# Circle packing for primes by my definition 

December 19, 2021
Yuji Masuda
y_masuda0208@yahoo.co.jp

I do not believe that the solution of the Riemann hypothesis reveals all of the prime numbers.


#### Abstract

It is commonly known that the first place of a prime number is $1,3,7$, and 9 , except for 2 and 5. The purpose of this study is to explore the geometric properties of prime numbers, using my Definition Series with four circles of radius $1,2,3,4$, and the results were discussed.


## Introduction

First, in light of my Definition Series.
I have consistently stated in my research that $1 \Rightarrow 1,2 \Rightarrow 2,3 \Rightarrow 3,4 \Rightarrow 4,5 \Rightarrow 0,6 \Rightarrow 1,7 \Rightarrow 2,8 \Rightarrow$

$$
3,9 \Rightarrow 4,10 \Rightarrow 0 .
$$

Applying the above to prime numbers, we see that $2 \Rightarrow 2,3 \Rightarrow 3,5 \Rightarrow 0,7 \Rightarrow 211 \Rightarrow 1,13 \Rightarrow 3,17$ $\Rightarrow 2,19 \Rightarrow 4,23 \Rightarrow 3 \ldots$ and so on.

## Circle packing

From the above, 1 is a circle with a diameter of 1,2 is a circle with a diameter of 2,3 is a circle with a diameter of 3,4 is a circle with a diameter of 4,5 is a circle with diameter 0 , for a total of 4 circles. Consider the plane filling of these.

Circle packing of Primes $2 \sim 281$


Conclusion
Although we think that plane filling is not very meaningful and not very important, we think it is meaningful to consider prime numbers from various angles.

