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Abstract - A digital model of the collision of DART with Dimorphos, the 'moon’ of the asteroid Didymos,
shows that the predicted long-term effect of the collision on the orbit of this 'moon’ will not occur at all.

I Introduction

Reference [1] provides sufficient background information on the planned collision of satellite DART with
the 'moon’ Dimorphos to build a digital model of this collision and to judge the predicted orbits of that
'moon’ after such a collision by the scientists concerned.

11 Description of the applied model

The centre of Didydos (Did) has been fixed as a point mass in the origin of a coordinate system in which
Dimorphos (Dim) its orbit is described by the coordinates dx, dy, the velocities v, vy and the accelerations
ay, ay. The distance between the objects is presented by r, sor = V(de2 + dy?).

The gravitational force between the objects is GMm/r?, with M the mass of Did en m of Dim and G the
gravitational constant. This force leads to an acceleration a of Dim, with m-a = GMm/r2. So a = GM/r?,
proving that the mass of the orbiting object does not play any role in the model, nor in reality!

Remark: If m has a velocity component v perpendicular to m-M the equation m+a = GMm/r? represents the
balance between centrifugal force m-v2/r and centripetal force GMm/r?, both applied to m.

The following calculations are carried out.
Initially m is positioned at dx = dxo , dy = dyo, resulting in: axo = -a*(dxo/r) and ayo = -a*(dyo/r). The initial
velocity components are vy, Vyo. Given a(t) = GM/r?(t), velocities and positions are now calculated as:

vx(t) = vyo + Jax(t) dt vy(t) = vyo + fay(t) dt
dx(t) = dxo + Jvx(t) dt dy(t) = dyo + [vy(t) dt
starting again with: ax(t) =-a(t)-(dx(t)/r(t)) ay(t) =-a(t):(dy(t)/r(t)

with which the calculation circle is completed and the orbit created. Most likely it is possible to find the
mathematical expression for the orbit, because the result is always an ellipse, or a perfect circle in the
most extreme situation. The author has chosen for a digital simulation. The background of the following
calculations has been presented in the appendix.

vx(nT) = vx(nT-T) + {ax(nT)+ax(nT-T)}T/2, vy(nT) = vy(nT-T) + {ay(nT)+a,(nT-T)}-T/2

dx(nT) = dx(nT-T) + {vx(nT)+vx(nT-T)}T/2, dy(nT) =dy(nT-T) + {vy(nT)+vy(nT-T)}-T/2

Attime nT = 0, vxy(-T) and dy(-T) are equal to the respective mentioned initial values of these variables.
111 Test of the applied model

111 Input parameters

The following values have been used, given in reference [1].

Mass of Didymos 5.28-1011 kg

Only for the calculation of the effect on the velocity of Dimorphos after collision:
Mass of Dimorphos 4.8-10° kg

Velocity of Dimorphos 0.17 m/s

Mass of DART 500 kg

Velocity of DART 6600 m/s



According to reference [2]:

Semi-major axis orbit Dimorphos 1190 + 300 m
Eccentricity <0.05
Orbital period 11.93 £0.01 hr

Taking an eccentricity of 0.05 the semi-minor axis becomes 1189 m. For the test the orbit is assumed to be
a perfect circle. Its radius is chosen to be 1181 m, in order to fulfil the criterion that the orbital period has
to be 11.93 £ 0.01 hr, with this value of r being 11.933 hr / 42957.8 s.

I11.2 Test

The initial test is aimed at the creation of an orbit as a perfect circle with r = 1181 m. The launch will be at
the coordinates: dxo==1181 m, dyo = 0. The initial velocity vxo = 0. vy is calculated as follows.

In case of a perfect circle centrifugal force equals continuously gravitational force, so: mv2/r = GMm/r?,
resulting in v2 = GM/r.

Given the values above and G = 6.7-10-11 Nm2kg2, v = 0,17274 m/s. This value is applied for vy, simulating
alaunch “at 9 o’clock” upwards.

Yet one parameter of which the value has to be determined is left: the sample time T.

A digital integration is an approximation of the analog integration (as happens in reality). The accuracy of
a digital integrator can infinitely be increased, as long as the sample time can infinitely be decreased.
Initially, the accuracy is sufficient when the calculated trajectory matches the launch coordinates so well
that a difference is not visible in the corresponding graph. However such a criterion doesn’t work in this
situation, because the effect of the collision on the orbit is extremely small. The final criterion resulted in
such a small sample time that the applied Excel program is just still operable.

The simulated orbit is shown in figure 1. The deviation at the position of the launch is 0.44 m towards the
left on the x-axis. The orbital period is 42969.4 instead of the theoretical 42957.8 s.
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Figure 1. Orbit in case of a perfect circle



The other test is a launch at the same position and initial velocity directed to "northeast" (45°). The first
impression of the graph is that such an orbit is impossible in reality. That is correct. However the mass of
Didymos is simulated as a point mass. The following remarkable properties have been observed:

The orbit closes perfectly at the position of the launch, at least in the graph.

The direction of the major axis of the ellipse equals the launch direction.

launch 45 degrees obliquely upwards
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Figure 2 Orbit in case of a pronounced ellipse
v Repeatability of the circular orbit

Reference [2] says, under “Mission/impact”:
“It is estimated that the impact of the 500 kg DART at 6.6 km/s will produce a velocity change on
the order of 0.4 mm/s, which leads to a small change in trajectory of the asteroid system, but over
time, it leads to a large shift of path. Over a span of years, the cumulative trajectory change from
such a small change in velocity could mitigate the risk of a hypothetical Earth-bound asteroid hitting
Earth. The impact will target the center of figure of Dimorphos and should decrease the orbital
period, currently 11.92 hours, by roughly 10 minutes.”

The text, italicized by the author, speaks clearly: the prediction is that the orbit period will increase for
many years, in fact meaning forever, after collision.

It will be demonstrated that the results of the model have most likely been misleading for the scientists
concerned with regard to the long-term effect of the collision.

As mentioned above, the digital integrators applied in this model have a restricted accuracy that in
principle can be controlled by the value of the sample time. Up to now a sample time of 0.2 sec. has been
used, leading the ~40000/0.2 = 200 thousand rows in the Excel sheet.



The inaccuracy of this configuration, due to the sample time, will be shown in the following experiment.
After each completed orbit the values of the variables, at the time the orbit most closely approximates the
start of the previous orbit, are copied and used as the initial values for the next orbit. The reason to apply
this method is that an Excel sheet of significantly more than 200000 rows is not operable anymore.

The criterion applied for the best fit of the initial variables is concentrated only on the value of dy. The
moment this value is most close to zero, the values at this moment are copied. Two variables, at the end of
each orbit, are chosen to present the accuracy: d, and the orbital period O,.

In the two tables below the acceleration components are taken out, in order to make the tables readable.
Table I proves that the two deviations AOp and Adyx are always "about exactly” the same and cause a series
of increasing spiral orbits. Forever!

Ts 0.2

orbit r Vy vy d, d, o, A0, Ad,
0 1181,00 1,058E-17 1,727E-01 -1181,00 0,0000 42957,8 theoretical
1 1181,43 -1,170E-06  1,727E-01 -1181,43 -0,0081 42969,4 11,6 -0,43
2 1181,87 5,118E-07 1,727E-01 -1181,87 0,0034 42993,2 23,8 -0,43
3 1182,30 -3,713E-09  1,726E-01 -1182,30 -0,0002 43016,8 23,6 -0,43
4 1182,74 2,327E-06 1,726E-01 -1182,74 0,0157 43040,6 23,8 -0,43
5 1183,17 2,463E-06 1,726E-01 -1183,17 0,0166 43064,2 23,6 -0,43
6 1183,60 4,087E-07 1,725E-01 -1183,60 0,0025 43087,8 23,6 -0,43
7 1184,04 1,197E-06 1,725E-01 -1184,04 0,0078 43111,6 23,8 -0,43

Table |

Table II proves that if the sample time is made two times as large, the variables AOp and Ady also become
two times as large. The logical conclusion is that for a zero sample time, which represents the real
situation, these deviations will also be zero.

Ts 0.4

orbit r VX vy dx dy op AOp Adx
0 1181,00 1,058E-17 1,727E-01 -1181,00 0,0E+00 42957,8 theoretical
1 1181,87 2,699E-06  1,727E-01  -1181,87 1,8E-02 42981 23,4 0,87
2 1182,74 1,005E-06 1,726E-01 -1182,74 6,4E-03 43029 47,6 -0,87
3 1183,60 4,997E-06 1,725E-01 -1183,60 3,4E-02 43076 47,2 -0,87
4 1184,47 4,605E-06 1,725E-01 -1184,47 3,1E-02 43124 47,6 -0,87
5 1185,34 -1,524€E-07 1,724E-01 -1185,34 -2,2E-03 43170 46,8 -0,87
6 1186,20 7,614E-07 1,724E-01 -1186,20 3,9E-03 43218 48,0 -0,87
7 1187,07 -2,681E-06 1,723E-01 -1187,07 -2,0E-02 43265 46,8 -0,87
8 1187,94 -4,733E-07 1,722E-01 -1187,94 -5,1E-03 43313 48,0 -0,87

Table I1

The results thus clearly show that the ‘large shift’ in: “...over time, it leads to a large shift of path” is only
caused by the inaccuracy of the applied digital integrators. In whatever digital model!

\' The impact of the collision on the velocity of Dimorphos.

At collision the kinetic energy of DART is 1.1:1010 ] and of Dimorphos 7.2:107 J.

The momenta of these objects are: M; = 3.3:106 kg'm/s, resp. M, = 8.8:108 kg-m/s

These values show that the impact of the collision on the velocity of Dimorphos can certainly not be
calculated using de variable ‘kinetic energy’.

Taking the momenta such an influence can mathematically be expressed by: mz'v; - m1*vi = my*v;, with v’
Dimorphos’ velocity after the collision. This leads to: v2' = vz - m1/mz-v1.

For m; = 500 kg, m; = 4.8:10° kg, vi = 6600 m/s and v; = 0.17274 m/s, the result is: v;’ = 0.17205 m/s, so
Av; =-0.0007 m/s =-0.7 mm/s.

The fact that reference [2] presents -0.4 mm/s can most likely be explained by the argumentation that
DART is destroyed during the collision. So effectively its mass reduces during the collision. Given the
result, apparently half of DART’s original mass has been taken in such a calculation.



VI Modelling of the collision

If the launch direction would be chosen 89.97° an ellipse is created roughly like the present orbit of
Dimorphos: a semi-minor axis being ~1.7 m shorter than the semi-major axis.

As has been shown above the orientation of the major axis of the ellipse coincides with the launch
direction. In this case therefore almost equal to the y-axis.

The collision is simulated by starting with this direction of the velocity, decreased by 0.4 mm/s. It causes
the following changes:

Vmean: 0.1727 m/s -> Vmean: 0.1723 m/s
orbital period: 42969 s -> orbital period: 42673 s
orbital length: 7421 m -> orbital length: 7353 m
Conclusions

The modelling of the collision of DART with Dimorphos has learned that a digitally simulated orbit has the
following three remarkable properties:

1 Its mean velocity equals the initial velocity.

2 Its shape and orientation is predetermined, based on the starting position and based on the start
speed, in terms of amplitude and direction.

3 The orbit will, after launch, end at the initial position with an accuracy depending on the applied

sample time, but with an infinite accuracy in reality.
The orbital period of Dimorphos decreases after collision from 42969 to 42673 s, being ~5 minutes
shorter. This decrease will be maintained forever. The predicted 10 minutes, after many years, is not
correct, given the above mentioned properties.
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Appendix Formula for digital integration

If F(s) is the Laplace transformation of f(t), then F(s)/s is that of [f(t)dt and e=T that of f(t-T).

The expression esT F(s) thus can be written as z1-F(z) by applying z'1 = esT , with F(z) the sequence of
(digital) numbers representing f(t) at time intervals T. T is the so-called sample time.

The function esT can be approximated by 1-sT or by (1-sT/2)/(1+sT/2). The second one is more accurate.

Given the relation z-1 » (1-sT/2)/(1+sT/2), it follows that s = 2(1-z1) / (1+z1) T.

Applying this approximation of s in the Laplace transformation G(s) = F(s)/s results in the digital
integrator G(z) = F(z) - (1+z1) T / 2(1-z1), leading to:

2(G-GzY) = (f+fz) T -> G=Gzl+(f+fz1) - T/2 -> G(nT)=GMT-T) + {f(nT) + f(nT-T)} -T/2
So in the model the following expressions have been programmed:

vx(nT) = vx(nT-T) + {ax(nT)+ax(nT-T)} -‘T/2, vy(nT) = vy(nT-T) + {ay(nT)+a,(nT-T)} -T/2

dx(nT) = dx(nT-T) + {vx(nT)+vx(nT-T)} ‘T/2, dy(nT) = dy(nT-T) + {vy(nT)+vy(nT-T)} -T/2

At time nT = 0 the initial values: vx(-T) = vxo, Vy(-T) = vxo, dx(-T) = dxo,dy(-T) = dyo are used.



