number of sources 

N  must be at least 7, N  ≥  7  for the significance of negative  ηmin to be sufficiently small.

To find the significance, or p-value, of the smallest alignment angle ηmin, one finds the likelihood of smaller random run values 

by integrating Pmin(η) from below, 

p(ηmin)  =  ∫
-∞

η
min Pmin(η) η . (7)

It is conventional to denote the significance with the letter “p.” By Eqs. (6) and (7) the significance p of the correlated behavior 

indicated by the smallest alignment angle ηmin rests on the two probability distribution parameters  η0
min and σmin.  
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Figure 8: The Library data for the two parameters of probability distributions for the smallest alignment angle ηmin of  η(H ). The 

Library contains the values of η0 and σ in Eq. (6) for the random run distributions of ηmin
random , such as Fig. 7. Top. The parameter 

η0
min locates the peak of a random run distribution. For a given number of sources N, the parameter η0

min curves upward for ρRMS 

less than about 4°, ρRMS ≲ 4 °. The standard errors of the η0
min  are smaller than the dots and are not displayed. Bottom. Similar 

behavior is found for the half-width σmin, with constant values at large ρRMS and curving upward below about 4°. 

One motivation for emphasizing w, with w  =  N-1/2, is the use of square arrays of sources, as illustrated in Fig. 5.  The quantity 
N is associated with an area. By taking the square root, i.e.  N 1/2,  one obtains a ‘linear’ quantity. Then, both N 1/2 and ρRMS are 
associated with angular arc lengths. A reason for inverting N1/2 to make w  =  N-1/2 is the fact that N  is unbounded N ⟶ ∞ , while w 
is bounded,  0 ≤  w   ≤  1/3. The upper limit, 1/3, occurs because we must have N greater than 9 for the statistics to be sufficiently 
accurate and for N to be a perfect square. Yet another reason follows by noting that the sum in (1) is a sum over random values for 
random runs. A sum over random values evokes the mathematics of random walks and random walks involves N1/2, where N is 
analogous to the number of steps in a Random Walk.

The root-mean-square radius ρRMS is already bounded,  0 ≤  ρRMS  ≲  70°, since a radius of 90° makes a complete hemisphere 
and then diametric symmetry covers the sphere. On occasion, we will divide ρRMS by 90° to make a variable rRMS that varies from 
0 to 1,  0 ≤ rRMS  ≤  1. Power series approximations may be easier to understand when the variable itself is bounded.

The  variables  that characterize a sample are

N    or  w   and   ρRMS  or  rRMS  , (8) 

where
w  :=  N-1/2    and  rRMS  :=  ρRMS/90° . (9) 

The two quantities  w  and rRMS  have ranges from zero to some value less than one, w  ≤  9-1/2  = 1/3  and rRMS    ≲  70°/90°  ≈  
0.8,  making them suitable for the power series found in the formulas of Formula Method C. First we discuss interpolating the Library 
to find the parameters η0 and σ of the probability distributions.
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5. Interpolation Method B

Interpolation Method B is more convenient than Direct Method A. Given experimentally observed data, an interpolation is a 
quick way to get values of  the peak η0 and the half-width σ in the probability distribution Eq. (6).  For an observed sample whose 

number of sources Nobs and RMS radius ρRMSobs are in the range of the Library’s resources, an interpolation of the Library data 

produces values of  η0 and σ. 

The Library data are displayed in Fig. 8 above and Figs. A1 - A4 in Part II the Appendix. With Eq. (6), these values determine 
the probability distribution Pmin(η) for the observed sample. By integrating the distribution Pmin(η) over all η less that the observed 

sample’s  ηmin
obs, one finds the significance or p-value,  p(ηmin), of the smallest alignment angle  ηmin

obs calculated for the observed 

sample, as in Eq. (7). 

Method B may not give reliable parameters η0 and σ when the number of sources Nobs or/and the RMS radius ρRMSobs is/are 

outside the range of Library data. In such cases, asking Mathematica for an interpolation produces an extrapolation instead. While 
extrapolation may be less reliable than interpolation, it does yield values of   η0 and σ  allowing one to determine a probability 

distribution Pmin(η). 

It might be better to consider Formula Method C whenever the observed sample’s N and ρRMS leads to an extrapolation of the 
Library data to find η0 and σ. And Formula Method C may be found to be more convenient than setting up the interpolations needed 

with Method B.

6. Fitting the Library, Formula Method C

 “Formula Method C”, like Interpolation Method B, is based on the Library data in Fig. 8. Thus, both Methods B and C avoid the 
time-consuming random-runs needed with Direct Method A. 

 Formula Method C finds functions of w  = N-1/2  and ρRMS that fit the two parameters η0 and σ listed in Library data table. 

Then one substitutes the N and ρRMS of the sample into the two functions and that gives values for the peak η0 and half-width σ. The 

two parameters are all that is needed by Eq. (6) to construct the probability function  Pmin and then an integration yields the signifi-

cance of an observed smallest alignment angle ηmin
obs.  

Therefore, we need to find functions η0
min(w, ρRMS) and σmin(w, ρRMS) that fit the Library data in Fig. 8. Looking closely at 

the  η0
min graph in Fig. 8, one sees that η0

min is relatively flat for large ρRMS and curves upward sharply at small ρRMS. This 

behavior is reminiscent of the hyperbolic tangent, tanh(u)  = sinh(u) / cosh(u), displayed in Fig. 9.
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0.0

0.5
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nh

(u
)

tanh(u)

Figure 9: The hyperbolic function tanh(u). The  η0
min and σmin data in Fig. 8  may be fit by inverting, rescaling and translating as 

necessary the tanh(u) function displayed here. One can fit the Library data for  η0
min to about 0.1% and σmin to about 1.1%, see Figs. 

10 and 11. 
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By contorting the tanh(u) with an application of polynomials and varying their coefficients to get a least squares fit to the Library 
data, we get  the following functions. See Part II the Appendix, Sec. A4, Eq. (A6, A10),

η0
min(w, ρRMS )  = 

44.9687 - w 26.0585 + 4.97642 w - (-25.8749 - 0.0177592 ρRMS) Tanh0.421191 ρRMS - 0.00440756 ρRMS2  

(10)

σmin(w, ρRMS )  = 0.25 w (75.2003 - 0.0211894 ρRMS + (4.59779 + 16.1635 w) Tanh[0.649259 - 0.924249 ρRMS])  , (11)

where w  =  N-1/2 and the units for η0
min and σmin are degrees. 

The percent differences of the data to the fits for  η0
min in Fig. 10 is better than the fit to the σmin .  In Part II the Appendix, it is 

found that the percent difference of the fit of η0
min(w, ρRMS) in Eq. (10) to the Library data averages 0.10%, where by ‘average’ we 

mean an arithmetic mean, and the % diff. is always better than 0.8%. For σmin(w, ρRMS), one finds that the functions fit the Library 

to 3.8% or better, with an average of 1.09%. Thus, the 7-parameter fit in Eq. (10) fits 294 Library data points of η0
min to a few tenths 

of a percent, while the 6-parameter function in Eq. (11) fits the 294 values of σmin to a percent or so. See Fig. 10 and the results 
preceding Figs. A6 and A11 in Part II the Appendix.
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Figure 10. The percent difference between the Library data and the fitting functions for distribution parameters η0
min and for σmin . 

For η0
min, the mean % diff is 0.10% and, for σmin, the mean % diff is 1.09%. The standard deviations are 0.12% and 0.76%, respec-

tively. 

Graphing the functions in Eqs. (10) and (11), we have Fig. 11.
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Figure 11: Fitting functions of   η0
min (Top) and σmin(Bottom),  the two parameters for the probability distribution in Eq. (6) for the 

smallest alignment angle  ηmin. The curves are flat at large angles, and, for all angles, the curves flatten out for large N.  The angle 45° 

is an upper bound for η0
min that is approached for large N . Large numbers of randomly directed sources are exceedingly unlikely to 

align by chance.

With Formula Method C, we now have three methods to determine the parameters η0
min and σmin for the probability distribution 

Eq. (6)  needed to determine significance or p-value in Eq. (7). Let us see how the three methods work in practice with three samples.

7. Applying the Three Methods to Three Sets of Experimental Data

In previous work, Refs. 4,5,6, we looked at two samples of radio QSOs and one sample of polarized light from Milky Way 
Galaxy stars. The QSO samples had 27 and 13 radio sources each, while there were 99 stars in the polarized light sample. The data 
analyzed in the QSO studies are from a catalog JVAS1450, Ref. 10. The JVAS1450 catalog adds object-specific data to a subset of an 
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earlier catalog JVAS/CLASS 8.4-GHz, Ref. 11. The observations of the 99 Stars sample are contained in two catalogs,  Heiles 2000 
and Berdyugin 2014, Refs. 12,13. 

In the previous work, all three samples had their significance determined by applying Direct Method A. For each sample, 10,000 
random runs were generated with random directions replacing the polarization directions. We used the observed sites of the sources. 

The histogram distributions for the 10,000 smallest alignment angle ηmin
random were fit with functions of the form in Eq. (6). Each 

distribution gave values for the two adjustable parameters for the fitting function, the value of ηmin
random at the peak, η0

min, and the 

half-width σmin where the distribution is down by a factor of -1/2from the peak value. The terminology is accurate for Gaussian 
distributions; the presence of a step-function in Eq. (6) shifts the values only slightly.  

Sample N ρRMS, deg ηmin, deg

27 QSOs 27 6.82492 21.094

13 QSOs 13 4.72812 10.865

99 Stars 99 6.83803 7.007

Sample η0
min, deg σmin, deg

27 QSOs 34.923 ±0.029 3.272 ±0.034

13 QSOs 30.26 ±0.17 4.64 ±0.20

99 Stars 39.947 ±0.018 1.737 ±0.021

Table 1:  Three previously studied samples of observed polarizations, Refs. 4,5,6. Left:  The samples’ properties important for the 
current article are the number of sources N and the root-mean-square radius of the sample ρRMS. The alignment correlation is judged 
based on the  calculated value of  ηmin, the smallest alignment angle of the function η(H), Eq. (1), for any point H.   Right: The 

distribution of  ηmin in the 10,000 random runs depends on two parameters, the alignment angle at the peak η0
min and the half-width 

σmin.. From  η0
min and σmin. and Eq. (6), one can determine the probability distribution and integrate to find significance of the value 

of   ηmin calculated from observations.
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13 QSOs: Histogram for ηmin, random runs
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Figure 12: Histograms and fits for random runs found with Direct Method A for the three samples, 27 QSOs, 13 QSOs, and 99 Stars. 

The Blue arrows mark the observed smallest alignment angles ηmin. The Blue arrow for the 99 Stars is off-scale at  ηmin  =  7.01°. 

The fraction of the random run results to the left of  the Blue arrows defines the significance of the observed smallest alignment angle 

ηmin. The significance of the alignments for the 27 QSOs and the 13 QSOs is apparent, while  ηmin  =  7.01° for the 99 Stars is so far 

down the  ηmin-axis that the likelihood that random data would be better aligned is infinitesimal.

As discussed earlier, since Direct Method A uses the actual location of the sources and has the correct radius ρRMS with the 
correct number N of sources, Method A should be more reliable than Interpolation Method B or Formula Method C. Therefore, we 
consider Methods B and C inferior compared to the superior Method A. 

All three methods rely on the same general probability distribution formula, Eq. (6). The methods differ in how the parameters 

for the location of the peak,  η0
min, and the half-width, σmin, are calculated. Table 2 compares the values of  η0

min and  σmin from 

methods A, B and C. 

(a) peak η0
min :

Sample A (degrees) B (degrees) C (degrees)

27 QSOs 34.923 ±0.029 34.797 ±0.015 34.74 ±0.10

13 QSOs 30.26 ±0.17 30.250 ±0.031 30.14 ±0.16

99 Stars 39.947 ±0.018 39.678 ±0.012 39.67 ±0.05

(b) half-width σ
min :

Sample A (degrees) B (degrees) C (degrees)

27 QSOs 3.272 ±0.034 3.306 ±0.018 3.23 ±0.04

13 QSOs 4.64 ±0.20 4.61 ±0.04 4.56 ±0.06

99 Stars 1.737 ±0.021 1.729 ±0.015 1.728 ±0.015

Table 2: Probability distribution parameters  η0
min and σmin in Eq. (6). The ± values are the standard errors reported in fitting the data 

with the Mathematica command NonlinearModelFit. (a)  The values of η0
min from Methods B and C are within 1% of the values by 

Method A, but not within the  ± standard errors. (b) In contrast, since the ranges overlap, the ± standard errors for the half-widths 

σmin appear adequate to describe the uncertainties .
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Figure 13: Compare parameter η0
min for the 3 methods. Method B has smaller standard errors than Method C. The error bars for the 

three methods do not always overlap.
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Figure 14: Compare parameter σmin for the 3 methods with 3 samples. Methods B and C give values that overlap with A. The range 

of σmin is the same, Δσ  =  0.5°, in all three graphs, for ease of comparison.

Finally, we display the significances of the alignments of the three samples with B and C and compare those with the signifi-
cances found by A. The calculations can be found in Part II the Appendix. Even though the distribution parameters η0 do not always 

agree within the error bars, the significances, p-values, for all three methods A,B,C, do agree within the tolerances. One effect to 
notice in Fig. 15 is the asymmetry of the plus and minus uncertainties and that is most evident for the 99 Stars. 
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Figure 15: The significance of the smallest alignment angle ηmin for the three samples as determined by Methods A, B, and C. The 
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error bars are due to the standard errors of  the parameters  η0
min and  σmin determined by the Mathematica software in the process of 

fitting the histograms as in Fig. 12.  For all three samples, the significances determined by the Interpolation Method B and the 
Formula Method C agree with the Direct Method A, within the 1σ error bars drawn here. 
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Figure 16: The significance exponent a for the smallest alignment angle ηmin for three samples as determined by Methods A, B, and 

C. The error bars overlap for all three samples of 99 Stars. By using the actual observed source locations and applying random 
polarization directions at those locations, Direct Method A is the most reliable of the three methods. However, for these three samples 
it should be clear that Methods B and C approximate significance quite well.  

8. Concluding Remarks

The “Library” is an extensive collection of two parameters,  the location of the peak η0 and the half-width σ of probability 

distributions. The article presents two methods, Interpolation Method B and Formula Method C, to calculate the significance of the 

smallest alignment angle ηmin in the Hub Test by reference to Library data. Methods B and C, provide quick alternatives to the 

laborious process of generating and analyzing thousands of random runs required with Direct Method A. By Figs. 15 and 16, the 
two Methods B and C produce significances whose proximity to those of Method A may be sufficient for some purposes. 

One potential application of Interpolation Method B and Formula Method C is mapping the significance of catalogued data, as 
done in Refs. 7,8. Catalogs of polarized sources or jet directions can be extensive, with the search for significantly aligned samples 
extending over hundreds or more samples. See, for example, the mapping of a catalog of polarized stars in the Milky Way Galaxy, 
Ref. 7.  It should be helpful to have one or two quick ways to gauge the significance of alignment correlations for finite subsets of the 
data.  One strategy uses Methods B or C to locate regions of interest. Then, once a sample is found to be significantly aligned by 
Methods B or C, it would be prudent to apply Direct Method A as a way to reliably confirm the result.  

Whatever the project, the Library of probability distribution parameters can make the Hub Test easier to apply. 
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Notes:
(1) To find the ready-to-run Mathematica code for the Appendix, follow the link in Ref. 14. Some numerical quantities in the pdf 

version may differ from the live ready-to-run version in Ref. 14 because the ready-to-run version may have been altered after the pdf 
was produced. The ready-to-run version and the pdf version may be updated out-of-synch. 

(2) In Version 3, the notebook uses data from a 1° spaced grid. Version 2 on viXra and other places are based on a 2° grid with a 
0.6° spaced 30° cap.  
      (3) In Version 2 and 3, the Library has 294 cases of source number N and nominal radius ρNom, (N, ρNom). Version 1 has 90 
cases (N, ρNom). 
      (4) Mathematica  provides the option of hiding cells, making them invisible in the pdf file., Ref. 15. We hide some cells. The 
underlying data table is in a hidden cell. Cells that contain only “print” statements are hidden because they hold no more information 
than what they print. If one wishes to see a hidden cell, follow a link in Ref. 14, open the file in Mathematica, and change the cell’s 
properties by checking ‘Open’.      
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00. Preface
The problem of “significance” is to determine the likelihood that random polarizations directions would have better alignment or 

avoidance than the observed polarization directions. We talk about polarization directions, but one can analyze any set of transverse 
directions on the sky for their alignment. 

Note that Part I the Article discusses the measure of alignment, the smallest alignment angle ηmin almost exclusively. However, 

the Hub Test also determines correlations of the transverse directions by finding points on the Celestial Sphere that the great circles 
avoid. In that case, the relevant quantity is the largest avoidance angle ηmax which is the maximum of the alignment function η(H). 

Both alignment and avoidance are treated in this part, Part II the Appendix.

A1. Introduction and Probability Distributions, Significance Formulas

Given a sample whose sources have measured transverse directions, say electromagnetic polarization or physical features like 
jets, then the alignment angle function η(H), Eq. (1) with an example in Figs. 2,3, can be calculated at all point H on the sphere except 

at the sources themselves. The directions are best aligned with the points Hmin and  -Hmin where the smallest alignment angle occurs, 

ηmin, i.e. ηmin  =  η(Hmin) ≤  η(H), for all H  ≠  S. Thus  ηmin gauges alignment. The largest alignment angle ηmax is found at hubs   Hmax 

and  -Hmax and gauges a different correlation, avoidance. 
The probability distributions for alignment and avoidance of samples with randomly oriented polarization directions are fit with 

pseudo-Gaussian formulas.  We choose

Pmin(η)  =   norm

σ (2 π)1/2
 1 + 

4
(η-η0-σ)

σ 
-1


-
1

2


η - η0

σ

2

, (A1)

and

Pmax(η)  =   norm

σ (2 π)1/2
 1 + 

-4
(η-η0+σ)

σ 
-1


-
1

2


η - η0

σ

2

, (A2)

where norm is the normalization constant, norm  =  1.22029 , so that the definite integral over all η of the probability distributions is 

equal to one. The two distribution formulas Eq. (A1) and (A2) involve two parameters η0 and σ, one set for alignment,   η0
min and 

σmin,  and one set for avoidance,   η0
max and σmax. The “min” and “max” are dropped in Eq. (A1) and (A2) for convenience.

To find the significance, or p-value, of the smallest alignment angle ηmin, one finds the likelihood of smaller random run values 
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by integrating Pmin(η) from below, 

p(ηmin)  =  ∫
-∞

η
minPmin(η) η (A3)

For avoidance, the significance of the largest avoidance angle ηmax integrates larger random run results,

p(ηmax)  =  ∫
η
max

∞
Pmax(η) η . (A4)

By Eqs. (A1 - A4) the calculation of significances for a sample of correlated behavior indicated by the smallest alignment angle ηmin 

and the largest avoidance angle ηmax rests on obtaining values of  the four probability distribution parameters  η0
min, σmin,   η0

max, and 

σmax. 

The Direct Method A finds the four needed parameters η0
min, σmin,   η0

max, and σmax by generating many, many random runs and 

analyzing the results. This notebook’s usefullness is based on a “Library”, a collection of the four parameters from a wide selection of 
samples that have been created and analyzed elsewhere in other computer programs.  For any given sample, Interpolation Method B 
makes an interpolation of the Library data, while Formula Method C employs a set of four functions that fit the Library data. Either 

Method yields values of the four needed parameters η0
min, σmin,   η0

max, and σmax for a given observed sample.

Sec. A2 describes the Library.  Interpolation Method B is the topic of Sec. A3 and Sec. A4 has Formula Method C. Formula 
Method C has formulas which are uncertain. Sec. A5 treats the uncertainties in the formulas of Method C. The three previously 
studied samples, Refs. 4,5,6 offer the means to compare the three different Methods A, B, C in Sec. A6.

A2  The Library

A2a.  Preliminary 

Definitions:
homeDirectory location of this notebook 
er(α,δ) radial unit vector in the direction from the origin to the point with longitude and latitude (α,δ)

mean the arithmetic average of a set of numbers, 1
N
∑i=1
N ni

stanDev the standard deviation. Given a set of N numbers ni with mean value m, the standard deviation is  


1

N
∑i=1
N (ni - m)2

1/2
,  the square root of the average of the squares of the differences of the numbers with the mean. Note that we 

divide by N to get the average of the deviations squared.
norm a constant used to normalize the distribution so the integral of probability is 1. 
probMIN0, probMAX0 probability distributions for η, dependent on parameters η0, σ. [alignment (MIN) and avoidance (MAX)]

signiMIN0(ηmin, η0
min, σmin)   significance of ηmin,  dependent on probability distribution parameters  η0

min, σmin. (alignment)

signiMAX0(ηmax, η0
max, σmax)   significance of ηmax,  dependent on probability distribution parameters  η0

max, σmax. (alignment)

The date and time that this statement was evaluated: Sat 18 Jun 2022 08:10:44GMT-4

The computer time expended so far is 1.266 seconds.

In[3]:= (*Put and get files from the same directory that has the notebook.*)

homeDirectory = NotebookDirectory[];

In[4]:= (*The radial unit vector in the direction from the origin to the

point with longitude and latitude (α,δ), 0 ≤ α ≤ 2π, -π/2 ≤ δ ≤ π/2.*)

er[α_, δ_] := er[α, δ] = {Cos[α] Cos[δ], Sin[α] Cos[δ], Sin[δ]}
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In[5]:= mean[data_] := (1 / Length[data]) Sum[data〚i4〛, {i4, Length[data]}];

(* arithmetic average *)

stanDev[data_] := (1 / Length[data]) Sum(data〚i5〛 - mean[data])2, {i5, Length[data]}
1/2

(*standard deviation*)

In[7]:= (* y = ((η - η0)/σ); dy = dη/σ *)

(* The normalization factor "norm" is needed to make

the integral of the probability distribution equal to unity. *)

norm =
1

(2 π)
1/2

NIntegrate1 + 
4 (y-1)


-1


-
y2

2 , {y, -∞, ∞}

-1

;

The normalization scale factor is norm = 1.22029 for both alignment probMIN0 and avoidance probMAX0.

In[9]:= (*Eqs. (A1-A4*)

probMIN0[η_, η0_, σ_] :=
norm

σ (2 π)
1/2

1 + 
4

(η-η0-σ)

σ 
-1


-
1

2


η - η0

σ

2

signiMIN0[η_, η0_, σ_] := NIntegrate[probMIN0[η1, η0, σ], {η1, -∞, η}]

probMAX0[η_, η0_, σ_] :=
norm

σ (2 π)
1/2

1 + 
-4

(η-η0+σ)

σ 
-1


-
1

2


η - η0

σ

2

signiMAX0[η_, η0_, σ_] := NIntegrate[probMAX0[η1, η0, σ], {η1, η, ∞}]

The significance signiMIN0[η, η0, σ] is the Integral of probMIN0, i.e. signiMIN0 = ∫
-∞

η
PMIN (η) η.

The significance signiMAX0[η, η0, σ] is the Integral of probMAX0, i.e. signiMAX0 = ∫
η

∞
PMAX (η) η.

A2b. The Library data

Definitions:

fitData   Parameters of the alignment (min) and avoidance (max) random run distributions. Originally in radians, converted to 
degrees below.
1a. nSrci[i]    Number of sources 1b. ρNomi[i]  Nominal radius, deg. 1c. ρRMSi[i] RMS radius, deg. 
2a. η0mini[i]   peak alignment distribution 2b. dη0mini[i] standard error
3a. σmini[i]    half-width alignment distr. 3b. dσmini[i] standard error
4a. η0maxi[i]   peak alignment distribution 4b. dη0maxi[i] standard error
5a. σmaxi[i]    half-width alignment distr. 5b. dσmaxi[i] standard error

wi[i] inverse square root of the number of sources, w = 1N1/2

rRMSi[i] scaled ρRMS:   rRMS  =  ρRMS/90, with ρRMS in degrees

nSrcList list of the number of sources in the Library samples
wList list of the inverse square root of the number of sources for Library samples
ρNomList list of the nominal radii, deg., of the Library samples
colornSrcList assigned colors for the numbers of sources nSrc and the corresponding w
colorρList assigned colors for the nominal radii ρNominal and the corresponding inverses τNominal
nSrcColorKey Legend for the number of sources nSrc
wNColorKey Legend for the number of sources nSrc and w  =  nSrc-1/2

idsFORnSrc[iN] ID #s in fitData, one set for each value of nSrc
idsFORρNom[iρ] ID #s in fitData, one set for each value of ρNominal
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lpRhoη0min[iN] list plot of Library data, alignment peak parameter η0
min versus RMS radius ρRMS

eta0MinVSRhoData Combined plot of the lpRhoη0min for all Library data

lpρSigmamin, sigmaMINvsRadiusData Library data plots, except alignment half-width parameter σmin replaces η0
min

lpρη0max, eta0VSradiusDataMax Library data plots, except avoidance peak  η0
max replaces η0

min

lpρSigmamax, sigmaMAXvsRadiusData  Plots of Library data 

fitData: 
The following hidden cell contains the fitData table. The fitData table is accessible from the live Mathematica notebook in Ref. 14. 
You can view the data by clicking “Open” in “Cell Properties” in “Cell”.

The fitData table constitutes the 'reference Library'. Its

data allows the reconstruction of random run probability distributions.

There are 294 records in the fitData table.

In[16]:= (*Identify the items in the fitData table with functions having recognizable names.*)

nSrci[i_] := fitData〚i, 1, 1〛

(*Convert fitData radians to DEGREES:*)

ρNomi[i_] := fitData〚i, 1, 2〛
360.

2. π

(*The nominal radius in degrees*)

In[18]:= ρRMSi[i_] := fitData〚i, 1, 3〛
360.

2. π

(*The RMS radius in degrees*)

In[19]:= η0mini[i_] := fitData〚i, 2, 1〛
360.

2. π

(*η at the peak η0 of ηmin distribution *)

dη0mini[i_] := fitData〚i, 2, 2〛
360.

2. π

(*standard error of η0min *)

In[21]:= σmini[i_] := fitData〚i, 3, 1〛
360.

2. π

(*half-width of ηmin distribution *)

dσmini[i_] := fitData〚i, 3, 2〛
360.

2. π

(*standard error of σmin *)

In[23]:= η0maxi[i_] := fitData〚i, 5, 1〛
360.

2. π

(*η at the peak η0 of ηmax distribution *)

dη0maxi[i_] := fitData〚i, 5, 2〛
360.

2. π

(*standard error of η0max *)

In[25]:= σmaxi[i_] := fitData〚i, 6, 1〛
360.

2. π

(*half-width of ηmax distribution *)

dσmaxi[i_] := fitData〚i, 6, 2〛
360.

2. π

(*standard error of σmax *)

In[27]:= (*Quantities w and rRMS, calculated from fitData.*)

wi[i_] :=
1

nSrci[i]1/2
(*w = 1N1/2 ; inverse square root of the number of sources*)

rRMSi[i_] := ρRMSi[i] / 90. (*Scaled rms region radius,

0 ≤ rRMS ≤ 1 for acute angle ρRMS in degrees*)
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In[29]:= nSrcList = Union[Table[nSrci[i], {i, Length[fitData]}]];

(*list of the number of sources N in fitData*)

ρNomList = Union[Table[ρNomi[i], {i, Length[fitData]}]];

(*list of the nominal radii in fitData*)

wList = Table
1

nSrcList〚i〛1/2.
, {i, Length[nSrcList]};

(*list of inverse square roots of the number of sources in fitData*)

There are 14 choices for the number of sources.

The list of the number of sources for samples in the Library: nSrc =

{9, 16, 25, 36, 49, 64, 81, 100, 121, 225, 256, 324, 625, 900}.

Their inverse square roots: w = {0.333333, 0.25, 0.2, 0.166667, 0.142857,

0.125, 0.111111, 0.1, 0.0909091, 0.0666667, 0.0625, 0.0555556, 0.04, 0.0333333} .

There are 21 nominal radii for the samples in the Library, i.e. the fitData table.

The list of nominal radii is ρNom = {0.142857, 0.166667, 0.2, 0.25, 0.333333, 0.5,

1., 1.5, 2., 3., 4., 6., 8., 10., 15., 16., 24., 32., 42., 52., 64.} , in degrees.

The list of scaled nominal radii is rNom := ρNom/90° =

{0.0015873, 0.00185185, 0.00222222, 0.00277778, 0.0037037, 0.00555556, 0.0111111,

0.0166667, 0.0222222, 0.0333333, 0.0444444, 0.0666667, 0.0888889, 0.111111, 0.166667,

0.177778, 0.266667, 0.355556, 0.466667, 0.577778, 0.711111} , a unitless ratio.

In[38]:= (*The list of colors*)

(*Table[{i,ColorData["Atoms","ColorList"]〚i〛},

{i,Length[ColorData["Atoms","ColorList"]] }]*)

In[39]:= (*A color for each number N*)

tryTheseColorsnSrc = {75, 85, 15, 45, 1, 7, 65, 114, 12, 14, 45, 25, 59, 39};

Table[ColorData["Atoms", "ColorList"]〚i〛, {i, tryTheseColorsnSrc }];

In[41]:= (*Set up the color codes.*)

colornSrcList = Table[ColorData["Atoms", "ColorList"]〚i〛, {i, tryTheseColorsnSrc }];

nSrcColorKey = Table[{nSrcList〚i〛, colornSrcList〚i〛}, {i, Length[nSrcList]}];

wNColorKey =

{{nSrcList〚1〛, colornSrcList〚1〛, "1/3"}, {nSrcList〚2〛, colornSrcList〚2〛, "1/4"},

{nSrcList〚3〛, colornSrcList〚3〛, "1/5"}, {nSrcList〚4〛, colornSrcList〚4〛, "1/6"},

{nSrcList〚5〛, colornSrcList〚5〛, "1/7"}, {nSrcList〚6〛, colornSrcList〚6〛, "1/8"},

{nSrcList〚7〛, colornSrcList〚7〛, "1/9"}, {nSrcList〚8〛, colornSrcList〚8〛, "1/10"},

{nSrcList〚9〛, colornSrcList〚9〛, "1/11"} , {nSrcList〚10〛, colornSrcList〚10〛, "1/15"},

{nSrcList〚11〛, colornSrcList〚11〛, "1/16"}, {nSrcList〚12〛, colornSrcList〚12〛, "1/18"},

{nSrcList〚13〛, colornSrcList〚13〛, "1/25"}, {nSrcList〚14〛, colornSrcList〚14〛, "1/30"} };
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Display code N

9.

16.

25.

36.

49.

64.

81.

100.

121.

225.

256.

324.

625.

900.

Table A1: Display codes for N. The two properties, (N,ρNom), label the Library data.

In[46]:= (*IDs for the Library records with N(= nSrc) sources.*)

Table[idsFORnSrc[iN] = {}, {iN, Length[nSrcList]}];

TableFori = 1, i ≤ Length[fitData], i++, If(nSrci[i] - nSrcList〚iN〛)2
< 1,

AppendTo[idsFORnSrc[iN], i], {iN, Length[nSrcList]};

iN = 3;

Print["For example, idsFORnSrc[", iN,

"] gives the record numbers for the records in the Library for nSrc = " ,

Round[nSrcList〚iN〛], " (iN = ", iN, ")."]

Print["The record IDs for nSrc = ", Round[nSrcList〚iN〛], " are ", idsFORnSrc[iN], "."]

Clear[iN]

For example, idsFORnSrc[3

] gives the record numbers for the records in the Library for nSrc = 25 (iN = 3).

The record IDs for nSrc = 25 are

{43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63}.

In[52]:= (*IDs for the Library records with nominal radius ρNom.*)

Table[idsFORρNom[iρ] = {}, {iρ, Length[ρNomList]}];

TableFori = 1, i ≤ Length[fitData], i++, IfAbs
(ρNomi[i] - ρNomList〚iρ〛)

Min[ρNomi[i], ρNomList〚iρ〛]
 < 10-2,

AppendTo[idsFORρNom[iρ], i], {iρ, Length[ρNomList]};

iρ = 3;

Print["For example, idsFORρNom[", iρ,

"] gives the IDs for the records in the Library for samples

with nominal radius ρNom = " , ρNomList〚iρ〛, "°, (iρ = ", iρ, ")."]

Print["The record IDs for ρNom = ", ρNomList〚iρ〛, "° are ", idsFORρNom[iρ], "."]

Clear[iρ]
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For example, idsFORρNom[3

] gives the IDs for the records in the Library for samples with nominal radius ρNom =

0.2°, (iρ = 3).

The record IDs for ρNom = 0.2° are {3, 24, 45, 66, 87, 108, 129, 150, 171, 192, 213, 234, 255, 276}.

In[59]:= lpRhoη0min[iN_] := ListPlot[Table[{ρRMSi[i], If[16.5 < Mod[i, Length[ρNomList]] < 17.5,

Around[η0mini[i], dη0mini[i]], η0mini[i]]}, {i, idsFORnSrc[iN]}],

IntervalMarkersStyle  Thick, PlotRange  {{0., 80.}, {25., 45.}},

FrameLabel  {"ρRMS, degrees ", "η0min, degrees"}, PlotLabel  "η0min vs ρRMS",

PlotStyle  colornSrcList〚iN〛 , GridLines  Automatic, Frame  True, ImageSize  72 × 6]

In[60]:= lpρSigmamin[iN_] := ListPlot

Table[{ρRMSi[i], If[16.5 < Mod[i, Length[ρNomList]] < 17.5, Around[σmini[i], dσmini[i]],

σmini[i]]}, {i, idsFORnSrc[iN]}], IntervalMarkersStyle  Thick,

PlotRange  {{0.0, 80}, {0.0, 8.}}, FrameLabel  {"ρ", "σ"},

FrameTicks  { {{{0, 0 °}, {2, 2 °}, {4, 4 °}, {6, 6 °}, {8, 8 °}}, None} ,

{{{0, 0 °}, {10, 10 °}, {20, 20 °}, {30, 30 °}, {40, 40 °}, {50, 50 °},

{60, 60 °}, {70, 70 °}, {80, 80 °}}, None} }, PlotLabel  "σmin vs ρRMS",

PlotStyle  colornSrcList〚iN〛 , GridLines  Automatic, Frame  True,

IntervalMarkersStyle  colornSrcList〚iN〛, ImageSize  72 × 6;

In[61]:= eta0MinVSRhoData = Show[Table[lpRhoη0min[iN], {iN, Length[wList]}]]

Out[61]=

0 20 40 60 80
25

30

35

40

45

ρRMS, degrees

η
0m
in
,d
eg
re
es

η0min vs ρRMS

Figure A1: Library data. The parameter η0
min in Eqs. 6 and A1 plotted versus

the RMS radius ρRMS, sorted by number of sources N. Error bars for ρNom =

24.° are displayed, though they are very small. The others are similar.
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In[63]:= sigmaMINvsRadiusData = Show[Table[lpρSigmamin[iN], {iN, Length[wList]}]]

Out[63]=

0 10 ° 20 ° 30 ° 40 ° 50 ° 60 ° 70 ° 80 °
0

2 °

4 °

6 °

8 °

ρ

σ
σmin vs ρRMS

Out[64]= {{9., }, {16., }, {25., }, {36., }, {49., }, {64., }, {81., },

{100., }, {121., }, {225., }, {256., }, {324., }, {625., }, {900., }}

Figure A2: Library data. The parameter σ
min in Eqs. 6 and A1 plotted versus

the RMS radius ρRMS, sorted by number of sources N. Error bars for ρNom =

24.° are displayed, though they are very small. The others are similar.

In[66]:= lpRhoη0max[iN_] := ListPlot[Table[{ρRMSi[i], If[16.5 < Mod[i, Length[ρNomList]] < 17.5,

Around[η0maxi[i], dη0maxi[i]], η0maxi[i]]}, {i, idsFORnSrc[iN]}],

IntervalMarkersStyle  Thick, PlotRange  {{0., 80.}, {45., 65.}},

FrameLabel  {"ρRMS, degrees ", "η0max, degrees"}, PlotLabel  "η0max vs ρRMS",

PlotStyle  colornSrcList〚iN〛 , GridLines  Automatic, Frame  True, ImageSize  72 × 6]

In[67]:= lpRhoσmax[iN_] := ListPlot

Table[{ρRMSi[i], If[16.5 < Mod[i, Length[ρNomList]] < 17.5, Around[σmaxi[i], dσmaxi[i]],

σmaxi[i]]}, {i, idsFORnSrc[iN]}], IntervalMarkersStyle  Thick,

PlotRange  {{0.0, 80}, {0.0, 8.}}, FrameLabel  {"ρ", "σ"},

FrameTicks  { {{{0, 0 °}, {2, 2 °}, {4, 4 °}, {6, 6 °}, {8, 8 °}}, None} ,

{{{0, 0 °}, {10, 10 °}, {20, 20 °}, {30, 30 °}, {40, 40 °}, {50, 50 °},

{60, 60 °}, {70, 70 °}, {80, 80 °}}, None} }, PlotLabel  "σmax vs ρRMS",

PlotStyle  colornSrcList〚iN〛 , GridLines  Automatic, Frame  True,

IntervalMarkersStyle  colornSrcList〚iN〛, ImageSize  72 × 6;
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In[68]:= eta0maxVSRhoData = Show[Table[lpRhoη0max[iN], {iN, Length[wList]}]]

Out[68]=

0 20 40 60 80
45

50

55

60

65
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eg
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es

η0max vs ρRMS

Out[69]= {{9., }, {16., }, {25., }, {36., }, {49., }, {64., }, {81., },

{100., }, {121., }, {225., }, {256., }, {324., }, {625., }, {900., }}

Figure A3: Library data. The parameter η0
max in Eq. A3 plotted versus

the RMS radius ρRMS, sorted by number of sources N. Error bars for ρNom =

24.° are displayed, though they are very small. The others are similar.

In[71]:= SigmaMaxVSRhoData = Show[Table[lpRhoσmax[iN], {iN, Length[wList]}]]

Out[71]=

0 10 ° 20 ° 30 ° 40 ° 50 ° 60 ° 70 ° 80 °
0

2 °

4 °

6 °

8 °

ρ

σ

σmax vs ρRMS
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Out[72]= {{9., }, {16., }, {25., }, {36., }, {49., }, {64., }, {81., },

{100., }, {121., }, {225., }, {256., }, {324., }, {625., }, {900., }}

Figure A4: Library data. The parameter σ
max in Eq. A3 plotted versus

the RMS radius ρRMS, sorted by number of sources N. Error bars for ρNom =

24.° are displayed, though they are very small. The others are similar.

A3. Interpolation Method B

The Library described in Sec. A2 is the table fitData of values for the four parameters,  η0
min, σmin,   η0

max, and σmax, needed to 

determine the probability distributions and significances in Eqs. (A1-A4).  The Library data is plotted in Figs. 8,11 in the text and 
Figs. A1-A4 in the Appendix.

We consider the four parameters to be functions of the number of sources N  and  the root-mean-square radius ρRMS.  It is often 
convenient to discuss, instead of N and ρRMS, the inverse square root of N , denoted ‘w’, and the  ratio of ρRMS to 90° , denoted 
‘rRMS’,

w  =  N-1/2    and  rRMS  =  ρRMS/90° . (A5)

These parameters have ranges that are considered appropriate for the power series expansions in Sec. A4. We have  0  <=  w  <= 1/3  
and  0  <=  rRMS  <= 1, since  N >= 9  and  0  <=  ρRMS  <= 90°.

Definitions:
Tables: wρη0minLib, wρdη0minLib, wρη0maxLib, wρdη0maxLib, wρσminLib, wρdσminLib, wρσmaxLib, wρdσmaxLib
The tables  wρη0minLib ...  put  Library data in the form (w, ρRMS, quantity), where “quantity” is a parameter or its standard error: 

η0
min, dη0

min, σmin,   dσmin, η0
max, dη0

max,  σmax , dσmax     

The associated interpolation functions are η0minBint, dη0minBint , η0maxBint , dη0maxBint, σminBint, dσminBint, σmaxBint , 
dσmaxBint 

nExample, ρRMSexample Values of the number of sources and the RMS radius are used to illustrate the interpolation of the 
Library data with Interpolation Method B

Setting up the interpolations takes two steps. First tables of the data are constructed. Each entry of a table has the form {w, 

ρRMS, parameter}. Second, the interpolation for each parameter is defined. There are four parameters  η0
min, σmin,   η0

max, and σmax 

and each one has a standard error  dη0
min, dσmin,   dη0

max, and dσmax developed in the fitting process. Thus there are 8 tables of data 

and 8 interpolation functions.

In[74]:= wρη0minLib = Table[{{wi[i], ρRMSi[i]}, η0mini[i]}, {i, Length[fitData]}];

wρdη0minLib = Table[{wi[i], ρRMSi[i], dη0mini[i]}, {i, Length[fitData]}];

wρη0maxLib = Table[{wi[i], ρRMSi[i], η0maxi[i]}, {i, Length[fitData]}];

wρdη0maxLib = Table[{wi[i], ρRMSi[i], dη0maxi[i]}, {i, Length[fitData]}];

wρσminLib = Table[{wi[i], ρRMSi[i], σmini[i]}, {i, Length[fitData]}];

wρdσminLib = Table[{wi[i], ρRMSi[i], dσmini[i]}, {i, Length[fitData]}];

wρσmaxLib = Table[{wi[i], ρRMSi[i], σmaxi[i]}, {i, Length[fitData]}];

wρdσmaxLib = Table[{wi[i], ρRMSi[i], dσmaxi[i]}, {i, Length[fitData]}];
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In[82]:= η0minBint = Interpolation[wρη0minLib];(* int - interpolation function*)

dη0minBint = Interpolation[wρdη0minLib];

η0maxBint = Interpolation[wρη0maxLib];

dη0maxBint = Interpolation[wρdη0maxLib];

σminBint = Interpolation[wρσminLib];

dσminBint = Interpolation[wρdσminLib];

σmaxBint = Interpolation[wρσmaxLib];

dσmaxBint = Interpolation[wρdσmaxLib];

Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or

InterpolationOrder->All. Order will be reduced to 1.

Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or

InterpolationOrder->All. Order will be reduced to 1.

Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or

InterpolationOrder->All. Order will be reduced to 1.

Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or

InterpolationOrder->All. Order will be reduced to 1.

Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or

InterpolationOrder->All. Order will be reduced to 1.

Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or

InterpolationOrder->All. Order will be reduced to 1.

Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or

InterpolationOrder->All. Order will be reduced to 1.

Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or

InterpolationOrder->All. Order will be reduced to 1.

By the rules of interpolations, when the variables w and ρ are in the range of the Library data, then Mathematica finds an average 

value from the surrounding Library data points. The range of the variable w is 1

15
 ≤ w ≤ 1

3
 , while the range of ρRMS varies with the 

number of sources.
 

An example using the interpolating functions:

By interpolation of Library data, for N =

155 sources in a region with RMS radius ρRMS = 21.4208°,

the most likely values of the four distribution

parameters η0
min, σ

min
(alignment) and η0

max, σ
max

(avoidance) are :

η0
min

= 40.696°, σ
min

= 1.38213°, η0
max

= 49.31°, σ
max

= 1.38785°.

Compare these values with the Library data plotted in Figs. A1 to A4.

A4. Fitting the Library data with formulas

Definitions:
tables of Library, i.e. fitData, info (w, rRMS, quantity) 
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wrEtamin  for η0
min, wrEtamax   for η0

max, wrSigmamin  for  σmin, wrSigmamax   for  σmax  , the four distribution parameters.

 (η0minAtBIGr[iN], η0maxAtBIGr[iN]) the values of  η0
min, η0

max for the largest radius sample and for each N.

 

(wrEtaminFlatTor1, wrEtamaxFlatTor1) Flat to r  =  1  = ρ/90 . We extend wrEtamin, wrEtamax by assuming the value of  η0
min, 

η0
max for a sample with radius 90° is the same as the value at the largest radius sample, for each N. 

NonlinearModelFits to the data tables wrEtamin, ... defined above

nlmrEtamin  for η0
min, nlmrEtamax   for η0

max, nlmrSigmamindegA9  for  σmin, nlmrSigmamaxdegA9   for  σmax  

values of the parameters of the fits

{  etamink0,etamina0, etaminb0,etamina2, etaminb3, etaminb4,etaminc4} for η0
min

{  etamaxk0,etamaxa0, etamaxb0,etamaxa2, etamaxb3, etamaxb4,etamaxc4} for η0
max

{  sigmamina0, sigmaminb1,sigmamina2, sigmaminb2, sigmamina4, sigmaminb4}  for  σmin

{  sigmamaxa0, sigmamaxb1,sigmamaxa2, sigmamaxb2, sigmamaxa4, sigmamaxb4}  for  σmax

standard errors of the parameters of the fits

{ detamink0,detamina0, detaminb0,detamina2, detaminb3, detaminb4,detaminc4} for η0
min

{ detamaxk0,detamaxa0, detamaxb0,detamaxa2, detamaxb3, detamaxb4,detamaxc4}   for η0
max

{ dsigmamina0, dsigmaminb1,dsigmamina2, dsigmaminb2,dsigmamina4, dsigmaminb4}  for  σmin

{ dsigmamaxa0, dsigmamaxb1,dsigmamaxa2, dsigmamaxb2,dsigmamaxa4, dsigmamaxb4}  for  σmax  

formulas of the fits in terms of w, ρRMS 

etaminRhoFit  for η0
min, etamaxRhoFit   for η0

max, sigmaminRhoFit  for  σmin, sigmamaxRhoFit   for  σmax  , the four distribution 

parameters.

plots of the fits in terms of w, ρRMS

plotRhoEtamin[iN] (for one value of N), for all N: eta0MinVSRhoFit  for η0
min, 

plotRhoEtamax[iN] (for one value of N), for all N:  eta0MaxVSRhoFit  for η0
max, 

plotRhoSigmamin[iN] (for one value of N), for all N:  sigma0MinVSRhoFit  for  σmin,
plotRhoSigmamax[iN] (for one value of N), for all N:  sigma0MaxVSRhoFit   for  σmax  

Percent Differences of the Library data to the fits

sortPercentDiffEtaminfit for η0
min, sortPercentDiffEtamaxfit   for  η0

max, sortPercentDiffSigmaminfit   for  σmin, sortPercentDif-

fSigmamaxfit  for  σmax

A4a.  Fit η0
min

In[96]:= (*To avoid spurious behavior for samples beyond the size of Library data,

we assign the Library data at the largest available ρRMS value to the point at ρRMS =

90°, where rRMS = 1 (r1). *)

wrEtamin = Sort[Table[{wi[i], rRMSi[i], η0mini[i]}, {i, Length[fitData]}]];

η0minAtBIGr[iN_] := Sort[Table[{rRMSi[i], η0mini[i]} , {i, idsFORnSrc[iN]}]]〚-1, 2〛

wrEtaminFlatTor1 =

Join[wrEtamin, Table[{wList〚iN〛, 1., η0minAtBIGr[iN]}, {iN, Length[wList]}]];

{wrEtamin〚1〛, wrEtamin〚-1〛};
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In[100]:= nlmrEtamin = NonlinearModelFitwrEtaminFlatTor1,

k0 - x a0 + b0 x - (a2 + b3 y ) Tanh b4 y + c4 y2, {{k0, 45.0}, {a0, 26.1}, {b0, 4.90},

{a2, -25.9}, {b3, -1.59}, {b4, 37.8}, {c4, -35.7}}, {x, y}, MaxIterations  1000;

{ etamink0, etamina0, etaminb0, etamina2, etaminb3, etaminb4, etaminc4} =

{k0, a0, b0, a2, b3, b4, c4} /. nlmrEtamin["BestFitParameters"];

{ detamink0, detamina0, detaminb0, detamina2, detaminb3, detaminb4, detaminc4} =

nlmrEtamin["ParameterErrors"];

Fitting function: f(x=w,y=ρRMS/90.) = k0 - x a0 + b0 x - (a2 + b3 y) Tanhb4 y + c4 y2 (A5)

Fit : η0
min

(w,ρRMS) = 44.9687 -

w 26.0585 + 4.97642 w - (-25.8749 - 0.0177592 ρRMS) Tanh0.421191 ρRMS - 0.00440756 ρRMS2 (A6)

Estimated variance = 0.00280267

General : Exp[-1680.12] is too small to represent as a normalized machine number; precision may be lost.

General : Exp[-948.104] is too small to represent as a normalized machine number; precision may be lost.

Parameter Table:

Estimate Standard Error t-Statistic P-Value

k0 44.9687 0.00986126 4560.13 0.

a0 26.0585 0.1468 177.51 1.12538 ×10-306

b0 4.97642 0.39532 12.5883 1.76145 ×10-29

a2 -25.8749 0.0646373 -400.308 0.

b3 -1.59833 0.144271 -11.0787 3.75139 ×10-24

b4 37.9072 0.233037 162.666 2.23515 ×10-295

c4 -35.7013 0.280881 -127.105 1.35341 ×10-263

In[107]:= etaminRhoFit[w_, ρRMS_] := Normal[nlmrEtamin] /. {x  w, y  ρRMS / 90.}

In[108]:= plotRhoEtamin[iN_] :=

Plot[etaminRhoFit[wList〚iN〛, ρ], {ρ, 0., 80.}, PlotPoints  200, PlotRange  All,

PlotStyle  colornSrcList〚iN〛 ];
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In[109]:= iN = 1; Show[{lpRhoη0min[iN], plotRhoEtamin[iN]}]

Clear[iN]
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Figure A5: Fit to Library data. For an interactive choice of N,

the parameter η0
min in Eqs. 6 and A1 plotted versus the RMS radius ρRMS.

In[113]:= eta0MinVSRhoFit =

Show[Table[Show[{lpRhoη0min[iN], plotRhoEtamin[iN]}], {iN, Length[nSrcList]}],

ImageSize  72 × 5]

Out[113]=

0 20 40 60 80
25

30

35

40

45

ρRMS, degrees

η
0m
in
,d
eg
re
es

η0min vs ρRMS

20220512InterpolateAndFormula7.nb     33



Out[114]= {{9., }, {16., }, {25., }, {36., }, {49., }, {64., }, {81., },

{100., }, {121., }, {225., }, {256., }, {324., }, {625., }, {900., }}

Figure A6: Fit to Library data for the

parameter η0
min in Eqs. 6 and A1, sorted by number of sources N.

In[116]:= sortPercentDiffEtaminfit =

Sort[Flatten[Table[100. Abs[(η0mini[i] - etaminRhoFit[wi[i], ρRMSi[i]]) / η0mini[i]],

{i, Length[fitData]}]]] ;

ListPlotsortPercentDiffEtaminfit , PlotRange  All, FrameLabel  "", " % diff η0
min ",

PlotLabel  "% diff. of the η0
min fit ", GridLines  Automatic, Frame  True
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Figure A7: The percent difference of the

fit to Library data for η0
min. The mean %diff of the fit to data is

0.104399%, with a standard dev. of 0.116608% . The largest %diff = 0.771647%.

A4b.  Fit η0
max

In[119]:= (*Artificially extend the Library data to ρRMS = 90°. *)

wrEtamax = Sort[Table[{wi[i], rRMSi[i], η0maxi[i]}, {i, Length[fitData]}]];

η0maxAtBIGr[iN_] := Sort[Table[{rRMSi[i], η0maxi[i]} , {i, idsFORnSrc[iN]}]]〚-1, 2〛

wrEtamaxFlatTor1 =

Join[wrEtamax, Table[{wList〚iN〛, 1., η0maxAtBIGr[iN]}, {iN, Length[wList]}]];

{wrEtamax〚1〛, wrEtamax〚-1〛};

In[123]:= nlmrEtamax = NonlinearModelFitwrEtamaxFlatTor1,

k0 + x a0 + b0 x - (a2 + b3 y ) Tanh b4 y + c4 y2, {{k0, 45}, {a0, 26.1}, {b0, 4.99},

{a2, -25.9}, {b3, -1.39}, {b4, 37.7}, {c4, -35.5}}, {x, y}, MaxIterations  1000;

{ etamaxk0, etamaxa0, etamaxb0, etamaxa2, etamaxb3, etamaxb4, etamaxc4} =

{k0, a0, b0, a2, b3, b4, c4} /. nlmrEtamax["BestFitParameters"];

{ detamaxk0, detamaxa0, detamaxb0, detamaxa2, detamaxb3, detamaxb4, detamaxc4} =

nlmrEtamax["ParameterErrors"];
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Fitting function: f(x=w,y=ρRMS/90.) = k0 + x a0 + b0 x - (a2 + b3 y) Tanhb4 y + c4 y2 (A7)

Fit : η0
max

(w,ρRMS) = 45.0312 +

w 26.0538 + 5.02436 w - (-25.9412 - 0.0154835 ρRMS) Tanh0.419659 ρRMS - 0.00438664 ρRMS2 (A8)

Estimated variance = 0.00273034

General : Exp[-1684.47] is too small to represent as a normalized machine number; precision may be lost.

General : Exp[-952.777] is too small to represent as a normalized machine number; precision may be lost.

Parameter Table:

Estimate Standard Error t-Statistic P-Value

k0 45.0312 0.00973317 4626.57 0.

a0 26.0538 0.144879 179.831 2.33658 ×10-308

b0 5.02436 0.390186 12.8768 1.59494 ×10-30

a2 -25.9412 0.0638031 -406.583 0.

b3 -1.39351 0.142475 -9.78073 8.48348 ×10-20

b4 37.7693 0.228664 165.174 2.35157 ×10-297

c4 -35.5318 0.28065 -126.605 4.33004 ×10-263

In[130]:= etamaxRhoFit[w_, ρRMS_] := Normal[nlmrEtamax] /. {x  w, y  ρRMS / 90.}

In[131]:= plotRhoEtamax[iN_] :=

Plot[etamaxRhoFit[wList〚iN〛, ρ], {ρ, 0., 80.}, PlotPoints  200, PlotRange  All,

PlotStyle  colornSrcList〚iN〛 ];

In[132]:= eta0MaxVSRhoFit =

Show[Table[Show[{lpRhoη0max[iN], plotRhoEtamax[iN]}], {iN, Length[nSrcList]}],

ImageSize  72 × 5]
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Figure A8: Fit to Library data for the parameter η0
max in Eq. A3, sorted by number of sources N.
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In[135]:= sortPercentDiffEtamaxfit =

Sort[Flatten[Table[100. Abs[(η0maxi[i] - etamaxRhoFit[wi[i], ρRMSi[i]]) / η0maxi[i]],

{i, Length[fitData]}]]] ;

ListPlotsortPercentDiffEtamaxfit , PlotRange  All, FrameLabel  "", " % diff η0
max ",

PlotLabel  "% diff of the η0
max fit ", GridLines  Automatic, Frame  True
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Figure A9: The percent difference of fit

to Library data for η0
max. The mean %diff of the fit to data is

0.072796%, with a standard dev. of 0.0642858% . The largest %diff = 0.43139%.

A4c.  Fit σmin

In[138]:= wrSigmamin = Table[{wi[i], rRMSi[i], σmini[i]}, {i, Length[fitData]}];

In[139]:= nlmrSigmamindegA11 = NonlinearModelFitwrSigmamin,

+
x

4.
(a0 + b1 y - (a2 + b2 x) Tanh[ (a4 + b4 y )]) , {{a0, 74.5}, {b1, 0.}, {a2, 4.08},

{b2, 10.76}, {a4, -1.338}, {b4, 208.}}, {x, y}, MaxIterations  1000;

{ sigmamina0, sigmaminb1, sigmamina2, sigmaminb2, sigmamina4, sigmaminb4} =

{a0, b1, a2, b2, a4, b4} /. nlmrSigmamindegA11["BestFitParameters"];

{ dsigmamina0, dsigmaminb1, dsigmamina2, dsigmaminb2, dsigmamina4, dsigmaminb4} =

nlmrSigmamindegA11["ParameterErrors"];
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Fitting function: f(x=w,y=ρRMS/90.) = 0.25 x (a0 + b1 y - (a2 + b2 x) Tanh[a4 + b4 y]) (A9)

Fit : σ
min

(w,ρRMS) = 0.25 w

(75.2003 - 0.0211894 ρRMS + (4.59779 + 16.1635 w) Tanh[0.649259 - 0.924249 ρRMS]) (A10)

Estimated variance = 0.00103303

General : Exp[-769.661] is too small to represent as a normalized machine number; precision may be lost.

Parameter Table:

Estimate Standard Error t-Statistic P-Value

a0 75.2003 0.310149 242.466 0.

b1 -1.90705 0.319112 -5.97611 6.73711 ×10-9

a2 4.59779 0.334513 13.7447 2.12505 ×10-33

b2 16.1635 0.701285 23.0484 2.43927 ×10-67

a4 -0.649259 0.0726211 -8.94037 4.79131 ×10-17

b4 83.1824 4.25944 19.5289 1.11831 ×10-54

In[146]:= Clear[sigmaminRhoFit]

sigmaminRhoFit[w_, ρRMS_] := Normal[nlmrSigmamindegA11] /. {x  w, y  ρRMS / 90.}

In[148]:= plotRhoSigmamin[iN_] := Plot[sigmaminRhoFit[wList〚iN〛, ρ], {ρ, 0., 90.}, PlotPoints  500,

PlotStyle  colornSrcList〚iN〛, PlotRange  All ];

In[149]:= iN = 2;

Show[{lpρSigmamin[iN], plotRhoSigmamin[iN]}]

Clear[iN]
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Figure A10: Fit to Library data. For an active choice of N,

the parameter σ
min in Eqs. 6 and A1 plotted versus the RMS radius ρRMS.
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In[154]:= sigma0MinVSRhoFit =

Show[Table[Show[{lpρSigmamin[iN], plotRhoSigmamin[iN]}], {iN, Length[nSrcList]}],

ImageSize  72 × 5]
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Figure A11: Fit to Library data of σ
min curves. Sorted by number of sources

N, the parameter σ
min in Eqs. 6 and A1 plotted versus the RMS radius ρRMS.

In[157]:= sortPercentDiffSigmaminfit =

Sort[Flatten[Table[100. Abs[(σmini[i] - sigmaminRhoFit[wi[i], ρRMSi[i]]) / σmini[i]],

{i, Length[fitData]}]]] ;

ListPlotsortPercentDiffSigmaminfit , PlotRange  All, FrameLabel  "", " % diff σ
min ",

PlotLabel  "% diff. of the σ
min fit", GridLines  Automatic, Frame  True
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Figure A12: The percent difference of the

fit to Library data for σ
min. The mean % diff of the fit to data is

1.09052%, with a standard dev. of 0.763096% . The largest % diff = 3.71061%.

A4d.  Fit σmax

In[160]:= wrSigmamax = Table[{wi[i], rRMSi[i], σmaxi[i]}, {i, Length[fitData]}];

In[161]:= nlmrSigmamaxdegA10 = NonlinearModelFitwrSigmamax,

+
x

4.
(a0 + b1 y - (a2 + b2 x) Tanh[ (a4 + b4 y )]) , {{a0, 74.5}, {b1, 0.}, {a2, 4.08},

{b2, 10.76}, {a4, -1.338}, {b4, 208.}}, {x, y}, MaxIterations  1000;

{ sigmamaxa0, sigmamaxb1, sigmamaxa2, sigmamaxb2, sigmamaxa4, sigmamaxb4} =

{a0, b1, a2, b2, a4, b4} /. nlmrSigmamaxdegA10["BestFitParameters"];

{ dsigmamaxa0, dsigmamaxb1, dsigmamaxa2, dsigmamaxb2, dsigmamaxa4, dsigmamaxb4} =

nlmrSigmamaxdegA10["ParameterErrors"];

Fitting function: f(x=w,y=ρRMS/90.) = 0.25 x (a0 + b1 y - (a2 + b2 x) Tanh[a4 + b4 y]) (A11)

Fit : σ
max

(w,ρRMS) = 0.25 w

(75.1075 - 0.0217115 ρRMS + (4.57321 + 17.1236 w) Tanh[0.644104 - 0.885825 ρRMS]) (A12)

Estimated variance = 0.00114954

General : Exp[-761.757] is too small to represent as a normalized machine number; precision may be lost.

Parameter Table:

Estimate Standard Error t-Statistic P-Value

a0 75.1075 0.318428 235.87 0.

b1 -1.95403 0.338405 -5.77424 1.99981 ×10-8

a2 4.57321 0.345339 13.2427 1.37904 ×10-31

b2 17.1236 0.743267 23.0383 2.64748 ×10-67

a4 -0.644104 0.072725 -8.8567 8.65308 ×10-17

b4 79.7243 4.144 19.2385 1.29546 ×10-53

In[168]:= Clear[sigmamaxRhoFit]

sigmamaxRhoFit[w_, ρRMS_] := Normal[nlmrSigmamaxdegA10] /. {x  w, y  ρRMS / 90.}

In[170]:= plotRhoSigmamax[iN_] := Plot[sigmamaxRhoFit[wList〚iN〛, ρ], {ρ, 0., 80.}, PlotPoints  500,

PlotStyle  colornSrcList〚iN〛, PlotRange  All ];
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In[171]:= sigma0MaxVSRhoFit =

Show[Table[Show[{lpRhoσmax[iN], plotRhoSigmamax[iN]}], {iN, Length[nSrcList]}],

ImageSize  72 × 5]
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Figure A13: Fit to Library data of σ
max curves. Sorted by number of

sources N, the parameter σ
max in Eq. A3 plotted versus the RMS radius ρRMS.

In[174]:= sortPercentDiffSigmamaxfit =

Sort[Flatten[Table[100. Abs[(σmaxi[i] - sigmamaxRhoFit[wi[i], ρRMSi[i]]) / σmaxi[i]],

{i, Length[fitData]}]]] ;

ListPlotsortPercentDiffSigmamaxfit , PlotRange  All, FrameLabel  "", " % diff σ
max ",

PlotLabel  "% diff. of the σ
max fit", GridLines  Automatic, Frame  True
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Figure A14: The percent difference of the fit

to the Library data for σ
max. The mean % diff of the fit to data is

1.10264%, with a standard dev. of 0.767177% . The largest % diff = 3.68813%.
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A5. Uncertainty of the fitting formulas

In this section, we provide estimates of the uncertainties of the fitting functions for the parameters  η0
min, σmin, η0

max, σmax found 

in the previous section.  The uncertainties reflect the standard errors for the parameters like k0, a0, b0, a1, a2, b2, a3, ...., as set by 
Mathematica when it determined the fitting functions. 

Let us use the following fitting function for the η0
min data to illustrate the process.

f(x = w, y = ρRMS/90)  =  k0 - x(a0 + b0 x - (a2 + b3 y) Tanh[b4 y + c4 y2 ]) .

The parameters, k0,a0,b0,a2,b3,b4,c4, were varied to make f  fit the η0
min data. One gets best values of the parameters and  their 

standard errors with the Mathematica operation “NonlinearModelFit”. Denote the standard errors by dk0, da0, db0, da1, da2, db2, 
da3. Each standard error drives its associated parameter to make the distribution decrease to some standard fraction of its peak value.

We want a one-sigma fit.  To get curves above and below the best curve that enclose 68% of the data points, we adjusted the 

standard errors by a common factor. See Fig. A16 for range of fits for η0
min.

The results are three functions, big, best and small. The range from the small to the big value curve contains 68% of the data 
points.

Definitions:

w1; ρ1 ; ρ2  values to use in examples

% differences between Library data and fits

percentDiffEtaminfitnSrc   for  η0
min

percentDiffEtamaxfitnSrc   for  η0
max

percentDiffsigmaminfitnSrc  for  σmin

percentDiffsigmamaxfitnSrc  for  σmax

derivative of fits with respect to the fit’s parameters

detamindp for  η0
min

detamaxdp for  η0
max

dsigmamindp for  σmin

dsigmamaxdp for  σmax

sign*  the sign of *

One-sigma fits. Between the larger formula, e.g. etaminFitbig, and the smaller, e.g. etaminFitsmall, there are 68% of the data points 
included. 

etaminrFitbig and etaminFitsmall   for  η0
min

etamaxFitbig and etamaxFitsmall   for  η0
max

sigmaminFitbig and sigmaminFitsmall  for  σmin

sigmamaxFitbig and sigmamaxFitsmall   for  σmax

inbounds    A data point is “inbounds” if it is between the big and small values allowed by the fit.

A5a.  Uncertainty of the η0
min formulas

In[177]:= w1 = 16-1/2.; ρ1 = 24(*degrees*); ρ2 = 3(*degrees*);

In[178]:= percentDiffEtaminfitnSrc[iN_] := Table[

Abs[100. (η0mini[i] - etaminRhoFit[wi[i], ρRMSi[i]]) / η0mini[i]], {i, idsFORnSrc[iN]}]
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In[179]:= ListPlot

{Table[{nSrcList〚iN〛, Max[percentDiffEtaminfitnSrc[iN]]}, {iN, Length[nSrcList]}],

Table[{nSrcList〚iN〛, mean[percentDiffEtaminfitnSrc[iN]]}, {iN, Length[nSrcList]}]},

Ticks  Tablem2, {m, {5, 10, 15, 18, 25, 30}}, Automatic,

PlotRange  {{0., 1000.}, All}, PlotLabel  "η0
min: Compare fit to data",

AxesLabel  {"N sources", "%"}, PlotLegends  {"Max % diff.", "mean % diff."}
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Figure A15: Percent difference stats of the fit with the Library data as a function of the

number of sources N. For each N, this graph shows the mean % diff and the largest %diff of

the fitting function for η0
min, over the set of all sample sizes ρRMS.

In[181]:= (*Determine whether to add or subtract the standard errors of each parameter*)

(*by finding the sign of the derivative wrt each parameter.*)

detamindp[x_, y_, p_] := Dk0 - x a0 + b0 x - (a2 + b3 y ) Tanh b4 y + c4 y2, p

signdetamindp[x_, y_, p_] :=

Simplify[Sign[detamindp[x, y, p] /. nlmrEtamin["BestFitParameters"]], {x > 0, y > 0}]

detamindp[x, y, b4];

signdetamindp[x, y, b4];

Print["Table of derivatives and their sign, {parameter p, df/dp, sign(df/dp)}:"]

Table[{p, detamindp[x, y, p], signdetamindp[x, y, p]}, {p, {k0, a0, b0, a2, b3, b4, c4}}]

Table of derivatives and their sign, {parameter p, df/dp, sign(df/dp)}:

Out[186]= {k0, 1, 1}, {a0, -x, -1}, b0, -x2, -1,

a2, x Tanhb4 y + c4 y2, Sign[Tanh[(37.9072 - 35.7013 y) y]],

b3, x y Tanhb4 y + c4 y2, Sign[Tanh[(37.9072 - 35.7013 y) y]],

b4, x y (a2 + b3 y) Sechb4 y + c4 y2
2
, -1, c4, x y2 (a2 + b3 y) Sechb4 y + c4 y2

2
, -1

In[187]:= (*Adjust the range of the big and small curves to contain 68% of the data.*)

adjust1 = 1.;

Clear[etaminFitbig, etaminFitsmall]
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In[189]:= etaminFitbig[w_, ρ_] :=

etaminFitbig[w, ρ] = k0 - x a0 + (*5.4*)b0 x - (a2 + b3 y ) Tanh b4 y + c4 y2  /. {

k0  etamink0 + adjust1 signdetamindp[x, y, k0] detamink0,

a0  etamina0 + adjust1 signdetamindp[x, y, a0] detamina0,

b0  etaminb0 + adjust1 signdetamindp[x, y, b0] detaminb0,

a2  etamina2 + adjust1 signdetamindp[x, y, a2] detamina2,

b3  etaminb3 + adjust1 signdetamindp[x, y, b3] detaminb3,

b4  etaminb4 + adjust1 signdetamindp[x, y, b4] detaminb4,

c4  etaminc4 + adjust1 signdetamindp[x, y, c4] detaminc4} /. {x  w, y  ρ / 90.}

etaminFitbig[w1, ρ2];

In[191]:= etaminFitsmall[w_, ρ_] :=

etaminFitsmall[w, ρ] = k0 - x a0 + (*5.4*)b0 x - (a2 + b3 y ) Tanh b4 y + c4 y2 /. {

k0  etamink0 - adjust1 signdetamindp[x, y, k0] detamink0,

a0  etamina0 - adjust1 signdetamindp[x, y, a0] detamina0,

b0  etaminb0 - adjust1 signdetamindp[x, y, b0] detaminb0,

a2  etamina2 - adjust1 signdetamindp[x, y, a2] detamina2,

b3  etaminb3 - adjust1 signdetamindp[x, y, b3] detaminb3,

b4  etaminb4 - adjust1 signdetamindp[x, y, b4] detaminb4,

c4  etaminc4 - adjust1 signdetamindp[x, y, c4] detaminc4} /. {x  w, y  ρ / 90.}

etaminFitsmall[w1, ρ2];

In[193]:= (*A data point is "inbounds" if it is

between the big and small values allowed by the fit.*)

inbounds1 = {};

For[i = 1, i ≤ Length[fitData], i++,

If[ (etaminFitsmall[wi[i], ρRMSi[i]] < η0mini[i] < etaminFitbig[wi[i], ρRMSi[i]]) ,

AppendTo[inbounds1, i] ] ]

N[Length[inbounds1] / Length[fitData]];

100. N[Length[inbounds1] / Length[fitData]];

In[197]:= N[Length[inbounds1] / Length[fitData]];(*Check and change adjust1 if needed*)

For example, the big, best, and small values

of η
min determined by the Library fitting formulas at N = w-2

=

16. and ρRMS = 90 rRMS = 3° are {32.7942, 32.6929, 32.5918}, in degrees.

For example, the big, best, and small values

of η
min determined by the Library fitting formulas at N = w-2

=

16. and ρRMS = 90 rRMS = 24° are {31.6648, 31.5678, 31.4707}, in degrees.

To represent a 'one sigma' range, the big and small values of η
min determined by

the Library fitting formulas should enclose 68% of the data points. There are

68% of the data points enclosed between the big and small curves.
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In[201]:= iN = 1;

ShowPlot

{etaminFitsmall[wList〚iN〛, ρ], etaminRhoFit[wList〚iN〛, ρ], etaminFitbig[wList〚iN〛, ρ]},

{ρ, 0.001, 80.}, PlotStyle  {Red, Green, Blue}, PlotRange  {{0, 80},

{Round[etaminRhoFit[wList〚iN〛, 50]] - 1.5, Round[etaminRhoFit[wList〚iN〛, 0]] + 1.0}},

GridLines  Automatic, Frame  True, FrameLabel  "ρ, deg", "η", "η0
min vs ρRMS",

FrameTicks  { {Table[{j, ToString[j] "°"}, {j, Round[etaminRhoFit[wList〚iN〛, 50.] -

1.5], Round[etaminRhoFit[wList〚iN〛, 0] + 1.5]}], None} ,

{Table[i, {i, 0, 90, 10}], None} }, ImageSize  72 × 4, lpRhoη0min[iN],

Graphics[{Text[StyleForm[ "N = ", FontSize  12, FontWeight  "Plain"],

{50, etaminRhoFit[wList〚iN〛, 50.] + 0.75}],

Text[StyleForm[ ToString[nSrcList〚iN〛, InputForm, NumberMarks  False],

FontSize  12, FontWeight  "Plain"], {60, etaminRhoFit[wList〚iN〛, 50.] + 0.75}]}]

Print"Figure A16: One sigma plus/minus range of the fit

to Library data for η0
min. For an active choice of N, here N = ",

Round[nSrcList〚iN〛], ", the fit to parameter η0
min in Eq. A1 plotted versus

the RMS radius ρRMS. Big, Best, Small are shaded Blue, Green, Red. "

Clear[iN]

Out[202]=
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Figure A16: One sigma plus/minus range of the

fit to Library data for η0
min. For an active choice of N, here N =

9, the fit to parameter η0
min in Eq. A1 plotted versus the RMS radius

ρRMS. Big, Best, Small are shaded Blue, Green, Red.

A5b.  Uncertainty of the η0
max formulas

In[205]:= w1 = 16-1/2.; ρ1 = 24(*degrees*); ρ2 = 3(*degrees*);

In[206]:= percentDiffEtamaxfitnSrc[iN_] := Table[

Abs[100. (η0maxi[i] - etamaxRhoFit[wi[i], ρRMSi[i]]) / η0maxi[i]], {i, idsFORnSrc[iN]}]

44     20220512InterpolateAndFormula7.nb



In[207]:= ListPlot

{Table[{nSrcList〚iN〛, Max[percentDiffEtamaxfitnSrc[iN]]}, {iN, Length[nSrcList]}],

Table[{nSrcList〚iN〛, mean[percentDiffEtamaxfitnSrc[iN]]}, {iN, Length[nSrcList]}]},

Ticks  Tablem2, {m, {10, 15, 18, 25, 30}}, Automatic,

PlotLabel  "η0
max: Compare fit to data", AxesLabel  {"N sources", "%"},

PlotRange  {{0., 1000.}, All}, PlotLegends  {"Max % diff.", "mean % diff."}
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Figure A17: The Library data to fit %diff stats as a function of source

number N. For each N, this graph shows the mean % difference and the largest

%diff of the fitting function for η0
max, over the set of sample sizes ρRMS for N.

In[209]:= (*Determine whether to add or subtract the standard errors of each parameter*)

(*by finding the sign of the derivative wrt each parameter.*)

detamaxdp[x_, y_, p_] := Dk0 + x a0 + b0 x - (a2 + b3 y ) Tanh b4 y + c4 y2 , p

signdetamaxdp[x_, y_, p_] :=

Simplify[Sign[detamaxdp[x, y, p] /. nlmrEtamax["BestFitParameters"]], {x > 0, y > 0}]

detamaxdp[x, y, b4];

signdetamaxdp[x, y, b4];

Print["Table of derivatives and their sign, {parameter p, df/dp, sign(df/dp)}:"]

Table[{p, detamaxdp[x, y, p], signdetamaxdp[x, y, p]}, {p, {k0, a0, b0, a2, b3, b4, c4}}]

Table of derivatives and their sign, {parameter p, df/dp, sign(df/dp)}:

Out[214]= {k0, 1, 1}, {a0, x, 1}, b0, x2, 1,

a2, -x Tanhb4 y + c4 y2, -Sign[Tanh[(37.7693 - 35.5318 y) y]],

b3, -x y Tanhb4 y + c4 y2, -Sign[Tanh[(37.7693 - 35.5318 y) y]],

b4, -x y (a2 + b3 y) Sechb4 y + c4 y2
2
, 1, c4, -x y2 (a2 + b3 y) Sechb4 y + c4 y2

2
, 1

In[215]:= (*Adjust the range of the big and small curves to contain 68% of the data.*)

adjust2 = 1.067;

Clear[etamaxFitbig, etamaxFitsmall]
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In[217]:= etamaxFitbig[w_, ρ_] :=

etamaxFitbig[w, ρ] = k0 + x a0 + (*5.4*)b0 x - (a2 + b3 y ) Tanh b4 y + c4 y2  /. {

k0  etamaxk0 + adjust2 signdetamaxdp[x, y, k0] detamaxk0,

a0  etamaxa0 + adjust2 signdetamaxdp[x, y, a0] detamaxa0,

b0  etamaxb0 + adjust2 signdetamaxdp[x, y, b0] detamaxb0,

a2  etamaxa2 + adjust2 signdetamaxdp[x, y, a2] detamaxa2,

b3  etamaxb3 + adjust2 signdetamaxdp[x, y, b3] detamaxb3,

b4  etamaxb4 + adjust2 signdetamaxdp[x, y, b4] detamaxb4,

c4  etamaxc4 + adjust2 signdetamaxdp[x, y, c4] detamaxc4} /. {x  w, y  ρ / 90.}

etamaxFitbig[w1, ρ2];

In[219]:= etamaxFitsmall[w_, ρ_] :=

etamaxFitsmall[w, ρ] = k0 + x a0 + (*5.4*)b0 x - (a2 + b3 y ) Tanh b4 y + c4 y2  /. {

k0  etamaxk0 - adjust2 signdetamaxdp[x, y, k0] detamaxk0,

a0  etamaxa0 - adjust2 signdetamaxdp[x, y, a0] detamaxa0,

b0  etamaxb0 - adjust2 signdetamaxdp[x, y, b0] detamaxb0,

a2  etamaxa2 - adjust2 signdetamaxdp[x, y, a2] detamaxa2,

b3  etamaxb3 - adjust2 signdetamaxdp[x, y, b3] detamaxb3,

b4  etamaxb4 - adjust2 signdetamaxdp[x, y, b4] detamaxb4,

c4  etamaxc4 - adjust2 signdetamaxdp[x, y, c4] detamaxc4} /. {x  w, y  ρ / 90.}

etamaxFitsmall[w1, ρ2];

In[221]:= inbounds2 = {};

For[i = 1, i ≤ Length[fitData], i++,

If[ (etamaxFitsmall[wi[i], ρRMSi[i]] < η0maxi[i] < etamaxFitbig[wi[i], ρRMSi[i]]) ,

AppendTo[inbounds2, i] ] ]

N[Length[inbounds2] / Length[fitData]];

Round[100. N[Length[inbounds2] / Length[fitData]]];

In[225]:= 100. N[Length[inbounds2] / Length[fitData]];(*Check and change adjust2 if needed*)

For example, the big, best, and small values

of η
max determined by the Library fitting formulas at N = w-2

=

16. and ρRMS = 90 rRMS = 3° are {57.4194, 57.3129, 57.2062}, in degrees.

For example, the big, best, and small values

of η
max determined by the Library fitting formulas at N = w-2

=

16. and ρRMS = 90 rRMS = 24° are {58.5391, 58.4369, 58.3347}, in degrees.

To represent a 'one sigma' range, the big and small values of η
max determined by

the Library fitting formulas should enclose 68% of the data points. There are

68% of the data points enclosed between the big and small curves.
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In[229]:= iN = 8;

ShowPlot

{etamaxFitsmall[wList〚iN〛, ρ], etamaxRhoFit[wList〚iN〛, ρ], etamaxFitbig[wList〚iN〛, ρ]},

{ρ, 0.001, 80.}, PlotStyle  {Red, Green, Blue}, PlotRange  {{0, 80},

{Round[etamaxRhoFit[wList〚iN〛, 0]] - 1.5, Round[etamaxRhoFit[wList〚iN〛, 50.]] + 1.0}},

GridLines  Automatic, Frame  True, FrameLabel  "ρ, deg", "η", "η0
max vs ρRMS",

FrameTicks  { {Table[{j, ToString[j] "°"}, {j, Round[etamaxRhoFit[wList〚iN〛, 0.] - 1.5],

Round[etamaxRhoFit[wList〚iN〛, 50.] + 1.5]}], None} ,

{Table[i, {i, 0, 90, 10}], None} }, ImageSize  72 × 4, lpRhoη0max[iN],

Graphics[{Text[StyleForm[ "N = ", FontSize  12, FontWeight  "Plain"],

{50, etamaxRhoFit[wList〚iN〛, 50.] - 0.75}],

Text[StyleForm[ ToString[nSrcList〚iN〛, InputForm, NumberMarks  False],

FontSize  12, FontWeight  "Plain"], {60, etamaxRhoFit[wList〚iN〛, 50.] - 0.75}]}]

Print"Figure A18: Plus/minus range of the fit to

Library data for η0
max. For an active choice of N , here N = ",

Round[nSrcList〚iN〛], ", the fit to parameter η0
max in Eq. A3 plotted versus

the RMS radius ρRMS. Big, Best, Small are shaded Blue, Green, Red. "

Clear[iN]

Out[230]=
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Figure A18: Plus/minus range of the fit

to Library data for η0
max. For an active choice of N , here N =

100, the fit to parameter η0
max in Eq. A3 plotted versus the RMS radius

ρRMS. Big, Best, Small are shaded Blue, Green, Red.

A5c.  Uncertainty of the σmin formulas

In[233]:= w1 = 16-1/2.; ρ1 = 24(*degrees*); ρ2 = 3(*degrees*);

In[234]:= percentDiffsigmaminfitnSrc[iN_] := Table[

Abs[100. (σmini[i] - sigmaminRhoFit[wi[i], ρRMSi[i]]) / σmini[i]], {i, idsFORnSrc[iN]}]
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In[235]:= ListPlot

{Table[{nSrcList〚iN〛, Max[percentDiffsigmaminfitnSrc[iN]]}, {iN, Length[nSrcList]}],

Table[{nSrcList〚iN〛, mean[percentDiffsigmaminfitnSrc[iN]]}, {iN, Length[nSrcList]}]},

Ticks  Tablem2, {m, {10, 15, 18, 25, 30}}, Automatic,

PlotLabel  "σmin: Compare fit to data", AxesLabel  {"N sources", "%"},

PlotRange  {{0., 1000.}, All}, PlotLegends  {"Max % diff.", "mean % diff."}
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Figure A19: The Library data to fit %diff stats as a function of source

number N. For each N, this graph shows the mean % difference and the largest

%diff of the fitting function for σ
min, over the set of sample sizes ρRMS for N.

In[237]:= (*Determine whether to add or subtract the standard errors of each parameter*)

(*by finding the sign of the derivative wrt each parameter.*)

dsigmamindp[x_, y_, p_] := D
x

4.
(a0 + b1 y - (a2 + b2 x) Tanh[ (a4 + b4 y )]) , p

signdsigmamindp[x_, y_, p_] := Simplify[

Sign[dsigmamindp[x, y, p] /. nlmrSigmamindegA11["BestFitParameters"]], {x > 0, y > 0}]

dsigmamindp[x, y, b4];

signdsigmamindp[x, y, b4];

Print["Table of derivatives and their sign, {parameter p, df/dp, sign(df/dp)}:"]

Table[{p, dsigmamindp[x, y, p], signdsigmamindp[x, y, p]}, {p, {a0, b1, a2, b2, a4, b4}}]

Table of derivatives and their sign, {parameter p, df/dp, sign(df/dp)}:

Out[242]= {a0, 0.25 x, 1}, {b1, 0.25 x y, 1},

{a2, -0.25 x Tanh[a4 + b4 y], Sign[Tanh[0.649259 - 83.1824 y]]},

b2, -0.25 x2 Tanh[a4 + b4 y], Sign[Tanh[0.649259 - 83.1824 y]],

a4, -0.25 x (a2 + b2 x) Sech[a4 + b4 y]2, -1, b4, -0.25 x (a2 + b2 x) y Sech[a4 + b4 y]2, -1

In[243]:= (*Adjust the range of the big and small curves to contain 68% of the data.*)

adjust3 = 1.13;

Clear[sigmaminFitbig, sigmaminFitsmall]
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In[245]:= sigmaminFitbig[w_, ρ_] :=

sigmaminFitbig[w, ρ] =
x

4.
(a0 + b1 y - (a2 + b2 x) Tanh[ (a4 + b4 y )]) /. {

a0  sigmamina0 + adjust3 signdsigmamindp[x, y, a0] dsigmamina0,

b1  sigmaminb1 + adjust3 signdsigmamindp[x, y, b1] dsigmaminb1,

a2  sigmamina2 + adjust3 signdsigmamindp[x, y, a2] dsigmamina2,

b2  sigmaminb2 + adjust3 signdsigmamindp[x, y, b2] dsigmaminb2,

a4  sigmamina4 + adjust3 signdsigmamindp[x, y, a4] dsigmamina4,

b4  sigmaminb4 + adjust3 signdsigmamindp[x, y, b4] dsigmaminb4} /.

{x  w, y  ρ / 90.}

sigmaminFitbig[w1, ρ2];

In[247]:= sigmaminFitsmall[w_, ρ_] :=

sigmaminFitsmall[w, ρ] =
x

4.
(a0 + b1 y - (a2 + b2 x) Tanh[ (a4 + b4 y )]) /. {

a0  sigmamina0 - adjust3 signdsigmamindp[x, y, a0] dsigmamina0,

b1  sigmaminb1 - adjust3 signdsigmamindp[x, y, b1] dsigmaminb1,

a2  sigmamina2 - adjust3 signdsigmamindp[x, y, a2] dsigmamina2,

b2  sigmaminb2 - adjust3 signdsigmamindp[x, y, b2] dsigmaminb2,

a4  sigmamina4 - adjust3 signdsigmamindp[x, y, a4] dsigmamina4,

b4  sigmaminb4 - adjust3 signdsigmamindp[x, y, b4] dsigmaminb4} /.

{x  w, y  ρ / 90.}

sigmaminFitsmall[w1, ρ2];

In[249]:= inbounds3 = {};

For[i = 1, i ≤ Length[fitData], i++,

If[ (sigmaminFitsmall[wi[i], ρRMSi[i]] < σmini[i] < sigmaminFitbig[wi[i], ρRMSi[i]]) ,

AppendTo[inbounds3, i] ] ]

N[Length[inbounds3] / Length[fitData]];

Round[100. N[Length[inbounds3] / Length[fitData]]];

In[253]:= 100. N[Length[inbounds3] / Length[fitData]];(*Check and change adjust3 if needed*)

The big, best, and small values of σ
min determined by the Library fitting formulas at N = w-2

=

16. and ρRMS = 90 rRMS = 3° are {4.23768, 4.17136, 4.10753}, in degrees.

The big, best, and small values of σ
min determined by the Library fitting formulas at N = w-2

=

16. and ρRMS = 90 rRMS = 24° are {4.19224, 4.12832, 4.0644}, in degrees.

To represent a 'one sigma' range, the big and small values of σ
min determined by

the Library fitting formulas should enclose 68% of the data points. There are

68% of the data points enclosed between the big and small curves.
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In[257]:= iN = 1;

ShowPlot{sigmaminFitsmall[wList〚iN〛, ρ], sigmaminRhoFit[wList〚iN〛, ρ],

sigmaminFitbig[wList〚iN〛, ρ]}, {ρ, 0.001, 80.}, PlotStyle  {Red, Green, Blue},

PlotRange  {{0, 80}, {Round[sigmaminRhoFit[wList〚iN〛, 50]] - 0.5,

Round[sigmaminRhoFit[wList〚iN〛, 0]] + 0.5}}, GridLines  Automatic,

Frame  True, FrameLabel  "ρ, deg", "σ", "σmin vs ρRMS", FrameTicks 

{ {Table[{j, ToString[j] "°"}, {j, Round[sigmaminRhoFit[wList〚iN〛, 50.] - 1.5],

Round[sigmaminRhoFit[wList〚iN〛, 0] + 1.5], 0.5}], None} ,

{Table[i, {i, 0, 90, 10}], None} }, ImageSize  72 × 4, lpρSigmamin[iN],

Graphics[{Text[StyleForm[ "N = ", FontSize  12, FontWeight  "Plain"],

{50, sigmaminRhoFit[wList〚iN〛, 50.] + 0.35}],

Text[StyleForm[ ToString[nSrcList〚iN〛, InputForm, NumberMarks  False], FontSize  12,

FontWeight  "Plain"], {60, sigmaminRhoFit[wList〚iN〛, 50.] + 0.35}]}]

Print"Figure A20: Plus/minus range of the fit

to Library data for σ
min. For an active choice of N , here N = ",

nSrcList〚iN〛, ", the fit to parameter σ
min in Eqs. 6 and A1 plotted versus

the RMS radius ρRMS. Big, Best, Small are shaded Blue, Green, Red. "

Clear[iN]

Out[258]=
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Figure A20: Plus/minus range of the fit

to Library data for σ
min. For an active choice of N , here N =

9., the fit to parameter σ
min in Eqs. 6 and A1 plotted versus the RMS

radius ρRMS. Big, Best, Small are shaded Blue, Green, Red.

A5d.  Uncertainty of the σmax formulas

In[261]:= w1 = 16-1/2.; ρ1 = 24(*degrees*); ρ2 = 3(*degrees*);

In[262]:= percentDiffsigmamaxfitnSrc[iN_] := Table[

Abs[100. (σmaxi[i] - sigmamaxRhoFit[wi[i], ρRMSi[i]]) / σmaxi[i]], {i, idsFORnSrc[iN]}]
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In[263]:= ListPlot

{Table[{nSrcList〚iN〛, Max[percentDiffsigmamaxfitnSrc[iN]]}, {iN, Length[nSrcList]}],

Table[{nSrcList〚iN〛, mean[percentDiffsigmamaxfitnSrc[iN]]}, {iN, Length[nSrcList]}],

Table[{nSrcList〚iN〛, stanDev[percentDiffsigmamaxfitnSrc[iN]]},

{iN, Length[nSrcList]}]}, Ticks  Tablem2, {m, {10, 15, 18, 25, 30}}, Automatic,

PlotLabel  "σmax: Compare fit to data", AxesLabel  {"N sources", "%"},

PlotRange  {{0., 1000.}, All},

PlotLegends  {"Max % diff.", "mean % diff.", "StanDev % diff"}

Out[263]=
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Figure A21: The Library data to fit %diff stats as a function of source

number N. For each N, this graph shows the mean % difference and the largest

%diff of the fitting function for σ
max, over the set of sample sizes ρRMS for N.

In[265]:= (*Determine whether to add or subtract the standard errors of each parameter*)

(*by finding the sign of the derivative wrt each parameter.*)

dsigmamaxdp[x_, y_, p_] := D
x

4.
(a0 + b1 y - (a2 + b2 x) Tanh[ (a4 + b4 y )]) , p

signdsigmamaxdp[x_, y_, p_] := Simplify[

Sign[dsigmamaxdp[x, y, p] /. nlmrSigmamaxdegA10["BestFitParameters"]], {x > 0, y > 0}]

dsigmamaxdp[x, y, b4];

signdsigmamaxdp[x, y, b4];

Print["Table of derivatives and their sign, {parameter p, df/dp, sign(df/dp)}:"]

Table[{p, dsigmamaxdp[x, y, p], signdsigmamaxdp[x, y, p]}, {p, {a0, b1, a2, b2, a4, b4}}]

Table of derivatives and their sign, {parameter p, df/dp, sign(df/dp)}:

Out[270]= {a0, 0.25 x, 1}, {b1, 0.25 x y, 1},

{a2, -0.25 x Tanh[a4 + b4 y], Sign[Tanh[0.644104 - 79.7243 y]]},

b2, -0.25 x2 Tanh[a4 + b4 y], Sign[Tanh[0.644104 - 79.7243 y]],

a4, -0.25 x (a2 + b2 x) Sech[a4 + b4 y]2, -1, b4, -0.25 x (a2 + b2 x) y Sech[a4 + b4 y]2, -1

In[271]:= (*Adjust the range of the big and small curves to contain 68% of the data.*)

adjust4 = 1.07587;

Clear[sigmamaxFitbig, sigmamaxFitsmall]
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In[273]:= sigmamaxFitbig[w_, ρ_] :=

sigmamaxFitbig[w, ρ] =
x

4.
(a0 + b1 y - (a2 + b2 x) Tanh[ (a4 + b4 y )]) /. {

a0  sigmamaxa0 + adjust4 signdsigmamaxdp[x, y, a0] dsigmamaxa0,

b1  sigmamaxb1 + adjust4 signdsigmamaxdp[x, y, b1] dsigmamaxb1,

a2  sigmamaxa2 + adjust4 signdsigmamaxdp[x, y, a2] dsigmamaxa2,

b2  sigmamaxb2 + adjust4 signdsigmamaxdp[x, y, b2] dsigmamaxb2,

a4  sigmamaxa4 + adjust4 signdsigmamaxdp[x, y, a4] dsigmamaxa4,

b4  sigmamaxb4 + adjust4 signdsigmamaxdp[x, y, b4] dsigmamaxb4} /.

{x  w, y  ρ / 90.}

sigmamaxFitbig[w1, ρ2];

In[275]:= sigmamaxFitsmall[w_, ρ_] :=

sigmamaxFitsmall[w, ρ] =
x

4.
(a0 + b1 y - (a2 + b2 x) Tanh[ (a4 + b4 y )]) /. {

a0  sigmamaxa0 - adjust4 signdsigmamaxdp[x, y, a0] dsigmamaxa0,

b1  sigmamaxb1 - adjust4 signdsigmamaxdp[x, y, b1] dsigmamaxb1,

a2  sigmamaxa2 - adjust4 signdsigmamaxdp[x, y, a2] dsigmamaxa2,

b2  sigmamaxb2 - adjust4 signdsigmamaxdp[x, y, b2] dsigmamaxb2,

a4  sigmamaxa4 - adjust4 signdsigmamaxdp[x, y, a4] dsigmamaxa4,

b4  sigmamaxb4 - adjust4 signdsigmamaxdp[x, y, b4] dsigmamaxb4} /.

{x  w, y  ρ / 90.}

sigmamaxFitsmall[w1, ρ2];

In[277]:= inbounds4 = {};

For[i = 1, i ≤ Length[fitData], i++,

If[ (sigmamaxFitsmall[wi[i], ρRMSi[i]] < σmaxi[i] < sigmamaxFitbig[wi[i], ρRMSi[i]]) ,

AppendTo[inbounds4, i] ] ]

N[Length[inbounds4] / Length[fitData]];

In[280]:= N[Length[inbounds4] / Length[fitData]];(*Check and change adjust4 if needed*)

The big, best, and small values of σ
max determined by the Library fitting formulas at N = w-2

=

16. and ρRMS = 90(rRMS) = 3° are {4.22292, 4.15615, 4.09208}, in degrees.

The big, best, and small values of σ
max determaxed by the Library fitting formulas at N = w-2

=

16. and ρRMS = 90(rRMS) = 24° are {4.17146, 4.10827, 4.04507}, in degrees.

To represent a 'one sigma' range, the big and small values of σ
max determined by

the Library fitting formulas should enclose 68% of the data points. There are

68% of the data points enclosed between the big and small curves.

52     20220512InterpolateAndFormula7.nb



In[284]:= iN = 8;

ShowPlot{sigmamaxFitsmall[wList〚iN〛, ρ],

sigmamaxRhoFit[wList〚iN〛, ρ], sigmamaxFitbig[wList〚iN〛, ρ]}, {ρ, 0.001, 80.},

PlotStyle  {Red, Green, Blue}, PlotRange  {{0., 80.}, {0., 3.5}},

(*PlotRange{{0,80},{Round[sigmamaxRhoFit[wList〚iN〛,50]]-0.5,

Round[sigmamaxRhoFit[wList〚iN〛,0]]+0.5}},*)GridLines  Automatic,

Frame  True, FrameLabel  "ρ, deg", "σ", "σmax vs ρRMS", FrameTicks 

{ {Table[{j, ToString[j] "°"}, {j, Round[sigmamaxRhoFit[wList〚iN〛, 50.] - 1.5],

Round[sigmamaxRhoFit[wList〚iN〛, 0] + 1.5], 0.5}], None} ,

{Table[i, {i, 0, 90, 10}], None} }, ImageSize  72 × 4, lpRhoσmax[iN],

Graphics[{Text[StyleForm[ "N = ", FontSize  12, FontWeight  "Plain"],

{50, sigmamaxRhoFit[wList〚iN〛, 50.] + 0.35}],

Text[StyleForm[ ToString[nSrcList〚iN〛, InputForm, NumberMarks  False], FontSize  12,

FontWeight  "Plain"], {60, sigmamaxRhoFit[wList〚iN〛, 50.] + 0.35}]}]

Clear[iN]

Out[285]=
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Figure A22: Plus/minus range of the fit to Library data for σ
max.

For an active choice of N , the fit to parameter σ
max in Eq. A3 plotted

versus the RMS radius ρRMS. Big, Best, Small are shaded Blue, Green, Red.

A6. Three observed samples. How do the methods compare?

Previously, we investigated the alignment and avoidance correlations of three observed samples, 27 QSOs, 13 QSOs, 99 Stars, 

Refs.4,5,6.  With each sample, we applied the Hub Test, calculating the alignment angle function  η(H) in Eq. (1) on a grid of points 

on the Celestial Sphere. We found and saved the extremes, ηmin and ηmax,  of  η(H).    The smallest alignment angle ηmin reflects the 

best alignment of the vectors with points on the Sphere and the largest alignment angle ηmax shows their mutual avoidance of points 

on the Sphere. The  ηmin and ηmax measure the correlated behavior of the vectors. See Table A2 for the values of these quantities for 

the three samples.

Judging the correlations requires estimating the significance of the  ηmin and ηmax. How likely is it that random directions at the 

sources would do better? To answer this question, we applied Direct Method A. We made thousands of random runs by replacing the 

polarization directions with random directions and calculating  η(H) and recording the extremes, ηmin and ηmax,  of  η(H). Histograms 

of the two extremes yields their probability distributions by fitting with a suitable function. The fitting function formula has two 

parameters, the location of the distribution’s peak, η0
min and the distribution’s half-width   σmin. Two more parameters, η0

max and 

σmax, determine the probability distribution for the avoidance angle ηmax. See Table A3 for the parameters associated with the various 

probability distributions for the three samples. The method is Direct Method A. These three samples have significance determined by 
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the most reliable method, Method A, and we can use the three samples to check the accuracy of Interpolation Method B and Formula 
Method C.

 Interpolation Method B and Formula Method C depend on a Library of parameters η0
min ,  σmin, η0

max and σmax determined for 

various numbers of sources N and region size ρRMS, by applying Direct Method A to each of the simulation samples (N,ρRMS). 
Methods B and C have been described above. In this section we compare Methods A, B, C, using the previously investigated samples 
of 27 QSOs, 13 QSOs, 99 Stars. 

threeSamplesObservedData:

1. Sample 2. N, number of sources 3. ρRMS, region’s root-mean-square radius 4. smallest alignment angle ηmin in degrees 5. 

largest avoidance angle ηmax in degrees

threeSamplesRandomRunParameters:

1. Sample 2. η0
min, most likely in random runs 3. dη0

min, standard error 4. σmin, half-width of random run distribution 5. 

dσmin, standard error 6. η0
max, most likely in random runs 7. dη0

max, standard error 8. σmax, half-width of random run 

distribution 9. dσmax, standard error 

The standard errors are determined by Mathematica when the histograms are fit.

A6a. Three observed samples, properties and calculations from data

Definitions:
threeSamplesObservedColumns, threeSamplesObserved  header and data for samples studied previously, Refs. 4,5,6
threeSamplesRandomRunColumns, threeSamplesRandomRunParameters header and  parameters found in previous work
threeSamplesPropertiesmin, threeSamplesDistParametersmin a portion of the above tables needed for Part I the Article

In[288]:= threeSamplesObservedColumns = {"Sample", "N", "ρRMS°", "ηmin°", "ηmax°"};

threeSamplesObserved =

"27 QSOs" 27 6.82492 21.094 66.660

"13 QSOs" 13 4.72812 10.865 62.665

"99 Stars" 99 6.83803 7.007 83.122

;

In[290]:= threeSamplesRandomRunColumns =

"Sample", "η0
min

°", "dη0
min

°", "σmin
°", "dσmin°", "η0

max
°", "dη0

max
°", "σmax

°", "dσmax°";

threeSamplesRandomRunParameters =

"27 QSOs" 34.923 0.029 3.272 0.034 55.200 0.031 3.279 0.037

"13 QSOs" 30.256 0.165 4.638 0.197 60.168 0.171 4.811 0.204

"99 Stars" 39.947 0.018 1.737 0.021 50.074 0.011 1.765 0.013

;

Sample N ρRMS, deg ηmin, deg ηmax, deg

27 QSOs 27 6.82492 21.094 66.66

13 QSOs 13 4.72812 10.865 62.665

99 Stars 99 6.83803 7.007 83.122

Table A2: Number of sources, root-mean-square radius, and extremes of the alignment angle

function η(H) for the three samples from previously 'published' work. See Refs. 4,5,6.
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Sample η0
min dη0

min σmin dσmin η0
max dη0

max σmax dσmax

27 QSOs 34.923 0.029 3.272 0.034 55.2 0.031 3.279 0.037

13 QSOs 30.256 0.165 4.638 0.197 60.168 0.171 4.811 0.204

99 Stars 39.947 0.018 1.737 0.021 50.074 0.011 1.765 0.013

Table A3: Parameters and their standard errors for the fits to the random run distributions Eqs.

(A1) and (A2), obtained with Direct Method A. All of the parameter values are in degrees.

The following section creates table for the article, Part I the Article. The article in Part I does not include the topic of avoidance, so 
“max” quantities are excluded.

In[296]:= (*This table is created for Part I the Article*)threeSamplesPropertiesmin =

Partition[Flatten[Table[threeSamplesObserved〚i, j〛, {i, 3}, {j, 4}]], 4]

Out[296]= {{27 QSOs, 27, 6.82492, 21.094},

{13 QSOs, 13, 4.72812, 10.865}, {99 Stars, 99, 6.83803, 7.007}}

In[297]:= (*This table is created for Part I the Article*)threeSamplesDistParametersmin =

Partition[Flatten[Table[{threeSamplesRandomRunParameters〚i, 1〛,

Around[threeSamplesRandomRunParameters〚i, 2〛, threeSamplesRandomRunParameters〚i, 3〛],

Around[threeSamplesRandomRunParameters〚i, 4〛,

threeSamplesRandomRunParameters〚i, 5〛]}, {i, 3}]], 3]

Out[297]= {{27 QSOs, 34.923 ±0.029, 3.272 ±0.034},

{13 QSOs, 30.26 ±0.17, 4.64 ±0.20}, {99 Stars, 39.947 ±0.018, 1.737 ±0.021}}

Sample N ρRMS, deg ηmin, deg

27 QSOs 27 6.82492 21.094

13 QSOs 13 4.72812 10.865

99 Stars 99 6.83803 7.007

Sample η0
min, deg σmin, deg

27 QSOs 34.923 ±0.029 3.272 ±0.034

13 QSOs 30.26 ±0.17 4.64 ±0.20

99 Stars 39.947 ±0.018 1.737 ±0.021

Table A4: Left: Number of sources N, root-mean-square radius ρRMS, and minimum

value of η(H), Eq. (1), of the three samples from earlier articles. Right:

Location of the peak η0
min and the half-width σ

min of the distribution of the

ηmin with random polarization vectors. This is Table 1 in Part I the Article.
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A6b. Three observed samples,  distribution parameters η0
min, η0

max, σmin, σmax

Definitions:

Probability Distribution Parameters η0
min, σmin, η0

max, σmax  and their standard errors obtained by the 3 Methods

Method A
η0minA , dη0minA , σminA , dσminA , η0maxA , dη0maxA , σmaxA , dσmaxA 
Method B
η0minB , dη0minB , σminB , dσminB , η0maxB , dη0maxB , σmaxB , dσmaxB 
Method C
η0minC , dη0minC , σminC , dσminC , η0maxC , dη0maxC , σmaxC , dσmaxC 

Collect the values by parameter, including the standard error as a ± 
compareη0min, compareσmin, compareη0max, compareσmax 

Set the range of the vertical axis for the figures

lowyη0min, lowyη0max, lowyσmin, lowyσmax for  η0
min, σmin, η0

max, σmax, respectively

Graph the parameters obtained by the three methods, Methods A, B, C
lpη0minCompare, lpη0maxCompare, lpσminCompare, lpσmaxCompare

For each method, collect the significances of the ηmin for the three samples 

sigminA, sigminB, sigminC
 

For each method, collect the plus/minus range of the significances of the ηmin for the three samples 

dsigminAPLUS and dsigminAMINUS for Method A
dsigminBPLUS and dsigminBMINUS for Method B
dsigminCPLUS and dsigminCMINUS for Method C

lpSigminCompare    Graph the significances including their plus/minus values

lpLogSigminCompare    Graph the significance exponents a including their plus/minus values, where p = 10-a and p is 

the significance 

In[300]:= (*Collect the 4 distribution parameters and their standard errors by Method A.*)

η0minA = Table[threeSamplesRandomRunParameters〚i, 2〛,

{i, Length[threeSamplesRandomRunParameters]}] ;(*degrees*)

dη0minA = Table[threeSamplesRandomRunParameters〚i, 3〛,

{i, Length[threeSamplesRandomRunParameters]}] ;

In[302]:= σminA = Table[threeSamplesRandomRunParameters〚i, 4〛,

{i, Length[threeSamplesRandomRunParameters]}] ;(*degrees*)

dσminA = Table[threeSamplesRandomRunParameters〚i, 5〛,

{i, Length[threeSamplesRandomRunParameters]}] ;

In[304]:= η0maxA = Table[threeSamplesRandomRunParameters〚i, 6〛,

{i, Length[threeSamplesRandomRunParameters]}]; (*degrees*)

dη0maxA = Table[threeSamplesRandomRunParameters〚i, 7〛,

{i, Length[threeSamplesRandomRunParameters]}];
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In[306]:= σmaxA = Table[threeSamplesRandomRunParameters〚i, 8〛,

{i, Length[threeSamplesRandomRunParameters]}]; (*degrees*)

dσmaxA = Table[threeSamplesRandomRunParameters〚i, 9〛,

{i, Length[threeSamplesRandomRunParameters]}];

In[308]:= (*Collect the 4 distribution parameters and their standard errors by Method B.*)

η0minB = Tableη0minBintthreeSamplesObserved〚i, 2〛-1/2, threeSamplesObserved〚i, 3〛,

{i, Length[threeSamplesObserved]};(*degrees*)

dη0minB = Tabledη0minBintthreeSamplesObserved〚i, 2〛-1/2, threeSamplesObserved〚i, 3〛,

{i, Length[threeSamplesObserved]} ;

In[310]:= σminB = TableσminBintthreeSamplesObserved〚i, 2〛-1/2, threeSamplesObserved〚i, 3〛,

{i, Length[threeSamplesObserved]}; (*degrees*)

dσminB = TabledσminBintthreeSamplesObserved〚i, 2〛-1/2, threeSamplesObserved〚i, 3〛,

{i, Length[threeSamplesObserved]} ;

In[312]:= η0maxB = Tableη0maxBintthreeSamplesObserved〚i, 2〛-1/2, threeSamplesObserved〚i, 3〛,

{i, Length[threeSamplesObserved]} ;(*degrees*)

dη0maxB = Tabledη0maxBintthreeSamplesObserved〚i, 2〛-1/2, threeSamplesObserved〚i, 3〛,

{i, Length[threeSamplesObserved]};

In[314]:= σmaxB = TableσmaxBintthreeSamplesObserved〚i, 2〛-1/2, threeSamplesObserved〚i, 3〛,

{i, Length[threeSamplesObserved]}; (*degrees*)

dσmaxB = TabledσmaxBintthreeSamplesObserved〚i, 2〛-1/2, threeSamplesObserved〚i, 3〛,

{i, Length[threeSamplesObserved]} ;

In[316]:= (*Collect the 4 distribution parameters and their standard errors by Method C.*)

η0minC = TableetaminRhoFitthreeSamplesObserved〚i, 2〛-1/2, threeSamplesObserved〚i, 3〛,

{i, Length[threeSamplesObserved]} ;(*degrees*)

dη0minC = TableetaminFitbigthreeSamplesObserved〚i, 2〛-1/2, threeSamplesObserved〚i, 3〛 -

η0minC〚i〛, {i, Length[threeSamplesObserved]};

In[318]:= σminC = TablesigmaminRhoFitthreeSamplesObserved〚i, 2〛-1/2, threeSamplesObserved〚i, 3〛,

{i, Length[threeSamplesObserved]}; (*degrees*)

dσminC = TablesigmaminFitbigthreeSamplesObserved〚i, 2〛-1/2, threeSamplesObserved〚i, 3〛 -

σminC〚i〛, {i, Length[threeSamplesObserved]};

In[320]:= η0maxC = TableetamaxRhoFitthreeSamplesObserved〚i, 2〛-1/2, threeSamplesObserved〚i, 3〛,

{i, Length[threeSamplesObserved]} ;(*degrees*)

dη0maxC = TableetamaxFitbigthreeSamplesObserved〚i, 2〛-1/2, threeSamplesObserved〚i, 3〛 -

η0maxC〚i〛, {i, Length[threeSamplesObserved]};
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In[322]:= σmaxC = TablesigmamaxRhoFitthreeSamplesObserved〚i, 2〛-1/2, threeSamplesObserved〚i, 3〛,

{i, Length[threeSamplesObserved]}; (*degrees*)

dσmaxC = TablesigmamaxFitbigthreeSamplesObserved〚i, 2〛-1/2, threeSamplesObserved〚i, 3〛 -

σmaxC〚i〛, {i, Length[threeSamplesObserved]};

In[324]:= compareη0min = Table[{threeSamplesObserved〚i, 1〛, Around[η0minA〚i〛, dη0minA〚i〛 ],

Around[η0minB〚i〛, dη0minB〚i〛 ], Around[η0minC〚i〛, dη0minC〚i〛 ]}, {i, 3}];

compareσmin = Table[{threeSamplesObserved〚i, 1〛, Around[σminA〚i〛, dσminA〚i〛 ],

Around[σminB〚i〛, dσminB〚i〛 ], Around[σminC〚i〛, dσminC〚i〛 ]}, {i, 3}];

Probability distribution parameters for ηmin with the three Methods:

(a) peak η0
min :

Sample A (degrees) B (degrees) C (degrees)

27 QSOs 34.923 ±0.029 34.898 ±0.025 34.81 ±0.07

13 QSOs 30.26 ±0.17 30.62 ±0.04 30.48 ±0.11

99 Stars 39.947 ±0.018 39.756 ±0.016 39.71 ±0.04

(b) half-width σ
min :

Sample A (degrees) B (degrees) C (degrees)

27 QSOs 3.272 ±0.034 3.241 ±0.030 3.24 ±0.04

13 QSOs 4.64 ±0.20 4.55 ±0.05 4.58 ±0.07

99 Stars 1.737 ±0.021 1.707 ±0.020 1.730 ±0.021

Table A5: Probability distribution parameters η0
min and σ

min by three Methods, Direct Method

A, Interpolation Method B, Formula Method C. This is Table 2 in Part I the Article.

In[330]:= compareη0max = Table[{threeSamplesObserved〚i, 1〛, Around[η0maxA〚i〛, dη0maxA〚i〛 ],

Around[η0maxB〚i〛, dη0maxB〚i〛 ], Around[η0maxC〚i〛, dη0maxC〚i〛 ]}, {i, 3}];

compareσmax = Table[{threeSamplesObserved〚i, 1〛, Around[σmaxA〚i〛, dσmaxA〚i〛 ],

Around[σmaxB〚i〛, dσmaxB〚i〛 ], Around[σmaxC〚i〛, dσmaxC〚i〛 ]}, {i, 3}];

(a) peak η0
max

Sample A B C

27 QSOs 55.200 ±0.031 55.104 ±0.030 55.20 ±0.07

13 QSOs 60.17 ±0.17 59.39 ±0.04 59.53 ±0.11

99 Stars 50.074 ±0.011 50.255 ±0.012 50.29 ±0.04

(b) half-width σ
max :

Sample A B C

27 QSOs 3.28 ±0.04 3.26 ±0.04 3.23 ±0.04

13 QSOs 4.81 ±0.20 4.50 ±0.05 4.56 ±0.07

99 Stars 1.765 ±0.013 1.702 ±0.015 1.725 ±0.021
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Table A6: Probability distribution parameters η0
max and σ

max in

Eq. (A3) for the distributions of ηmax from random runs. There are three

Methods: Direct Method A, Interpolation Method B, Formula Method C. (a) The

location of the peak η0
max, in degrees. (b) The half-widths σ

max, in degrees.

In[335]:= lowyη0min = {34.3, 29.7, 39.3};

lpη0minCompare[i_] := ListPlot{Around[η0minA〚i〛, dη0minA〚i〛],

Around[η0minB〚i〛, dη0minB〚i〛], Around[η0minC〚i〛, dη0minC〚i〛]},

PlotRange  {{0.5, 3.5}, {lowyη0min〚i〛, lowyη0min〚i〛 + 1.}}, GridLines  Automatic,

Frame  True, FrameLabel  "Method", "η0
min, degrees",

FrameTicks  {Automatic, {{{1., "A"}, {2., "B"}, {3., "C"}}, Automatic}},

PlotLabel  threeSamplesObserved〚i, 1〛 ": η0
min

(alignment)", ImageSize  72 × 5

In[337]:= GraphicsRow[{lpη0minCompare[1], lpη0minCompare[2]}, ImageSize  72 × 9]
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Figure A23: Graphs of the probability distribution parameter η0
min in Eqs. 6

and A1 by Direct Method A, Interpolation Method B, Formula Method C. The ranges

are the standard errors calculated by Mathematica when the distributions are fit.
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In[340]:= lowyη0max = (*{54.75,59.4,49.75}*){54.5, 59.35, 49.8};

lpη0maxCompare[i_] := ListPlot{Around[η0maxA〚i〛, dη0maxA〚i〛],

Around[η0maxB〚i〛, dη0maxB〚i〛], Around[η0maxC〚i〛, dη0maxC〚i〛]},

PlotRange  {{0.5, 3.5}, {lowyη0max〚i〛, lowyη0max〚i〛 + 1.}}, GridLines  Automatic,

Frame  True, FrameLabel  "Method", "η0
max, degrees",

FrameTicks  {Automatic, {{{1., "A"}, {2., "B"}, {3., "C"}}, Automatic}},

PlotLabel  threeSamplesObserved〚i, 1〛 ": η0
max

(avoidance)", ImageSize  72 × 5

In[342]:= GraphicsRow[{lpη0maxCompare[1], lpη0maxCompare[2]}, ImageSize  72 × 9]
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Figure A24: Compare parameter η0
max in Eq. (A3)

by the 3 methods for the 3 previously studied observed samples.

In[345]:= lowyσmin = {2.8, 4.2, 1.3};

lpσminCompare[i_] := ListPlot{Around[σminA〚i〛, dσminA〚i〛], Around[σminB〚i〛, dσminB〚i〛],

Around[σminC〚i〛, dσminC〚i〛]}, PlotRange  {{0.5, 3.5}, {lowyσmin〚i〛, lowyσmin〚i〛 + 1.}},

GridLines  Automatic, Frame  True, FrameLabel  "Method", "σmin, degrees",

FrameTicks  {Automatic, {{{1., "A"}, {2., "B"}, {3., "C"}}, Automatic}},

FrameTicks  {Automatic, {{{1., "A"}, {2., "B"}, {3., "C"}}, Automatic}},

PlotLabel  threeSamplesObserved〚i, 1〛 ": σ
min

(alignment)", ImageSize  72 × 5
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In[346]:= GraphicsRow[{lpσminCompare[1], lpσminCompare[2]}, ImageSize  72 × 9]
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Figure A25: Compare parameter σ
min in Eqs. 6 and A1 by the 3 methods for the 3 observed samples.

In[349]:= lowyσmax = {2.8, 4.2, 1.3};

lpσmaxCompare[i_] := ListPlot{Around[σmaxA〚i〛, dσmaxA〚i〛], Around[σmaxB〚i〛, dσmaxB〚i〛],

Around[σmaxC〚i〛, dσmaxC〚i〛]}, PlotRange  {{0.5, 3.5}, {lowyσmax〚i〛, lowyσmax〚i〛 +

1.2}}, GridLines  Automatic, Frame  True, FrameLabel  "Method", "σmax, degrees",

FrameTicks  {Automatic, {{{1., "A"}, {2., "B"}, {3., "C"}}, Automatic}},

FrameTicks  {Automatic, {{{1., "A"}, {2., "B"}, {3., "C"}}, Automatic}},

PlotLabel  threeSamplesObserved〚i, 1〛 ": σ
max

(avoidance)", ImageSize  72 × 5
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In[350]:= GraphicsRow[{lpσmaxCompare[1], lpσmaxCompare[2]}, ImageSize  72 × 9]
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Figure A26: Compare parameter σ
max in Eq. A3 for the 3 methods with 3 observed samples.

A6c. Three observed samples,  comparing significances obtained by the 3 Methods A, B, C

In[353]:= (*Collect the significances of the ηmin for the three samples 27 QSOs,

13 QSOs, 99 Stars by Methods A, B, C.*)

sigminA = Table[signiMIN0[threeSamplesObserved〚i, 4〛, η0minA〚i〛, σminA〚i〛],

{i, Length[threeSamplesObserved]}];

sigminB = Table[signiMIN0[threeSamplesObserved〚i, 4〛, η0minB〚i〛, σminB〚i〛],

{i, Length[threeSamplesObserved]}];

sigminC = Table[signiMIN0[threeSamplesObserved〚i, 4〛, η0minC〚i〛, σminC〚i〛],

{i, Length[threeSamplesObserved]}];

In[356]:= (*Collect the ± uncertainty range for significances of the ηmin .*)

dsigminAPLUS[i_] := signiMIN0[threeSamplesObserved〚i, 4〛,

η0minA〚i〛 - dη0minA〚i〛, σminA〚i〛 + dσminA〚i〛 ] - sigminA〚i〛;

dsigminAMINUS[i_] := sigminA〚i〛 -

signiMIN0[threeSamplesObserved〚i, 4〛, η0minA〚i〛 + dη0minA〚i〛, σminA〚i〛 - dσminA〚i〛 ];
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In[358]:= dsigminBPLUS[i_] := signiMIN0[threeSamplesObserved〚i, 4〛,

η0minB〚i〛 - dη0minB〚i〛, σminB〚i〛 + dσminB〚i〛 ] - sigminB〚i〛;

dsigminBMINUS[i_] := sigminB〚i〛 -

signiMIN0[threeSamplesObserved〚i, 4〛, η0minB〚i〛 + dη0minB〚i〛, σminB〚i〛 - dσminB〚i〛 ];

In[360]:= dsigminCPLUS[i_] := signiMIN0[threeSamplesObserved〚i, 4〛,

η0minC〚i〛 - dη0minC〚i〛, σminC〚i〛 + dσminC〚i〛 ] - sigminC〚i〛;

dsigminCMINUS[i_] := sigminC〚i〛 -

signiMIN0[threeSamplesObserved〚i, 4〛, η0minC〚i〛 + dη0minC〚i〛, σminC〚i〛 - dσminC〚i〛 ];

In[362]:= lpSigminCompare[i_] := ListPlot[{Around[sigminA〚i〛, {dsigminAMINUS[i], dsigminAPLUS[i]}],

Around[sigminB〚i〛, {dsigminBMINUS[i], dsigminBPLUS[i]}],

Around[sigminC〚i〛, {dsigminCMINUS[i], dsigminCPLUS[i]}]},

PlotRange  {{0.5, 3.5}, All}, GridLines  Automatic,

Frame  True, FrameLabel  {"Method", "p-value"},

FrameTicks  {Automatic, {{{1., "A"}, {2., "B"}, {3., "C"}}, Automatic}}, PlotLabel 

threeSamplesObserved〚i, 1〛 ": Significance of ηmin (alignment)", ImageSize  72 × 5]

In[363]:= GraphicsRow[{lpSigminCompare[1], lpSigminCompare[2]}, ImageSize  72 × 9]
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Figure A27: Compare the significance p of the observed ηmin

(alignment) in Eq. (A2) for the 3 Methods with the 3 observed samples.
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In[366]:= lpLogSigminCompare[i_] :=

ShowListPlot-Log[10, {Around[sigminA〚i〛, {dsigminAMINUS[i], dsigminAPLUS[i]}],

Around[sigminB〚i〛, {dsigminBMINUS[i], dsigminBPLUS[i]}],

Around[sigminC〚i〛, {dsigminCMINUS[i], dsigminCPLUS[i]}]}],

PlotRange  {{0.5, 3.5}, All}, GridLines  Automatic, Frame  True,

FrameLabel  {"Method", "a"},

FrameTicks  {Automatic, {{{1., "A"}, {2., "B"}, {3., "C"}}, Automatic}},

PlotLabel  "a for ηmin, where p = 10-a", ImageSize  72 × 5,

Graphics[{Text[StyleForm[threeSamplesObserved〚i, 1〛, FontSize  12,

FontWeight  "Plain"], {2.5, -0.97 Log[10, sigminA〚i〛 ]}]}]

In[367]:= GraphicsRow[{lpLogSigminCompare[1], lpLogSigminCompare[2]}, ImageSize  72 × 9]
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Figure A28: Compare the significance exponent a, with p = 10-a, for the observed

ηmin (alignment) in Eq. (A2) by the 3 Methods with the 3 observed samples.
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In[370]:= (*Collect the significances of the ηmax for the three samples 27 QSOs,

13 QSOs, 99 Stars by Methods A, B, C.*)

sigmaxA = Table[signiMAX0[threeSamplesObserved〚i, 5〛, η0maxA〚i〛, σmaxA〚i〛],

{i, Length[threeSamplesObserved]}];

sigmaxB = Table[signiMAX0[threeSamplesObserved〚i, 5〛, η0maxB〚i〛, σmaxB〚i〛],

{i, Length[threeSamplesObserved]}];

sigmaxC = Table[signiMAX0[threeSamplesObserved〚i, 5〛, η0maxC〚i〛, σmaxC〚i〛],

{i, Length[threeSamplesObserved]}];

In[373]:= (*Collect the ± uncertainty range for significances of the ηmax .*)

dsigmaxAPLUS[i_] := signiMAX0[threeSamplesObserved〚i, 5〛,

η0maxA〚i〛 + dη0maxA〚i〛, σmaxA〚i〛 - dσmaxA〚i〛 ] - sigmaxA〚i〛;

dsigmaxAMINUS[i_] := sigmaxA〚i〛 -

signiMAX0[threeSamplesObserved〚i, 5〛, η0maxA〚i〛 - dη0maxA〚i〛, σmaxA〚i〛 + dσmaxA〚i〛 ];

dsigmaxBPLUS[i_] := signiMAX0[threeSamplesObserved〚i, 5〛,

η0maxB〚i〛 + dη0maxB〚i〛, σmaxB〚i〛 - dσmaxB〚i〛 ] - sigmaxB〚i〛;

dsigmaxBMINUS[i_] := sigmaxB〚i〛 -

signiMAX0[threeSamplesObserved〚i, 5〛, η0maxB〚i〛 - dη0maxB〚i〛, σmaxB〚i〛 + dσmaxB〚i〛 ];

dsigmaxCPLUS[i_] := signiMAX0[threeSamplesObserved〚i, 5〛,

η0maxC〚i〛 + dη0maxC〚i〛, σmaxC〚i〛 - dσmaxC〚i〛 ] - sigmaxC〚i〛;

dsigmaxCMINUS[i_] := sigmaxC〚i〛 -

signiMAX0[threeSamplesObserved〚i, 5〛, η0maxC〚i〛 - dη0maxC〚i〛, σmaxC〚i〛 + dσmaxC〚i〛 ];

In[379]:= lpSigmaxCompare[i_] := ListPlot[{Around[sigmaxA〚i〛, {dsigmaxAMINUS[i], dsigmaxAPLUS[i]}],

Around[sigmaxB〚i〛, {dsigmaxBMINUS[i], dsigmaxBPLUS[i]}],

Around[sigmaxC〚i〛, {dsigmaxCMINUS[i], dsigmaxCPLUS[i]}]},

PlotRange  {{0.5, 3.5}, All}, GridLines  Automatic,

Frame  True, FrameLabel  {"Method", "p-value"},

FrameTicks  {Automatic, {{{1., "A"}, {2., "B"}, {3., "C"}}, Automatic}},

PlotLabel  threeSamplesObserved〚i, 1〛 ": Significance of ηmax ", ImageSize  72 × 5]
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In[380]:= GraphicsRow[{lpSigmaxCompare[1], lpSigmaxCompare[2]}, ImageSize  72 × 9]
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Figure A29: Compare the significance p of the observed ηmax (avoidance) in

Eq. (A4) for the 3 Methods with the 3 previously analyzed observed samples.

In[383]:= lpLogSigmaxCompare[i_] :=

ShowListPlot-Log[10, {Around[sigmaxA〚i〛, {dsigmaxAMINUS[i], dsigmaxAPLUS[i]}],

Around[sigmaxB〚i〛, {dsigmaxBMINUS[i], dsigmaxBPLUS[i]}],

Around[sigmaxC〚i〛, {dsigmaxCMINUS[i], dsigmaxCPLUS[i]}]}],

PlotRange  {{0.5, 3.5}, All}, GridLines  Automatic, Frame  True,

FrameLabel  {"Method", "a"},

FrameTicks  {Automatic, {{{1., "A"}, {2., "B"}, {3., "C"}}, Automatic}},

PlotLabel  "a for ηmax, where p = 10-a", ImageSize  72 × 5,

Graphics[{Text[StyleForm[threeSamplesObserved〚i, 1〛, FontSize  12,

FontWeight  "Plain"], {2.5, -(*0.97*)Log[10, sigmaxA〚i〛 ]}]}]
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In[384]:= GraphicsRow[{lpLogSigmaxCompare[1], lpLogSigmaxCompare[2]}, ImageSize  72 × 9]
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Figure A30: Compare the significance exponent a, with p = 10-a, for the observed ηmax (avoidance)

in Eq. (A4) by the 3 Methods with the 3 observed samples. Note that the observed avoidance

angle ηmax for the 13 QSO sample is not significant since a ≈ 0.5, so something like p ≈

10-0.5 = 0.30 = 30% of randomly directed data would be better correlated for avoidance than

the 13 QSOs. Avoidance for the other two samples is very significant, p < 10-2 and a > 2.

The date and time that this statement was evaluated: Sat 18 Jun 2022 08:14:32GMT-4

The computer time expended so far is 213.206 seconds.
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