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Abstract

As you know, precessing ellipses appear as solutions to the equations of the gen-

eral theory of relativity. At the same time, it is generally accepted that in classical

mechanics there are only the following equations of orbits: circles, ellipses, parabolas

and hyperbolas. However, precessing ellipses also appear in classical mechanics. As

you know, orbital precession is observed not only when the planets move in the Solar

System. The precession of the periastron of the orbit is also observed in close binary

systems, the components of which have evolved into pulsars ([1],[2],[3],[4],[5]). In such

systems, the masses of the components – neutron stars – are of the same order of mag-

nitude. Consequently, they will move in similar orbits around the center of mass. The

orbits will be uniformly precessing ellipses. We write down the equation of such an

orbit and derive from it an expression for the force of attraction acting between bodies.

As a result, it turns out that, in addition to the Newtonian force, which is inversely

proportional to the square of the distance between the bodies, a term appears in the

expression for the force that is inversely proportional to the cube of the distance.

Before obtaining an expression for the force acting between two bodies moving in pre-

cessing orbits, it is necessary to write the equation of the orbit itself in polar coordinates.

The equation for the precessing ellipse will be different from the equation for an ordinary

ellipse. To describe the precession, it is necessary to introduce a coefficient in the equation

of an ordinary ellipse under the cosine of the polar angle.

Consider the motion of two bodies along similar ellipses that are uniformly precessing in

the direction of motion of the bodies. The equation of the relative trajectory of bodies:

ρ =
p

1 + e cos kϕ
, p = a

(

1− e2
)

, k < 1.

Here ρ is the distance between the bodies, ϕ is the polar angle measured from the periastron, p

is the focal parameter of the ellipse, a is the semi-major axis of the ellipse, e is the eccentricity,

k is the precession parameter. Here, the precession parameter is k < 1, which corresponds
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to the displacement of the periastron in the direction of motion of the bodies. According to

Kepler’s second law the product of the square of the distance between the bodies and the

angular velocity is constant. Based on this, in the periastron we can write:

ρ2ϕ̇ = vpa (1− e) = h,

where h is a constant, vp is the relative velocity of bodies in the periastron.

Let’s calculate the relative acceleration of bodies. It is equal to:

−wρ = ρϕ̇2
− ρ̈ =

h2k2

pρ2
+

h2 (1− k2)

ρ3
,

wϕ =
1

ρ

d

dt

(

ρ2ϕ̇
)

= 0.

For strength, you can write:

F (ρ) = −

wρ

1

m1

+ 1

m2

=
A

ρ2
+

B

ρ3
,

A =
µh2k2

p
, B = µh2

(

1− k2
)

, µ =
m1m2

m1 +m2

,

where µ = m1m2

m1+m2

is the reduced mass of two bodies. Thus, we have obtained that the force

of attraction between two bodies moving in precessing orbits consists of two terms. The

first term is Newtonian force, inversely proportional to ρ2, and the second term is inversely

proportional to ρ3. Considering that

A =
µh2k2

p
= Gm1m2,

we get:

B =
1− k2

k2
pA =

1− k2

k2
Gpm1m2,

h2k2 = Gp (m1 +m2) = Ga
(

1− e2
)

(m1 +m2) .

Let us derive Kepler’s third law for precessing orbits. Integral

2π
∫

0

dϕ

(1 + e cosϕ)2

can be calculated by the methods of complex analysis. However, we will consider an ordinary

ellipse to calculate it. Let’s write for it:

2π
∫

0

ρ2dϕ = 2πab.
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Substituting the expressions here:

ρ =
a (1− e2)

1 + e cosϕ
, b = a

√

1− e2,

we get:
2π
∫

0

dϕ

(1 + e cosϕ)2
=

2π

(1− e2)3/2
.

We apply the resulting integral to the problem:

2π/k
∫

0

ρ2dϕ =
2πa2

√

1− e2

k
= hT.

Thus,

T =
2πa2

√

1− e2

hk
=

2πa2
√

1− e2
√

Ga (1− e2) (m1 +m2)
=

2πa3/2
√

G (m1 +m2)
.

Hence,
T 2

a3
=

4π2

G (m1 +m2)
.

Thus, we have obtained Kepler’s third law, which, as can be seen, is also valid in the case of

precessing orbits. However, it should be noted that the period T in this formula means the

time elapsed between two periastres, i.e. time during which the polar angle changes by

∆ϕ =
2π

k
.

Considering that

∆ϕ = 2π + ω̇T,

where ω̇ is the rate of change in the longitude of the periastron of the orbit, we find the

relationship between the precession parameter k and ω̇:

k =

(

1 +
ω̇T

2π

)−1

.

In conclusion, we obtain an expression for the energy integral. The equations of motion

of two interacting bodies under the action of the force of attraction are as follows:

m1 ~w1 = −~F , m2 ~w2 = ~F .

Herem1 andm2 are the masses of the bodies, ~w1 and ~w2 are their accelerations, ~F is the force

with which the first body acts on the second. Let’s assume for definiteness that m1 > m2.
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We scalarly multiply the first equation by d~ρ1, and the second by d~ρ2, where ~ρ1 and ~ρ2 are

the radius vectors of the bodies. Then we add the resulting equations term by term. As a

result, we get:

m1 (~w1d~ρ1) +m2 (~w2d~ρ2) =
(

~Fd (~ρ2 − ~ρ1)
)

=
(

~Fd~ρ
)

,

where ~ρ = ~ρ2 − ~ρ1 is the relative radius vector (radius vector of the second body relative to

the first). Because

m1 (~w1d~ρ1) +m2 (~w2d~ρ2) = m1 (~v1d~v1) +m2 (~v2d~v2) = d

(

m1v
2
1

2
+

m2v
2
2

2

)

= d
µv2

2
,

where ~v = ~v2 − ~v1 is the relative speed of two bodies, and

~F = −

(

A

ρ2
+

B

ρ3

)

~eρ,

where ~eρ =
~ρ
|~ρ|

is a unit vector drawn in the direction from the first body to the second, then

d
µv2

2
= −

(

A

ρ2
+

B

ρ3

)

dρ = d

(

A

ρ
+

B

2ρ2

)

.

Hence:
µv2

2
−

A

ρ
−

B

2ρ2
= C,

where C is a constant. Thus, T = µv2

2
is the kinetic energy of the bodies, U = −

A
ρ
−

B
2ρ2

is the

potential energy of their interaction. Let us find the constant C. To do this, we substitute

in the expression for the square of the relative speed of bodies:

v2 = ρ̇2 + ρ2ϕ̇2

relative orbit equation:

ρ =
p

1 + e cos kϕ
, ρ2ϕ̇ = h.

After the transformations, we get:

µv2

2
−

A

ρ
−

B

2ρ2
= −

A

2a
.

Thus, the total energy of the system is:

E = T + U = −
A

2a
.
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