Bifurcations of the Higgs Potential and the Top Quark Mass

Ervin Goldfain
Ronin Institute, Montclair, New Jersey 07043, USA
E-mail ervin.goldfain@ronininstitute.org

Abstract

We have recently conjectured that the Standard Model gauge group unfolds under successive bifurcations of the Higgs potential. This brief report points out that the maximal fixed-point solution of the bifurcation process corresponds to a top-antitop quark condensate.

Key words: Bifurcations, Feigenbaum route to chaos, gauge symmetries, Higgs potential, top quark.

It can be shown that the flow of the classical Higgs potential with the Renormalization scale takes the form [1]

$$
\begin{equation*}
\dot{y}=m y\left(1-y^{2}\right) \tag{1}
\end{equation*}
$$

in which y is given by

$$
1 \text { IPage }
$$

$$
\begin{equation*}
y=\frac{\sqrt{2}}{\mathrm{v}} \varphi \tag{2}
\end{equation*}
$$

Here, φ denotes the amplitude of the complex-scalar field whose vacuum expectation value is $v=246 \mathrm{GeV}$. Eq. (1) follows from the theory of bi-stable systems embedded in a double-well potential [8]. The control parameter of (1) contains the self-interaction coupling λ and a reference scale m_{0} as in

$$
\begin{equation*}
m=\frac{2 \lambda \mathrm{v}^{2}}{m_{0}^{2}} \tag{3}
\end{equation*}
$$

The differential equation (1) may be cast as the iterated map shown below

$$
\begin{equation*}
y_{n+1}=f\left(m, y_{n}\right)=m y_{n}\left(1-y_{n}^{2}\right) \tag{4}
\end{equation*}
$$

There are two trivial fixed points of (1) and (4), given by: a) $y^{*}=0, m=0, \lambda=0$ - which resembles massless photons in an "effective" approximation, and b) a pair of maximal solutions arisen in the limit of large number of map iterations ($n \rightarrow \infty$), namely,

$$
\begin{equation*}
y_{\infty}^{*}= \pm 1 \tag{5}
\end{equation*}
$$

whose separation along the y-axis is

$$
21 \text { Page }
$$

$$
\begin{equation*}
\Delta y_{\infty}^{*}=+1-(-1)=2 \tag{6}
\end{equation*}
$$

As suggested in [2-5], the fermionic sector of the Standard Model unfolds as the last segment of the bifurcation diagram. By (6) and (2), this conjecture leads to a separation in field space closely approximating a top-antitop condensate, that is,

$$
\begin{gather*}
\Delta \varphi_{\infty}^{*}=\sqrt{2} \mathrm{v}=347.9 \mathrm{GeV} \tag{7a}\\
\Delta \varphi_{\infty}^{*} \approx 2 m_{t}
\end{gather*}
$$

where $m_{t} \approx 173 \mathrm{GeV}$ is the experimental value of the top quark mass [6]. As the top quark is the heaviest known fermion, relation (7) brings additional support for the self-contained flavor composition of the Standard Model near the electroweak scale [7].

References

1. Available at the following site
https://www.researchgate.net/publication/357093456 Bifurcations and the
Gauge Structure of the Standard Model

$$
3 \text { IPage }
$$

2. https://www.sciencedirect.com/science/article/abs/pii/037843719090008G
3. https://www.researchgate.net/publication/343863324
4. https://www.researchgate.net/publication/343686626
5. https://www.researchgate.net/publication/344036923
6. http://www.scholarpedia.org/article/Properties of the top quark
7. https://www.researchgate.net/publication/278849474
8. Strogatz, S.H., Nonlinear Dynamics and Chaos, Westview Press, 2000, pp. 30-33.
