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Preface

The laws of electromagnetic theory are expressed in this text in Gaussian
units.





1. Maxwell’s Equations in Free Space

In this chapter it is shown that the Maxwell’s equations in free space can be
inferred from the Coulomb’s law and the theory of special relativity.

1.1 Coulomb’s Law and Electrostatics

Consider a system containing stationary (i.e. non-moving) charged particles.
Let ρ (r′) be the corresponding charge distribution, i.e. ρ (r′) is the charge
per unit volume at the spacial location r′. A test particle having charge q
is instantaneously located at the spacial point r. The Coulomb’s law states
that the electrostatic interaction between the test particle and the charge
distribution ρ (r′) gives rise to a force F acting on the test particle that is
given by

F = qE , (1.1)

where E is the electric filed that is generated by the charge distribution ρ (r′).
The electric filed E can be expressed in terms of a scalar potential φ as

E = −∇φ , (1.2)

where φ is related to the charge distribution ρ (r′) by

φ (r) =

∫
d3r′

ρ (r′)

|r− r′| . (1.3)

The expression (1.2) for the electric field E implies that

∇×E = 0 . (1.4)

Exercise 1.1.1. Show that the scalar potential φ given by Eq. (1.3) satisfies
the Poisson equation, which is given by

∇
2φ = −∇ ·E = −4πρ . (1.5)

Solution 1.1.1. The Poisson equation is easily derived with the help of the
general identity
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∇
2

(
1

|r− r′|

)
= −4πδ (r− r′) . (1.6)

The above identity (1.6) can be proven by noticing that

∇
2

(
1

|r− r′|

)
=∇ ·

(
∇

(
1

|r− r′|

))
=∇ ·

(

− r− r′

|r− r′|3

)

, (1.7)

and by employing the divergence theorem [see Eq. (2.68) below] for a sphere
centered at r′ (recall that the area of a sphere having radius rs is 4πr

2
s ).

1.2 Special Relativity

In this chapter Einstein’s theory of special relativity is briefly reviewed. The
transformation from the inertial frame, in which all source charges are sta-
tionary, into another inertial frame will be discussed. The transformation will
be employed in order to find the relation between the above discussed elec-
trostatic force [see Eq. (1.1)] and the corresponding force that is measured in
another inertial frame [see Eq. (1.99) below].

1.2.1 Space-Time Events

Consider an event in space-time. Let r = (x1, x2, x3) and t be the spacial
location and time coordinates, respectively, of the event as measured in a
given inertial frame of reference, which is labeled as S. The corresponding
4-vector X is given by

X = (x0, x1, x2, x3)
T , (1.8)

where T labels transpose, x0 is given by

x0 = ct , (1.9)

and where c is the speed of light in vacuum. In this chapter bold font is
employed to denote three dimensional spacial vectors (3-vectors) and capital
letters are used to denote 4-vectors. Consider an additional inertial frame
of reference that is labeled as S′ (see Fig. 1.1), and which is moving at a
constant velocity cβ with respect to the frame S (i.e. the dimensionless 3-
vector β is the relative velocity of S′ with respect to S in units of c). Let

X ′ = (x′0, x
′
1, x

′
2, x

′
3)
T
be the 4-vector of the same event as measured in S′.

Consider a second event having coordinates X + dX, where

dX = (dx0,dx1,dx2,dx3)
T (1.10)

is considered as infinitesimally small. The transformed 4-vector dX ′ is given
by
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1.2. Special Relativity

Fig. 1.1. The inertial frames of reference S and S′.

dX′ = ΛdX , (1.11)

where the 4× 4 matrix Λ is given by

Λ =
∂ (x′0, x

′
1, x

′
2, x

′
3)

∂ (x0, x1, x2, x3)
. (1.12)

Translational symmetry of space-time implies that Λ is independent of X.
Note that, in general, a four dimensional vector is considered as a 4-vector

only when it is transformed according to the Lorentz transformation, which
will be discussed below.

1.2.2 The Proper Time

The proper time dτ corresponding to dX is defined by

(dτ)
2 ≡ c−2 (dX)T η (dX) , (1.13)

where the so-called Minkowski metric η is given by

η =






1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




 , (1.14)

thus

(dτ)2 =
(dx0)

2 − (dx1)
2 − (dx2)

2 − (dx3)
2

c2

= (dt)2
(
1− u · u

c2

)
,

(1.15)
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where dt = c−1dx0, the velocity 3-vector u is given by

u =
dr

dt
= (u1, u2, u3) =

(
dx1
dt

,
dx2
dt

,
dx3
dt

)
, (1.16)

and u · u = u21 + u22 + u23.
The pair of events X and X + dX can be categorized as follows. When

(dτ)2 = 0 (i.e. when c2 (dt)2 = (dr)2, or when u ≡ |u| = c) the pair of events

is referred to as light-like, when (dτ)2 > 0 (i.e. when c2 (dt)2 > (dr)2, or

when u < c) as time-like and when (dτ)2 < 0 (i.e. when c2 (dt)2 < (dr)2, or
when u > c) as space-like.

Postulate - In the theory of special relativity it is postulated that the
speed of light c is invariant, i.e. it is assumed that the same value is measured
in any inertial frame of reference. In other words, it is postulated that for the
case of pair of light-like events the proper time vanishes, i.e. (dτ)2 = 0, in
any inertial frame of reference.

Claim. The above postulate implies that the proper-time (dτ)2 is invariant
(for a general type of pair of events).

Proof. As can be seen from Eq. (1.13), (dτ)2 is independent on the direction

of the velocity 3-vector u. This property implies that the value (dτ ′)2 as being
measured in an inertial frame S′ having relative velocity v′ (with respect

to the frame S, in which the measured value is (dτ)2) is expected to be

independent on the direction of the 3-vector v′, i.e. (dτ ′)2 can be expressed

as a function of (dτ)2 and v′ = |v′|. Since the proper time is defined as
infinitesimally small this function can be expressed as a linear function of
(dτ)2

(dτ ′)
2
= a0 (v

′) + a1 (v
′) (dτ)2 , (1.17)

where both a0 and a1 are functions of v
′. The postulate that the speed of light

c is invariant, i.e. the assumption that (dτ ′)2 = 0 when (dτ)2 = 0, implies
that a0 (v′) = 0. To complete the proof one has to show that a1 (v′) = 1. This
can be done by considering a third inertial frame S′′ having relative velocity
v′′ with respect to the frame S. With the help of Eq. (1.17) one finds that

(dτ ′′)
2
= a1 (v

′′) (dτ)2 = a1 (vR) a1 (v
′) (dτ)2 , (1.18)

where vR = |vR|, and where vR is the relative velocity of frame S′′ with
respect to frame S′, thus the following is required to hold

a1 (v
′′) = a1 (vR) a1 (v

′) . (1.19)

The velocity vR is expected to depend on the angle between v′ and v′′, and
thus (1.19) can hold for arbitrary 3-vectors v′ and v′′ only if a1 (v) = 1.
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1.2. Special Relativity

1.2.3 Lorentz Transformation

The requirement that the proper-time is invariant can be expressed as [see
Eqs. (1.11) and (1.13)]

ΛTηΛ = η . (1.20)

Any matrix Λ satisfying Eq. (1.20) is called a Lorentz transformation.

Exercise 1.2.1. Show that detΛ = ±1

Solution 1.2.1. In general, detAT = detA for any square matrix A and
det (AB) = det (A) det (B) for any pair of square matrices A and B, thus

[see Eqs. (1.14) and (1.20)] (detΛ)
2 = 1.

Exercise 1.2.2. Find an expression for Λ−1.

Solution 1.2.2. By multiplying Eq. (1.20) from the left by η−1 = η one
obtains

Λ−1 = ηΛTη . (1.21)

Exercise 1.2.3. Show that if both Λ1 and Λ2 are Lorentz transformations
then Λ1Λ2 is a Lorentz transformation.

Solution 1.2.3. With the help of Eq. (1.20) one obtains

(Λ1Λ2)
T ηΛ1Λ2 = ΛT2 Λ

T
1 ηΛ1Λ2 = ΛT2 ηΛ2 = η , (1.22)

and thus Λ1Λ2 is a Lorentz transformation.

As an example, consider the case where the inertial frame of reference S′

moves at a constant velocity βc in the x1 direction with respect to the frame
S. For this case it is expected that x′2 = x2 and x′3 = x3, and consequently
the transformation matrix Λ, which relates the vectors of coordinates dX and
dX ′ by dX′ = ΛdX [see Eq. (1.11)], can be expressed in a block form as

Λ =




B1 0

0
1 0
0 1



 , (1.23)

where

B1 =

(
b11 b12
b21 b22

)
(1.24)

is a 2× 2 matrix relating the time and x1 coordinates
(
cdt′

dx′1

)
= B1

(
cdt
dx1

)
. (1.25)
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Claim. The 2× 2 matrix B1 is given by

B1 = γ

(
1 −β
−β 1

)
, (1.26)

where

γ =
1

√
1− β2

. (1.27)

Proof. For events occurring at dx′1 = 0 the following holds (since the relative
velocity of S′ with respect to S is βc)

1

c

dx1
dt

= β , (1.28)

and thus [see second row of Eq. (1.25)]

0 = dx′1 = b21cdt+ b22dx1 =

(
b21
β

+ b22

)
dx1 . (1.29)

Similarly, for events occurring at dx1 = 0 the following holds (since the
relative velocity of S with respect to S′ is −βc)

1

c

dx′1
dt′

= −β , (1.30)

and thus [see of Eq. (1.25)]

1

c

dx′1
dt′

=
b21
b11

= −β , (1.31)

and therefore B1 can be expressed as

B1 = γ

(
1 b12

γ

−β 1

)
, (1.32)

where b11 = b22 ≡ γ. Both unknowns γ and b12 can be evaluated with the
help of Eq. (1.20), which yields

γ2

(
1− β2 b12+βγ

γ
b12+βγ

γ −−b212+γ2
γ2

)

=

(
1 0
0 −1

)
, (1.33)

and thus Eq. (1.26) holds.

Two important effects can be demonstrated using the two-dimensional
Lorentz transformation (1.25):
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1.2. Special Relativity

1. time dilation - Consider the case where dx1 = 0. For this case dt = dτ ,
i.e. the time difference between the two events dt as measured in a frame
S at which both events occur at the same location is the proper time dτ
[see Eq. (1.15)]. With the help of Eq. (1.25) one finds that

dt′ = γdτ ≥ dτ . (1.34)

The time dilation factor γ depends on the relative velocity cβ of frame
S′ with respect to S

γ =
1

√
1− β2

. (1.35)

2. length contraction - Consider a rod lying along the x1 axis. In a frame
S, in which the rod is at rest, the length of the rod is dx1. Let dx′1 be
the length of the rod as measured in a frame moving at velocity cβ with
respect to S along the x1 axis (i.e. the relative velocity is assumed to be
parallel to the axis of the rod). The measurement of dx′1 in the frame S′

is associated with two events having the same time, i.e. dt′ = 0. With
the help of Eq. (1.25) one finds that

(
cdt
dx1

)
= B−1

1

(
0

dx′1

)

= γ

(
1 β
β 1

)(
0

dx′1

)
,

(1.36)

and thus

dx′1 =
dx1
γ
≤ dx1 , (1.37)

i.e. the length of the rod dx′1 as measured in S′ is smaller than the length
as measured in a frame in which the rod is at rest.

The generalization of Eq. (1.23) for the case where the relative velocity
of frame S′ with respect to frame S can be pointing in an arbitrary direction
is discussed in the following problem.

Exercise 1.2.4. The 4× 4 matrix B (β) is defined by

B (β) = exp
(
−κβ̂ ·Σ

)
, (1.38)

where β̂ is a unit vector pointing in the direction of β (i.e. β =ββ̂ where
β = |β|), the components of the matrix vector Σ = (Σ1,Σ3, Σ3) are given by

Σ1 =






0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0




 , Σ2 =






0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0




 , Σ3 =






0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0




 , (1.39)
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and where the so-called rapidity κ is given by

κ = tanh−1 β . (1.40)

Show that

B (β) =






γ −γβ1 −γβ2 −γβ3
−γβ1 1 + (γ−1)β21

β2
(γ−1)β1β2

β2
(γ−1)β1β3

β2

−γβ2 (γ−1)β2β1
β2

1 + (γ−1)β22
β2

(γ−1)β2β3
β2

−γβ3 (γ−1)β3β1
β2

(γ−1)β3β2
β2

1 +
(γ−1)β23

β2






, (1.41)

where

γ =
1

√
1− β2

. (1.42)

Solution 1.2.4. The following holds

(
β̂ ·Σ

)n
=





BO

(
β̂
)
n = 1, 3, · · ·

BE
(
β̂
)
n = 2, 4, · · ·

, (1.43)

where

BO
(
β̂
)
=






0 b1 b2 b3
b1 0 0 0
b2 0 0 0
b3 0 0 0




 , (1.44)

BE
(
β̂
)
=






1 0 0 0
0 b21 b1b2 b1b3
0 b2b1 b22 b2b3
0 b3b1 b3b2 b23




 , (1.45)

and where

β̂ = (b1, b2, b3) =
1

β
(β1, β2, β3) . (1.46)

This result together with Eq. (1.38) leads to

B (β) = exp
(
−κβ̂ ·Σ

)

= − sinh
(
κβ̂ ·Σ

)
+ cosh

(
κβ̂ ·Σ

)

= 1− sinh (κ)BO
(
β̂
)
+ (cosh (κ)− 1)BE

(
β̂
)

,

(1.47)

where 1 is the identity matrix and where [see Eq. (1.40)]
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sinh (κ) = βγ , (1.48)

cosh (κ) = γ . (1.49)

Combining the above results lead to Eq. (1.41). Note that the matrix B (β)

(1.41) satisfies the condition (1.20), i.e. B (β)T ηB (β) = η, and thus B (β)
is a Lorentz transformation.

Exercise 1.2.5. Consider a point particle whose 3-vector velocity as mea-
sured in an inertial frame S is v. Calculate the 3-vector velocity of the particle
v′ as measured in a frame S′ moving at a constant velocity u with respect
to the frame S.

Solution 1.2.5. The coordinates of frame S are chosen such that the veloc-
ity u is pointing in the x1 direction. For this case the Lorentz transformation
law of the space-time 4-vector (cdt,dx1,dx2,dx3)

T reads [see Eq. (1.26)]





cdt′

dx′1
dx′2
dx′3




 =






γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1











cdt
dx1
dx2
dx3




 , (1.50)

or

dt′ = γdt− γβ

c
dx1 , (1.51)

dx′1 = γdx1 − γβcdt , (1.52)

dx′2 = dx2 , (1.53)

dx′3 = dx3 , (1.54)

where β = u/c and γ = 1/
√
1− β2. Dividing Eqs. (1.52), (1.53), and (1.54)

by dt′ yields

v′1 =
v1 − βc

1− βv1
c

, (1.55)

v′2 =
v2

γ
(
1− βv1

c

) , (1.56)

v′3 =
v3

γ
(
1− βv1

c

) , (1.57)

where

vn =
dxn
dt

, v′n =
dx′n
dt′

, (1.58)

thus (note that cβv1 = u · v)

(v′1, v
′
2, v

′
3) =

(
v1
γ , v2γ , v3γ

)
−
(
u−

(
1− 1

γ

)
v1, 0, 0

)

1− u·v
c2

. (1.59)
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In a vector form the above results reads (recall that u is pointing in the x1
direction)

v′ =

v
γ −

[
1−

(
1− 1

γ

)
u·v
u2

]
u

1− u·v
c2

. (1.60)

Consider the case of a massless particle moving at the speed of light
v = cn̂, where n̂ is a unit vector. With the help of the identity β2 =(
1 + γ−1

) (
1− γ−1

)
one finds that for this case Eq. (1.60) yields

n̂′ =
n̂− γ

(
1− γ

1+γ
u·n̂
c

)
u
c

γ
(
1− u·n̂

c

) , (1.61)

where n̂′ = v′/c. The above result (1.61) is commonly called the aberration
of light formula. It is straightforward to show that n̂′ · n̂′ = 1, i.e. n̂′ is a unit
vector. By multiplying Eq. (1.61) by u one finds that

cos θ′ =
cos θ − β

1− β cos θ
, (1.62)

where u · n̂ = βc cos θ and u · n̂′ = βc cos θ′ [note that β2γ2/ (1 + γ) = γ− 1].

1.2.4 Dynamics of a Point Particle

Assume the case where the above-discussed pair of events are two infinitesi-
mally close points along a trajectory of a point like particle having mass m.
Consider an inertial frame of reference S whose velocity coincides with the
instantaneous velocity of the particle (i.e. the instantaneous velocity of the
particle measured in that frame vanishes). As can be seen from Eq. (1.15),
dτ = dt in that frame, which implies that the proper time dτ is the time
difference between the events as measured in S. The transformation of dX
into a frame S′ having relative velocity u = cβ with respect to S is given by
[see Eq. (1.11)]

dX′ = ΛdX , (1.63)

where Λ = B (β) [see Eq. (1.38)].

The Energy-Momentum 4-Vector. The energy-momentum 4-vector P is
defined by

P = m
dX

dτ
. (1.64)

In the frame S, which moves with the particle, P is given by

P = (mc, 0, 0, 0)T . (1.65)
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Note that in the notations employed here, the mass m is assumed to be a
constant parameter, which is commonly called the rest mass. The invariance
of the proper time dτ and Eq. (1.11) together imply that P is Lorentz trans-
formed according to

P ′ = ΛP . (1.66)

In the frame S′ it is given by

P ′ = m

(
dx′0
dτ

,
dx′1
dτ

,
dx′2
dτ

,
dx′3
dτ

)T
. (1.67)

With the help of Eq. (1.34) one finds that

1

dτ
=

dt′

dτ

1

dt′
= γ

1

dt′
, (1.68)

where

γ =
1

√
1− u2

c2

, (1.69)

and where u = |u| = c |β|, and thus P ′ can be expressed as

P ′ = (p′0, p
′
1, p

′
2, p

′
3)
T
=

(
E′

c
,mγu1,mγu2,mγu3

)T
, (1.70)

where

E′ = mc2γ . (1.71)

Note that the following holds [see Eq. (1.69)]

E′ = mc2 +
mu2

2
+O

(
β4
)
, (1.72)

(p′1, p
′
2, p

′
3) = mu+O

(
β3
)
, (1.73)

thus in the limit where β = u/c ≪ 1 the term E′ (up to the constant mc2)
becomes the Newtonian energy of the particle and (p′1, p

′
2, p

′
3) becomes its

Newtonian momentum vector.
The fact that P is transformed by a Lorentz transformation implies that

the quantity p20 − p21 − p22 − p23 is invariant. With the help of Eqs. (1.65) and
(1.70) one finds that

m2c2 =
E2

c2
− p2 . (1.74)

While the left hand side of (1.74) is frame independent, both energy E and
momentum p of the particle are frame dependent. For massless particles Eq.
(1.74) reads
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E = cp . (1.75)

Consider a scattering process involving Nin incoming particles and Nout
outgunning particles. The energy-momentum conservation law implies that

Nin∑

n=1

Pn,in =

Nout∑

n=1

Pn,out , (1.76)

where Pn,in (Pn,out) are the energy-momentum 4-vectors of the incoming
(outgoing) particles.

As can be seen from Eq. (1.70), the momentum of a particle that is con-
served according to the theory of special relativity is given by mγu. Thus,
contrary to the nonrelativistic version of the law of momentum conservation,
in which the ratio between momentum and velocity is a frame-independent
constant, in the relativistic version the ratio is the frame-dependant mass
mγ, where m is the rest mass.

The Force 4-Vector. The force 4-vector F is defined by

F =
dP

dτ
. (1.77)

Similarly to the energy-momentum 4-vector P , the invariance of the proper
time dτ implies that F is Lorentz transformed according to [see Eq. (1.11)]

F ′ = ΛF . (1.78)

The force 4-vector F is related to the force 3-vector f , which is defined by

f =
dp

dt
, (1.79)

by [see Eqs. (1.34), (1.64) and (1.70)]

F =

(
1

c

dE

dτ
,
dp

dτ

)T
= γ

(
1

c

dE

dt
, f

)T
. (1.80)

Exercise 1.2.6. Show that

dE

dt
= f · v , (1.81)

where f is the 3-vector force and v is the 3-vector velocity of a point particle
having a mass m, which is assumed to be a constant.

Solution 1.2.6. Consider the quantity PTηF , which is given by [see Eqs.
(1.70) and (1.80)]

PTηF = mγ2
(
c v

)
η

(
1
c
dE
dt
f

)
= mγ2

(
dE

dt
− f · v

)
. (1.82)
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In an inertial frame of reference S′ whose velocity coincides with the instan-
taneous velocity of the particle the following holds E′ = mc2 [see Eq. (1.71)]

and v′ = 0, and thus
(
PTηF

)′
vanishes (it is assumed that mass of the

particle m is a constant). The fact that PTηF is invariant under Lorentz
transformation [see Eqs. (1.66) and (1.78)] implies that PTηF = 0, and thus
(1.81) holds.

Exercise 1.2.7. Consider a point particle having mass m whose 3-vector
force and 3-vector velocity as measured in an inertial frame S are f and v,
respectively. Calculate the 3-vector force f ′ as measured in a frame S′ moving
at a constant velocity u with respect to the frame S.

Solution 1.2.7. The coordinates of frame S are chosen such that the veloc-
ity u is pointing in the x1 direction. The following holds [see Eqs. (1.26) and
compare with Eqs. (1.55), (1.56) and (1.57)]

dE′

dt′
= γ

dt

dt′

(
dE

dt
− βcf1

)
, (1.83)

f ′1 = γ
dt

dt′

(
f1 −

β

c

dE

dt

)
, (1.84)

f ′2 =
dt

dt′
f2 , (1.85)

f ′3 =
dt

dt′
f3 . (1.86)

With the help of Eq. (1.51) one finds that

dt

dt′
=

1

γ
(
1− β

c
dx1
dt

) =
1

γ
(
1− u·v

c2

) , (1.87)

and thus [see Eq. (1.81)]

f ′1 =
f1 − β

c f · v
1− u·v

c2
, (1.88)

f ′2 =
f2

γ
(
1− u·v

c2

) , (1.89)

f ′3 =
f3

γ
(
1− u·v

c2

) . (1.90)

Exercise 1.2.8. In general, a given 3-vector a can be decomposed as

a = a‖ + a⊥ , (1.91)

where

a‖ =
(u · a)
u2

u , (1.92)
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is the component parallel to u and a⊥ = a− a‖ is the perpendicular one.
Show that

f = f ′‖ + γf ′⊥ + γ
v× (u× f ′⊥)

c2
. (1.93)

Solution 1.2.8. In vectorial notation Eq. (1.88), (1.89) and (1.90) become

f ′‖ =
f‖ − (f ·v)u

c2

1− u·v
c2

, (1.94)

f ′⊥ =
f⊥

γ
(
1− u·v

c2

) . (1.95)

With the help of the vector identity

A× (B×C) = (A ·C)B− (A ·B)C , (1.96)

one finds that

(f · v)u = v× (u× f) + (v · u) f , (1.97)

and thus Eq. (1.94) can be rewritten as (note that u× f = u× f⊥)

f ′‖ =
f‖ − v×(u×f)+(v·u)f

c2

1− u·v
c2

= f‖ −
v×(u×f⊥)

c2 + (v·u)f⊥
c2

1− u·v
c2

= f‖ − γc−2 [v× (u× f ′⊥) + (v · u) f ′⊥] .

(1.98)

The above result together with Eq. (1.95) lead to (1.93).

Exercise 1.2.9. Show that Eq. (1.93) can be rewritten as

f = fE +
v× fB

c
, (1.99)

where

fE = f ′‖ + γf ′⊥ , (1.100)

and where

fB =
u× fE

c
. (1.101)
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Solution 1.2.9. On one hand Eqs. (1.93) and (1.100) yield

f − fE =
γv× (u× f ′⊥)

c2
. (1.102)

On the other hand since f ′‖ is parallel to u the following holds [see Eq. (1.100)]

u× fE

c
=

γu× f ′⊥
c

, (1.103)

and thus Eq. (1.102) can be rewritten as

f − fE =
v×

(
u×fE
c

)

c
, (1.104)

in agreement with Eq. (1.99).

1.3 Transformation of Electrostatic Force

As was discussed above, the force F′ acting on a point particle having charge
q that is generated by a stationary charge distribution ρ′ is given by F′ = qE′

[see Eq. (1.1)], where the electric field E′ is related to the charge distribution
ρ′ by [see Eq. (1.5)]

∇
′ ·E′ = 4πρ′ , (1.105)

and it satisfies the following relation [see Eq. (1.4)]

∇
′ ×E′ = 0 . (1.106)

The above-mentioned quantities that are labeled by a prime (F′, ρ′ and E′)
are assumed to represent values measured in an inertial frame S′. Consider
another inertial frame S in which the velocity of the test particle is v. Let u
be the relative velocity of frame S′ with respect to S.

With the help of Eq. (1.99) one finds that the force on the test particle F
as measured in frame S can be expressed as

F = q

(
E+

v×B

c

)
, (1.107)

where E is given by

E = E′‖ + γE′⊥ , (1.108)

E′‖ (E
′
⊥) is the component of E′ parallel (perpendicular) to u and B is given

by

B =
u×E

c
. (1.109)

Note that the charge q is treated as a constant invariant under the Lorentz
transformation.
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1.4 Charge and Current Density

Let ρ be the charge distribution and let J be the current density as measured
in frame S. In frame S′ it is assumed that the source charges are all station-
ary, and thus the current density J′ as measured in S′ vanishes. Consider
an infinitesimal volume dV ′ containing N particle having charge q each. In
the frame S the measured volume dV is smaller due to length contraction
dV = γ−1dV ′ [see Eq. (1.37)], and consequently (note that both q and N are
required to be frame independent)

ρ = γρ′ . (1.110)

In frame S the source charges move at a constant velocity u, and consequently
the current distribution J is expected to be give by

J = γρ′u . (1.111)

The above discussion demonstrates the fact that the current 4-vector J ,
which is defined by

J = (cρ, J1, J2, J3)
T , (1.112)

is Lorentz transformed according to

J ′ = ΛJ . (1.113)

For an alternative definition of the current 4-vector see Eq. (1.146). Consider
the quantity ∂J , where the 4-vector ∂ is defined by

∂ =

(
c−1

∂

∂t
,

∂

∂x1
,

∂

∂x2
,

∂

∂x3

)
. (1.114)

As can be seen from Eq. (1.12) ∂ is transformed according to

∂′ = ∂Λ−1 , (1.115)

and thus ∂J , which is given by

∂J =
∂ρ

∂t
+∇ · J , (1.116)

is invariant. This implies that if charge is conserved in a given inertial frame,
i.e. if the continuity equation, which is given by

0 =
∂ρ

∂t
+∇ · J , (1.117)

holds in a given frame, then the invariance of ∂J guarantees that charge is
conserved in any other inertial frame.
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1.5 Maxwell’s Equations

Claim. The fieldsE (1.108) andB (1.109), which are used to express the force
F acting on the test particle according to Eq. (1.107), satisfy the Maxwell’s
Eqs.

∇×B =
4π

c
J+

1

c

∂E

∂t
, (1.118)

∇×E = −1

c

∂B

∂t
, (1.119)

∇ ·E = 4πρ , (1.120)

∇ ·B = 0 . (1.121)

Proof. As can be seen from Eq. (1.115), the following holds [see Eq. (1.26)]

∂

∂t
= γ

(
∂

∂t′
− cβ

∂

∂x′1

)
, (1.122)

∂

∂x1
= γ

(
∂

∂x′1
− β

c

∂

∂t′

)
, (1.123)

∂

∂x2
=

∂

∂x′2
, (1.124)

∂

∂x3
=

∂

∂x′3
. (1.125)

Since E does not depend on t one finds that [see Eqs. (1.108), (1.123), (1.124)
and (1.125)]

∇ ·E =
∂E1
∂x1

+
∂E2
∂x2

+
∂E3
∂x3

=
γ∂E′

1

∂x′1
+

γ∂E′
2

∂x′2
+

γ∂E′
3

∂x′3
= γ∇′ ·E′ .

(1.126)

The above result together with Eqs. (1.105) and (1.110) lead to Eq. (1.120)

∇ ·E = 4πγρ′ = 4πρ . (1.127)

Using the vector identity

∇× (A×B) = A (∇ ·B)−B (∇ ·A) + (B · ∇)A− (A · ∇)B , (1.128)

one obtains (recall that u is a constant vector)

∇× (u×E) = u (∇ ·E)− (u · ∇)E , (1.129)

and thus [see Eqs. (1.109), (1.123) and (1.127)]
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∇×B =
u (∇ ·E)− (u · ∇)E

c

=
4πρ

c
u−uγ

c

∂E

∂x′1
.

(1.130)

On the other hand according to Eq. (1.122) the following holds (recall that
cβ = u and note that E does not depend on t′)

1

c

∂E

∂t
= −uγ

c

∂E

∂x′1
. (1.131)

The last two results together with Eqs. (1.110) and (1.111) lead to Eq. (1.118).
Using the vector identity

∇ · (A×B) = B · (∇×A)−A · (∇×B) , (1.132)

one finds that [see Eq. (1.109)]

∇ ·B =
∇ · (u×E)

c

= −u · (∇×E)

c

= −u

c

(
∂E3
∂x2

− ∂E2
∂x3

)
,

(1.133)

or [see Eqs. (1.108), (1.124) and (1.125)]

∇ ·B = −uγ

c

(
∂E′
3

∂x′2
− ∂E′

2

∂x′3

)
= −γu ·

(
∇
′ ×E′

)

c
. (1.134)

The above result together with Eq. (1.106) lead to Eq. (1.121). Finally, with
the help of Eqs. (1.108), (1.109), (1.122), (1.123), (1.124) and (1.125) one
obtains

∇×E+
1

c

∂B

∂t

=

(
∂E3
∂x2

− ∂E2
∂x3

,
∂E1
∂x3

− ∂E3
∂x1

,
∂E2
∂x1

− ∂E1
∂x2

)

+
1

c

∂

∂t

u×E

c

=

(
γ∂E′

3

∂x′2
− γ∂E′

2

∂x′3
,
∂E′
1

∂x′3
− γ2∂E′

3

∂x′1
,
γ2∂E′

2

∂x′1
− ∂E′

1

∂x′2

)

−γ2
(u
c

)2(
0,−∂E′

3

∂x′1
,
∂E′
2

∂x′1

)
.

(1.135)
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By subtracting the term γ
(
∇
′ ×E′

)
= 0 [see Eq. (1.106)] one obtains

∇×E+
1

c

∂B

∂t
− γ

(
∇
′ ×E′

)

= (1− γ)

(
0,

∂E′
1

∂x′3
,−∂E′

1

∂x′2

)

(
−γ + γ2

(
1−

(u
c

)2))(
0,−∂E′

3

∂x′1
,
∂E′
2

∂x′1

)
,

(1.136)

thus [note that γ2
(
1−

(
u
c

)2)
= 1 and employ again Eq. (1.106)]

∇×E+
1

c

∂B

∂t
− γ

(
∇
′ ×E′

)

= (1− γ)

(
0,

∂E′
1

∂x′3
− ∂E′

3

∂x′1
,
∂E′
2

∂x′1
− ∂E′

1

∂x′2

)

= 0 ,

(1.137)

in agreement with Eq. (1.119).

Two comments are give below regarding the validity of the approach that
has been employed above in order to infer Maxwell’s equations from electro-
statics and special relativity.

1. The derivation above is based on the assumption that the laws of elec-
trostatics hold (Coulomb’s law). By performing a Lorentz transformation
from a given inertial frame, in which the source charges are at rest, to
another inertial frame, one can infer what are the forces generated by
charges moving at a constant velocity. However, this approach cannot be
used to treat the question of what forces are generated by accelerating
charges, since the theory of special relativity deals only with transforma-
tions between inertial frames. It is known that Maxwell’s equations are
valid for the general case, in which source charges are allowed to accel-
erate. However, this fact cannot be inferred based on electrostatics and
special relativity only.

2. Apparently, an approach similar to the one discussed in this chapter can
be employed for the case of gravitational forces, starting from the assump-
tion that the laws of ’gravitostatics’ hold (Newton’s laws). However, the
two cases are not equivalent. While the electric charge of a particle is
assumed to be a constant, its mass, as is measured by a given observer,
depends on the velocity of the observer (see the discussion above on rela-
tivistic momentum conservation). An alternative way to understand the
difference between these two cases is related to the fact that the inertial
mass (which appears in Newton’s second law F = ma as the ratio be-
tween force F and acceleration a) equals the gravitational mass (which
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appears in Newton’s law of gravitation F = Gm1m2/r
2 for the attraction

force F between two point particles having massesm1 andm2, where G is
Newton’s constant and r is the distance between the particles). This fact
implies that different particles having different mass fall at the same ac-
celeration under gravitation, as was first found by Galileo Galilei. On the
other hand, different particles having different charge in an electrostatic
field need not fall at the same acceleration.

1.6 Problems

1. Consider three inertial frames S, S′ and S′′. The relative velocity of S′

with respect to S is cβ1β̂ and the relative velocity of S′′ with respect to
S′ is cβ2β̂. Find a Lorentz transformation mapping from S to S′′.

2. A uniform and time independent electric field of magnitude E is applied
to an electron having charge e and mass m, which is at rest initially at
time t = 0. Calculate the velocity of the electron v (t) at time t ≥ 0.

3. A uniform and time independent magnetic field Bẑ is applied to an elec-
tron having charge e and mass m. Calculate the period time T of circular
motion with velocity v in the xy plane.

4. The Compton effect - Consider a photon having energy Ep,in hitting
an electron at rest. Calculate the energy of the reflected photon Ep,out
for the case where the scattered photon is back-reflected, i.e. its direction
is reversed in the process.

5. Show that free electrons can neither emit nor absorb photons.
6. The Doppler effect - Consider a plane wave (not necessarily an elec-

tromagnetic wave) having the form

ψ = ψ0 cosφ , (1.138)

where the amplitude ψ0 is a constant, the phase φ is given by

φ = k · r− ωt, (1.139)

where both wave 3-vector k = (k1, k2, k3) and angular frequency ω are
constants. While the values k and ω are measured in an inertial frame S,
the values k′ and ω′ are measured in another inertial frame S′ moving at
velocity cβ with respect to S. Calculate k′ and ω′.

7. Consider a point particle moving along a straight line (which is taken
to be the x1 axis) with a constant proper acceleration a (the proper
acceleration is defined as the acceleration in an inertial frame, commoving
with the particle, in which it is instantaneously at rest). Let S be a
fixed inertial frame in which both the particle’s position 3-vector r (t) =
(x1 (t) , 0, 0) and velocity 3-vector v (t) = (v1, 0, 0), where v1 = dx1/dt,
are assumed to vanish at time t = 0. Calculate x1 (t).
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8. Consider an observer moving along a given trajectory, which in a given
inertial frame S is taken to be given by (ctT (τ) , xT (τ) , 0, 0), where τ is
the proper time, i.e. τ is the time as being measured by a clock that is
carried along with the moving observer. Consider a point object, whose
spatial location is (x, 0, 0) in the inertial frame of reference S. The ob-
server sent a light signal towards the object at time t′1. The light signal is
reflected by the object, and it returns to the observer at a later time t′2.
Both t

′

1 and t
′

2 are measured by the clock commoving with the observer.
Let E denotes the event of light signal hitting the object (and reflected
off the object), and let t and x be the coordinates of E in the inertial
frame of reference S. The moving observer assigns his own coordinates t′

and x′ to the event E by employing the following relations

t′ =
t
′

1 + t
′

2

2
, (1.140)

x′ = c
t
′

2 − t
′

1

2
. (1.141)

a) Derive relations between the coordinates t and x and the coordinates
t′ and x′ given by Eqs. (1.140) and (1.141).

b) Simplify the derived relations for the case of a stationary observer
located at the origin of the inertial frame of reference S.

c) The same for the case of an observer moving at a constant velocity
βc along the x1 axis. Assume that at τ = 0 the spatial location of
the observer is (0, 0, 0) in the inertial frame of reference S.

d) The same for the case of an observer moving at a constant proper
acceleration a along the x1 axis. Assume that at τ = 0 the velocity
of the observer vanishes in S, and the spatial location of the observer
is (0, 0, 0) at τ = 0 in S.

e) slow observer - The normalized observer’s velocity is denoted by

β =
1

c

dxT
dtT

. (1.142)

Show that

t− t′

t
=

β̂ (x− xT (0))

ct
+O

(
β2
)
, (1.143)

where β̂, which is given by

β̂ =

∫ t+x−xT(0)
c

t−x−xT(0)
c

dτ ′ β

2x−xT(0)c

, (1.144)

represents the averaged and normalized velocity over the time inter-
val [t− (x− xT (0)) /c, t+ (x− xT (0)) /c].
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9. The Unruh-Davies Effect - Consider an electromagnetic plane wave
having amplitude A and wavelength λ. The plane wave propagates along
the x1 axis. Let f (t′) be the time-dependent amplitude of the plane
wave as being measured by an observer moving at a constant proper
acceleration a along the x1 axis, where t′ is the time coordinate of the
observer. Calculate |f (ω′)|2, where f (ω′) is the Fourier transform of
f (t′), i.e.

f (ω′) =
1√
2π

∫ ∞

−∞
dt′ f (t′) eiω

′t′ . (1.145)

10. current 4-vector - Consider a medium containing point particles la-
beled by the index n. Let qn be the charge of the n’th particle, and let
Xn (τn) = (ctn (τn) , rn (τn))

T be the trajectory in space-time of the n’th
point particle, where τn is the proper time, i.e. τn is the time as being
measured by a clock that is carried along with the n’th particle. The cur-
rent 4-vector J (X) = (cρ (X) ,J (X))T at space-time point X = (ct, r)T

is defined by

J (X) =
∑

n

Jn (X) , (1.146)

where Jn (X) = (cρn,Jn)
T, which represents the contribution of the n’th

particle to the total current 4-vector, is taken to be given by

Jn (X) = qnc

∫
dτn

dXn

dτn
δ (X −Xn (τn)) . (1.147)

Note that the invariance of the proper time τn and the fact that dXn is
a 4-vector imply that J (X) is a 4-vector. Find expressions for ρ (X) and
J (X).

11. Dirac equation - In non-relativistic quantum mechanics, the time evo-
lution of a state vector |α〉 is governed by the Schrödinger equation

i�
d |α〉
dt

= H |α〉 , (1.148)

where � is the h-bar Planck’s constant and the Hermitian operator H
is the Hamiltonian of the system. Consider a free particle having mass
m. For this case the Hamiltonian is given by H = p2/ (2m), where p

is the momentum vector operator. In the position representation the
Schrödinger equation yields an equation for the wave function ψ (r, t)
given by

i�
dψ

dt
=

(−i�∇)
2

2m
ψ . (1.149)

In view of these relations, one may associate the term i� (∂/∂t) with the
energy of the particle E (represented by the Hamiltonian H), and the
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term −i�∇ = −i� (∂/∂x1, ∂/∂x2, ∂/∂x3) with the momentum vector of
the particle p. These associations together with the relativistic relation
given by Eq. (1.74) suggest the following relation (known as the Klein-
Gordon equation)

(mc

�

)2
= − 1

c2
∂2

∂t2
+

∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23
. (1.150)

Consider the following first order equation for ψ

(
i∂Γ − mc

�

)
ψ = 0 , (1.151)

where the 4-vector Γ is given by Γ = (γ0, γ1, γ2, γ3)
T, and ∂ is given

by Eq. (1.114). This equation was first considered by Dirac as a possi-
ble relativistic generalization of the quantum Schrödinger equation. By
multiplying Eq. (1.151) by its complex conjugate one obtains

ψ∗
(
−i∂Γ − mc

�

)(
i∂Γ − mc

�

)
ψ = 0 . (1.152)

Motivated by the Klein-Gordon relation (1.150), it is required that
(
−i∂Γ − mc

�

)(
i∂Γ − mc

�

)

=
(mc

�

)2
+

1

c2
∂2

∂t2
− ∂2

∂x21
− ∂2

∂x22
− ∂2

∂x23
.

(1.153)

This requirement holds provided that the 4-vector Γ satisfies the follow-
ing relations (m is treated as a constant)

1 = γ20 , (1.154)

−1 = γ21 = γ22 = γ23 , (1.155)

and

0 = γnγm + γmγn , (1.156)

for n �= m. These relations cannot be all satisfied for the case where
γ0, γ1, γ2 and γ3 are treated as numbers, however, it can be solved
when these variables are treated as 4 × 4 matrices. Find 4 × 4 matrix
representations for γ0, γ1, γ2 and γ3, and use these representations to
derive the Dirac equation for the 4-vector wavefunction (ψ0, ψ1, ψ2, ψ3).

1.7 Solutions

1. The desired transformation is given by [see Eqs.(1.38) and (1.40)]
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Λ = exp
(
− (κ1 + κ2) β̂ ·Σ

)
, (1.157)

where

κ1,2 = tanh−1 β1,2 . (1.158)

Using the identity

tanh (κ1 + κ2) =
tanh (κ1) + tanh (κ2)

1 + tanh (κ1) tanh (κ2)
, (1.159)

one finds that

β =
β1 + β2
1 + β1β2

, (1.160)

where

β = tanh (κ1 + κ2) . (1.161)

2. The electron momentum p is related to its velocity v by p = mγv [see Eq.
(1.70)]. The solution of eE = dp/dt [see Eq. (1.79)] for the given initial
condition p (t = 0) = 0 is given by p = eEt, and thus [see Eq. (1.69)]

mv
√

1− v2

c2

= eEt , (1.162)

and therefore

v =
eEt
mc√

1 +
(
eEt
mc

)2 c . (1.163)

3. The equation of motion (1.79) for this case reads [see Eq. (1.107)]

e
v×B

c
=

dp

dt
, (1.164)

where p = mγv [see Eq. (1.70)]. For circular motion in the xy plane with
velocity v and period time T = 2π/ω (where ω is the angular frequency)

evB

c
= mγωv , (1.165)

hence [see Eq. (1.69)]

ω =
2π

T
=

eB

cm

√

1− v2

c2
. (1.166)
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4. Energy-momentum conservation implies [see Eqs. (1.74), (1.75) and
(1.76)]

Ep,in +mec
2 = Ep,out +

√
m2ec

4 + p2c2 , (1.167)

Ep,in
c

= −Ep,out
c

+ p , (1.168)

where me is the electron mass and p is the momentum of the scattered
electron. By solving for the unknowns Ep,out and p one obtains

Ep,out
mec2

=

Ep,in
mec2

1 + 2Ep,inmec2

. (1.169)

5. Consider a reference frame, in which the electron is initially at rest.
Energy-momentum conservation for the case of photon absorption im-
plies that [see Eqs. (1.74), (1.75) and (1.76)]

pp = pe , (1.170)

ppc+mec
2 =

√
m2ec

4 + p2ec
2 , (1.171)

and for the case of photon emission that

0 = pp + pe , (1.172)

mec
2 = ppc+

√
m2ec

4 + p2ec
2 , (1.173)

where pp and pe denote the momentum 3-vector of the photon and elec-
tron, respectively, and me is the electron mass. Clearly, for both cases
the only possible solution is pp = pe = 0.

6. Consider the 4-vector K, which is defined by

K = −∂ηφ =
(ω
c
, k1, k2, k3

)
, (1.174)

where ∂ =
(
c−1∂/∂t, ∂/∂x1, ∂/∂x2, ∂/∂x3

)
[see Eq. (1.114)] and where

φ = k · r − ωt [see Eq. (1.139)]. Since ∂ is transformed according to
∂′ = ∂Λ−1 [see Eq. (1.115)] and because φ is expected to be Lorentz
invariant (explain why) one concludes that the 4-vector K is transformed
according to [see Eq. (1.21)]

K′ = −∂′ηφ = −∂Λ−1ηφ = −∂ηΛTφ . (1.175)

The coordinates of frame S are chosen such that the velocity cβ is point-
ing in the x1 direction. For this case Eq. (1.175) becomes [see Eqs. (1.14)
and (1.26)]

K′ =

(
γ

(
−1

c

∂φ

∂t
− β

∂φ

∂x1

)
, γ

(
β

c

∂φ

∂t
+

∂φ

∂x1

)
,
∂φ

∂x2
,
∂φ

∂x3

)

=

(
γ
(ω
c
− βk1

)
, γ

(
−βω

c
+ k1

)
, k2, k3

)
,

(1.176)
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where β = |β| and γ = 1/
√
1− β2, thus

ω′ = γω

(
1− cβk1

ω

)
, (1.177)

and

k′ =

(
γ

(
k1 −

βω

c

)
, k2, k3

)
. (1.178)

Let θ (θ′) be the angle between k (k′) and β

θ = cos−1
k1
k

, (1.179)

θ′ = cos−1
k′1
k′

, (1.180)

where

k =
√

k21 + k22 + k23 , (1.181)

k′ =
√

k′21 + k′22 + k′23 . (1.182)

Using this notation Eq. (1.177) can be rewritten as

ω′

ω
=

1− ck
ω β cos θ

√
1− β2

. (1.183)

The angle θ′ can be found from Eq. (1.178)

tan θ′ =
sin θ

√
1− β2

cos θ − βω
ck

. (1.184)

Note that for case of an electromagnetic wave ck = ω.
7. In the instantaneous rest frame of the particle the velocity 4-vector of

the particle U is given by [see Eq. (1.64)]

U =
dX

dτ
= (c, 0, 0, 0) . (1.185)

and the acceleration 4-vector A is given by

A =
d2X

dτ2
= (0, a, 0, 0) . (1.186)

Using the Lorentz transformation for U and A one obtains

d

dτ

(
ct
x1

)
= B1

(
c
0

)
, (1.187)
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and

d2

dτ2

(
ct
x1

)
= B1

(
0
a

)
, (1.188)

where [see Eq. (1.26)]

B1 = γ

(
1 −β
−β 1

)
, (1.189)

β = −v1/c and γ = 1/
√
1− v21/c

2. With the help of Eq. (1.189) Eq.
(1.187) becomes

(
dt
dτ
dx1
dt

)
=

(
γ
v1

)
. (1.190)

Substituting Eq. (1.187) into Eq. (1.188) yields

( dγ
dt

d(γv1)
dt

)
=

(
v1a
c2

a

)
. (1.191)

The second equation of (1.191), which reads

d

(
v1√

1−v21/c2

)

dt
= a , (1.192)

can be solved using the transformation

v1
c

= tanh s , (1.193)

which yields (recall that 1− tanh2 s = 1/ cosh2 s)

d (sinh s)

dt
=

a

c
. (1.194)

Integration and employing the initial conditions at time t = 0 lead to
[see Eq. (1.193)]

v1√
1− v21

c2

= at , (1.195)

and thus

v1 (t) =
at

√
1 +

(
at
c

)2 . (1.196)

By integrating Eq. (1.196) one obtains

Eyal Buks Wave Phenomena - Lecture Notes 29



Chapter 1. Maxwell’s Equations in Free Space

x1 (t) =
c2

a

(√

1 +
a2t2

c2
− 1

)

. (1.197)

Alternatively, the position x1 and velocity v1 can be expressed as a func-
tion of the proper time τ as follows. With the help of Eq. (1.196) the first
equation of (1.190) becomes

dt

dτ
=

√

1 +

(
at

c

)2
, (1.198)

and thus

t =
c

a
sinh

aτ

c
. (1.199)

The last result (1.199) together with Eqs. (1.196) and (1.197) yield

v1 (τ) = c tanh
aτ

c
, (1.200)

and

x1 (τ) =
c2

a

(
cosh

aτ

c
− 1

)
. (1.201)

8. The light signal sent by the observer connects the space-time points
(ctT (t′1) , xT (t

′
1) , 0, 0) and (ct, x, 0, 0), and the back reflected light sig-

nal connects the space-time points (ct, x, 0, 0) and (ctT (t
′
2) , xT (t

′
2) , 0, 0),

and thus

x− xT (t
′
1)

t− tT (t′1)
= c , (1.202)

xT (t
′
2)− x

tT (t′2)− t
= −c , (1.203)

a) With the help of Eqs. (1.140) and (1.141) the relations (1.202) and
(1.203) can be rewritten as

x− xT
(
t′ − x′

c

)

t− tT
(
t′ − x′

c

) = c , (1.204)

xT
(
t′ + x′

c

)
− x

tT
(
t′ + x′

c

)
− t

= −c , (1.205)

or

x− ct = xT

(
t′ − x′

c

)
− ctT

(
t′ − x′

c

)
, (1.206)

x+ ct = xT

(
t′ +

x′

c

)
+ ctT

(
t′ +

x′

c

)
. (1.207)
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b) For this case tT (τ) = τ and xT (τ) = 0, and thus Eqs. (1.206) and
(1.207) become

x− ct = −c

(
t′ − x′

c

)
, (1.208)

x+ ct = c

(
t′ +

x′

c

)
. (1.209)

The solution is t′ = t and x′ = x.
c) For this case tT (τ) = γτ and xT (τ) = βct = βcγτ [see Eq. (1.34)],

where

γ =
1

√
1− β2

, (1.210)

and thus Eqs. (1.206) and (1.207) become

x− ct = βcγ

(
t′ − x′

c

)
− cγ

(
t′ − x′

c

)
, (1.211)

x+ ct = βcγ

(
t′ +

x′

c

)
+ cγ

(
t′ +

x′

c

)
. (1.212)

The solution can be written as [compare with Eq. (1.25)]

(
ct′

x′

)
= γ

(
1 −β
−β 1

)(
ct
x

)
. (1.213)

d) For this case [see Eqs. (1.199) and (1.201)]

tT (τ) =
c

a
sinh

aτ

c
, (1.214)

xT (τ) =
c2

a

(
cosh

aτ

c
− 1

)
, (1.215)

and thus Eqs. (1.206) and (1.207) become

x− ct =
c2

a

(

e
a(x

′
c
−t′)
c − 1

)

, (1.216)

x+ ct =
c2

a

(

e
a(x

′
c
+t′)
c − 1

)

. (1.217)

The solution is given by

x =
c2

a

[
exp

(
ax′

c2

)
cosh

(
at′

c

)
− 1

]
, (1.218)

ct =
c2

a
exp

(
ax′

c2

)
sinh

(
at′

c

)
. (1.219)

To lowest nonvanishing order in a

x =

(

1 +
x′

2 c
2

a

)

x′ +
at′2

2
+O

(
a2
)
, (1.220)

ct = ct′
(

1 +
x′

c2

a

)

+O
(
a2
)
. (1.221)
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The inverse transformation is given by

x′ =
c2

2a
log




(

1 +
x
c2

a

)2
−
(
at

c

)2




=

(

1− x

2 c
2

a

)

x− at2

2
+O

(
a2
)
,

(1.222)

ct′ =
c2

a
tanh−1

ct

x+ c2

a

= ct

(

1− x
c2

a

)

+O
(
a2
)
.

(1.223)
e) The transformation of a velocity 2-vector between S and the instan-

taneous rest frame of the observer is given by

d

dτ

(
ctT
xT

)
= Λ (−β)

(
c
0

)
, (1.224)

where Λ (−β), which is given by [see Eq. (1.25)]

Λ (−β) = γ

(
1 β
β 1

)
, (1.225)

is the 1 + 1 dimensional Lorentz transformation, β = v/c, γ =
1/
√
1− v2/c2 and

v =
dxT
dtT

. (1.226)

Integrating Eq. (1.224), which can be rewritten as

dtT
dτ

= γ , (1.227)

dxT
dτ

= cγβ , (1.228)

with the assumed initial condition tT (τ = 0) = 0, yields

tT (τ) =

∫ τ

0

dτ ′ γ (τ ′) , (1.229)

xT (τ) = xT (0) + c

∫ τ

0

dτ ′ γ (τ ′)β (τ ′) . (1.230)

With the help of Eqs. (1.229) and (1.230) one finds that
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xT (τ)± ctT (τ) = xT (0) + c

∫ τ

0

dτ ′ γ (β ± 1) , (1.231)

and thus Eqs. (1.206) and (1.207) can be rewritten as

x− xT (0)

c
− t =

∫ t′−x′
c

0

dτ ′ γ (β − 1) , (1.232)

x− xT (0)

c
+ t =

∫ t′+x′
c

0

dτ ′ γ (β + 1) , (1.233)

or alternatively, with the help of the relations

−γ + βγ = −
√

1− β

1 + β
, (1.234)

−γ − βγ = −
√

1 + β

1− β
, (1.235)

as

t′ − x′

c
= t− x− xT (0)

c
+

∫ t′−x′
c

0

dτ ′
(

1−
√

1− β

1 + β

)

,

(1.236)

t′ +
x′

c
= t+

x− xT (0)

c
+

∫ t′+x′
c

0

dτ ′
(

1−
√

1 + β

1− β

)

.

(1.237)

In the limit of a stationary observer having a vanishing velocity both
integrals on the right hand sides of Eqs. (1.236) and (1.237) vanish.
The solutions of Eqs. (1.236) and (1.237) in this limit provides ap-
proximated values for the upper limits of these integrals, which can
be used to turn Eqs. (1.236) and (1.237) into

t′ − x′

c
= t− x− xT (0)

c

+

∫ t−x−xT(0)
c

0

dτ ′
(

1−
√

1− β

1 + β

)

+O
(
β2
)
,

(1.238)

and

t′ +
x′

c
= t+

x− xT (0)

c

+

∫ t+
x−xT(0)

c

0

dτ ′
(

1−
√

1 + β

1− β

)

+O
(
β2
)
.

(1.239)
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By adding the above equations one obtains

t− t′

t
= −1 + 1

2t

∫ t−x−xT(0)
c

0

dτ ′

√
1− β

1 + β

+
1

2t

∫ t+
x−xT(0)

c

0

dτ ′

√
1 + β

1− β
.

(1.240)

The expansions√
1− β

1 + β
= 1− β +O

(
β2
)
, (1.241)

√
1 + β

1− β
= 1 + β +O

(
β2
)
, (1.242)

lead to Eq. (1.143). Note that for the case of a constant β Eq. (1.143)
yields

t− t′

t
=

β (x− xT (0))

ct
, (1.243)

whereas the exact result (1.25) is

t− t′

t
=

γβ (x− xT (0))

ct
+ 1− γ , (1.244)

in agreement with the approximated result only to first order in β.

9. The plane wave can be expressed using either the inertial frame coordi-
nates t and x1

f (t, x1) = Aeiω0(
x1
c
−t) , (1.245)

where

ω0 =
2πc

λ
, (1.246)

or the observer’s coordinates t′ and x′1 [see Eq. (1.216)]

f (t′, x′1) = A exp

(
iω0c

a

(

e
a
c

(
x′1
c
−t′

)

− 1

))

= Ae−
iω0
ωa eiαe

−ωat′

,

(1.247)

where

ωa =
a

c

iαe−ωat
′

,
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and where

α =
ω0
ωa

e
ωax

′
1

c . (1.248)

By employing the integral variable transformation z = αe−ωat
′
one ob-

tains [see Eq. (1.145)]

f (ω′) =
1√
2π

∫ ∞

−∞
dt′ f (t′, x′1) e

iω′t′

=
Ae−

iω0
ωa α

iω′
ωa√

2πωa

∫ ∞

0

dz eizz−
iω′
ωa
−1 ,

(1.249)

and thus

|f (ω′)|2 = |A|2
ωaω′

nBE

(
2πω′

ωa

)
, (1.250)

where

nBE (ǫ) =
1

eǫ − 1
(1.251)

is the Bose—Einstein distribution function. In terms of the so-called
Unruh-Davies temperature TUD, which is given by

TUD =
�a

2πkBc
, (1.252)

where kB is the Boltzmann’s constant, the result can be rewritten as

|f (ω′)|2 = |A|2
ωaω′

nBE

(
�ω′

kBTUD

)
. (1.253)

10. With the help of Eqs. (1.146) and (1.147) one obtains

ρ (t, r) =
∑

n

qn

∫
dτn

dtn
dτn

δ (t− tn (τn)) δ (r− rn (τn)) , (1.254)

and

J (t, r) =
∑

n

qn

∫
dτn

drn
dτn

δ (t− tn (τn)) δ (r− rn (τn)) , (1.255)

thus with the help of the relation

δ (t− tn (τn)) =

(∣∣∣∣
dtn
dτn

∣∣∣∣

)−1
δ (τn − τn (tn)) , (1.256)
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one finds that

ρ (t, r) =
∑

n

qnδ (r− rn (t)) , (1.257)

and

J (t, r) =
∑

n

qnvn (t) δ (r− rn (t)) , (1.258)

where rn (t) and vn (t) are the location and velocity, respectively, of the
n’th particle at time t.

11. The Pauli matrices σ1, σ2 and σ3, which are given by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (1.259)

satisfy the following relations

σ21 = σ22 = σ23 = 1̂ , (1.260)

where

1̂ =

(
1 0
0 1

)
, (1.261)

and

σnσm + σmσn = 0 , (1.262)

for n �= m, and thus, in a block form, γ0, γ1, γ2 and γ3 can be taken to
be given by

γ0 =

(
1̂ 0

0 −1̂

)
, (1.263)

and

γn =

(
0 σn
−σn 0

)
, (1.264)

for n ∈ {1, 2, 3}. With these 4×4 matrix representations the Dirac equa-
tion (1.151) becomes






i
c
∂
∂t − mc

�
0 i ∂

∂x3
i ∂
∂x1

+ ∂
∂x2

0 i
c
∂
∂t − mc

�
i ∂
∂x1

− ∂
∂x2

−i ∂
∂x3

−i ∂
∂x3

−i ∂
∂x1

− ∂
∂x2

− i
c
∂
∂t − mc

�
0

−i ∂
∂x1

+ ∂
∂x2

i ∂
∂x3

0 − i
c
∂
∂t − mc

�











ψ0
ψ1
ψ2
ψ3




 = 0 .

(1.265)
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In this chapter the macroscopic Maxwell’s equations, which are used to de-
scribe electromagnetic fields in matter, are derived.

2.1 The Macroscopic Maxwell’s Equations

When dealing with electromagnetic fields inside matter it is convenient to
replace the fields E and B and sources ρ and J appearing in the Maxwell’s
equations (1.118), (1.119), (1.120) and (1.121) by their spacial average ac-
cording to the following procedure

ψ (r)→ 〈ψ (r)〉 = 1

∆V

∫

∆V

dr′ ψ (r+ r′) , (2.1)

where ∆V is the averaging volume, which is chosen such that dA ≪ ∆V 1/3 ≪
λ, where dA is the characteristic distance between atoms in the matter and
where λ is the characteristic wavelength of electromagnetic fields. The aver-
aged fields and sources satisfy the same set of Maxwell’s equations (1.118),
(1.119), (1.120) and (1.121)

∇× 〈B〉 = 4π

c
〈Jtotal〉+

1

c

∂ 〈E〉
∂t

, (2.2)

∇× 〈E〉 = −1

c

∂ 〈B〉
∂t

, (2.3)

∇ · 〈E〉 = 4π 〈ρtotal〉 , (2.4)

∇ · 〈B〉 = 0 . (2.5)

Note that the label ’total’ has been added as a subscript to ρ and J. This is
done because in what follows the charge density ρ = ρtotal and current density
J = Jtotal are both decomposed into different parts. To avoid cumbersome
notation, the averaging symbol 〈〉 is henceforth omitted.

Electromagnetic fields in matter may result in dielectric polarization P

and magnetization M. It is convenient to decompose the charge and current
densities into parts associated with dielectric polarization and magnetization
and parts associated with other contributions. The total charge density ρtotal
is decomposed as
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ρtotal = ρext + ρpol , (2.6)

where ρpol, which represents the contribution due to dielectric polarization,
is given by

ρpol = −∇ ·P , (2.7)

and ρext represents all other contributions. The total current density Jtotal is
decomposed as

Jtotal = Jcond + Jbound + Jext , (2.8)

where Jcond is the contribution of conducting charge carriers in the matter,
the bounded current density is given by

Jbound = Jpol + Jmag , (2.9)

the term Jpol, which is given by

Jpol =
∂P

∂t
, (2.10)

represents the contribution of dielectric polarization, the term Jmag, which is
given by

Jmag = c∇×M , (2.11)

represents the contribution of magnetization, and Jext represents all other
contributions. In this notation the Maxwell’s equations (2.2), (2.3), (2.4) and
(2.5) become

∇×H =
4π

c
(Jext + Jcond) +

1

c

∂D

∂t
, (2.12)

∇×E = −1

c

∂B

∂t
, (2.13)

∇ ·D = 4πρext , (2.14)

∇ ·B = 0 . (2.15)

where E is the electric field, which is related to the total charge density ρtotal
by [see Eq. (2.4)]

∇ ·E = 4πρtotal , (2.16)

B is the magnetic induction, D, which is given by

D = E+ 4πP , (2.17)

is the electric displacement and H, which is given by

H = B−4πM , (2.18)
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is the magnetic field. With the help of Eqs. (2.8), (2.10), (2.11), (2.12), (2.17)
and (2.18) one finds that

∇×H =
4π

c
(Jtotal − Jmag) +

1

c

∂E

∂t
, (2.19)

and

∇×B =
4π

c
Jtotal +

1

c

∂E

∂t
. (2.20)

Exercise 2.1.1. current conservation - Show that

∇ · (Jext + Jcond) +
∂ρext
∂t

= 0 . (2.21)

Solution 2.1.1. This relation, which is the in-matter version of the conti-
nuity equation (1.117), can be proven by applying ∇ on Eq. (2.12) and by
employing Eq. (2.14).

2.2 The Potential 4-vector

Note that the set of Maxwell’s equations in medium contains two homoge-
neous Eqs. ∇× E = (−1/c) ∂B/∂t (2.13) and ∇ ·B = 0 (2.15) , which are
identical to the Maxwell’s equations in vacuum (1.119) and (1.121), respec-
tively. In addition, the set of Maxwell’s equations in medium contains two
inhomogeneous Eqs. (2.12) and (2.14). These Eqs. can be related to the cor-
responding Maxwell’s equations in vacuum ∇×B = (4π/c)J+ (1/c) ∂E/∂t
(1.118) and ∇ ·E = 4πρ (1.120) by the transformation E→D, B→H and
J → Jext, where Jext is defined by [compare with Eq. (1.112)]

Jext = (cρext,Jext + Jcond)
T . (2.22)

The Maxwell’s equation∇·B = 0 (2.15) implies the existence of a 3-vector
A such that

B =∇×A . (2.23)

In terms of A, which is called the 3-vector potential, the Maxwell’s equation
∇×E = (−1/c) ∂B/∂t (2.13) can be written as

∇×
(
E+

1

c

∂A

∂t

)
= 0 , (2.24)

which implies the existence of a scalar φ such that

E = −∇φ−1

c

∂A

∂t
. (2.25)
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When the fields E and B are expressed in terms of φ and A the Maxwell’s
equations (2.13) and (2.15) are guarantee to be satisfied provided that φ and
A are smooth. Note that the above relation (2.25) generalizes Eq. (1.2), which
is valid only in the electrostatics case.

The potential 4-vector A is defined by

A = (φ,A1, A2, A3)
T = (φ,A)T . (2.26)

The quantity ∂A, which is given by

∂A =
1

c

∂φ

∂t
+∇ ·A , (2.27)

is Lorentz invariant provided that A is Lorentz transformed according to
A′ = ΛA [see Eq. (1.115)].

Claim. The relations (2.23) and (2.25) can be expressed as

∂TATη −
(
∂TATη

)T
= F̂ , (2.28)

where the 4× 4 matrix F̂ is given by

F̂ =






0 E1 E2 E3
−E1 0 −B3 B2
−E2 B3 0 −B1
−E3 −B2 B1 0




 . (2.29)

Proof. The following holds [see Eqs. (1.14), (1.114) and (2.26)]

∂TATη =






1
c
∂
∂t
∂
∂x1
∂
∂x2
∂
∂x3





(
φ ,−A1 ,−A2 ,−A3

)
=






1
c
∂φ
∂t −1c ∂A1

∂t −1c ∂A2

∂t −1c ∂A3

∂t
∂φ
∂x1

−∂A1

∂x1
−∂A2

∂x1
−∂A3

∂x1
∂φ
∂x2

−∂A1

∂x2
−∂A2

∂x2
−∂A3

∂x2
∂φ
∂x3

−∂A1

∂x3
−∂A2

∂x3
−∂A3

∂x3






,

(2.30)

thus

∂TATη−
(
∂TATη

)T
=






0 − ∂φ
∂x1

− 1
c
∂A1

∂t − ∂φ
∂x2

− 1
c
∂A2

∂t − ∂φ
∂x3

− 1
c
∂A3

∂t
∂φ
∂x1

+ 1
c
∂A1

∂t 0 ∂A1

∂x2
− ∂A2

∂x1
∂A1

∂x3
− ∂A3

∂x1
∂φ
∂x2

+ 1
c
∂A2

∂t
∂A2

∂x1
− ∂A1

∂x2
0 ∂A2

∂x3
− ∂A3

∂x2
∂φ
∂x3

+ 1
c
∂A3

∂t
∂A3

∂x1
− ∂A1

∂x3
∂A3

∂x2
− ∂A2

∂x3
0






,

(2.31)

in agreement with Eq. (2.28).

The above result (2.28), which expresses F̂ as a 4-curl acting on the
potential 4-vector A, implies the following:
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Claim. The field matrix F̂ is Lorentz transformed according to

F̂ = ΛTF̂ ′Λ , (2.32)

provided that A is Lorentz transformed according to A′ = ΛA.

Proof. The assumption A′ = ΛA leads to [recall Eq. (1.115), which reads
∂′ = ∂Λ−1 and Eq. (1.21), which reads Λ−1 = ηΛTη]

∂TATη = ΛT (∂′)
T
(A′)

T (
Λ−1

)T
η

= ΛT
(
(∂′)

T
(A′)

T
η
)
Λ ,

(2.33)

and thus

∂TATη −
(
∂TATη

)T
= ΛT

[(
(∂′)

T
(A′)

T
η
)
−
((

(∂′)
T
(A′)

T
η
))T]

Λ ,

(2.34)

in agreement with Eq. (2.32).

Exercise 2.2.1. Let u be the relative velocity of frame S′ with respect to
frame S. Show using Eq. (2.32) that the fields E and B are transformed
according to

E = E′‖ + γ (E′⊥ − β ×B′
⊥) , (2.35)

B = B′
‖ + γ (B′

⊥ + β ×E′⊥) , (2.36)

where V‖ (V⊥) denotes the component of a 3-vector V parallel (perpendic-
ular) to u and where β = u/c.

Solution 2.2.1. When the coordinates of frame S are chosen such that the
velocity u is pointing in the x1 direction Λ becomes [see Eq. (1.26)]

Λ =






γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1




 , (2.37)

where β = u/c and γ = 1/
√
1− β2. The transformation (2.32) yields

E1 = E′
1 , (2.38)

E2 = γ (E′
2 + βB′

3) , (2.39)

E3 = γ (E′
3 − βB′

2) , (2.40)

B1 = B′
1 , (2.41)

B2 = γ (B′
2 − βE′

3) , (2.42)

B3 = γ (B′
3 + βE′

2) . (2.43)

In a vectorial form the above can be rewritten as Eqs. (2.35) and (2.36).

Note that for the case where B′ vanishes Eqs. (2.35) and (2.36) coincide
with Eqs. (1.108) and (1.109).
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2.3 Maxwell’s Equations and Lorentz Invariance

Motivated by the above results, it is henceforth assumed that the potential
4-vector A is Lorentz transformed according to

A′ = ΛA . (2.44)

Claim. The inhomogeneous Maxwell’s equations (2.12) and (2.14) can be
written as [see Eq. (1.114)]

∂ηĜη = (4π/c)JText , (2.45)

where the field matrix Ĝ is given by [compare with Eq. (2.29)]

Ĝ =






0 D1 D2 D3
−D1 0 −H3 H2
−D2 H3 0 −H1
−D3 −H2 H1 0




 . (2.46)

Proof. The following holds [see Eq. (1.14)]

ηĜη =






0 −D1 −D2 −D3
D1 0 −H3 H2
D2 H3 0 −H1
D3 −H2 H1 0




 , (2.47)

and thus [see Eq. (1.114)]

∂ηĜη =

(
∇ ·D,− 1

c

∂D

∂t
+∇×H

)
, (2.48)

in agreement with Eqs. (2.12) and (2.14) [see Eq. (2.22)].

Claim. The relation (2.45) is Lorentz invariant provided that the field matrix
Ĝ is transformed according to [compare with Eq. (2.32)]

Ĝ = ΛTĜ′Λ . (2.49)

Proof. With the help of Eq. (1.21), which reads Λ−1 = ηΛTη, Eq. (1.113),
which for the case of Jext becomes J ′ext = ΛJext, Eq. (1.115), which reads
∂′ = ∂Λ−1, and Eq. (2.49), which reads Ĝ = ΛTĜ′Λ, one finds that

∂ηĜη = ∂ηΛTĜ′Λη

= ∂′ΛηΛTηηĜ′Λη

= ∂′ηĜ′Λη

= ∂′ηĜ′η
(
ηΛTη

)T

= ∂′ηĜ′η
(
Λ−1

)T
,

(2.50)
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and

JText =
(
Λ−1J ′ext

)T
= J ′Text

(
Λ−1

)T
, (2.51)

and thus

∂′ηĜ′η =
4π

c
J ′Text , (2.52)

i.e. the relation (2.45) is Lorentz invariant.

2.4 Gauge Transformation

The relation between the fields E and B and the scalar φ and the 3-vector
A potentials is given by Eqs. (2.23) and (2.25). For given fields E and B,
however, the potentials φ and A are not uniquely determined by Eqs. (2.23)
and (2.25), as can be demonstrated by the following transformation

A→ A′ = A+ (∂ψη)T , (2.53)

or [see Eqs. (1.114) and (2.26)]

φ→ φ′ = φ+
1

c

∂ψ

∂t
, (2.54)

A→ A′ = A−∇ψ , (2.55)

where ψ (t, r) is an arbitrary smooth scalar. As can be verified by substituting
into Eq. (2.28), or by substituting into Eqs. (2.23) and (2.25), the transfor-
mation given by Eq. (2.53) [or Eqs. (2.54) and (2.55)], which is called gauge
transformation, keeps E and B unchanged.

2.5 The Lorenz and Coulomb Gauge Transformations in

Vacuum

In this section the Lorenz and Coulomb gauge transformations in vacuum are
discussed. The generalized Lorenz gauge will be presented in the following
chapter.

Exercise 2.5.1. Express the Maxwell’s equations in vacuum (1.118) and
(1.120) in terms of the potentials φ and A.

Solution 2.5.1. Substituting Eqs. (2.23) and (2.25) into the Maxwell’s equa-
tions in vacuum (1.118) and (1.120) leads with the help of the vector identity

∇× (∇×A) =∇ (∇ ·A)−∇2A , (2.56)
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to

�2A−∇ (∂A) = −4π

c
J, (2.57)

�2φ+
1

c

∂

∂t
(∂A) = −4πρ , (2.58)

where �2, which is defined by

�2 = − 1

c2
∂2

∂t2
+∇2 , (2.59)

is the D’Alembertian operator, and where ∂A is given by [see Eq. (2.27)].

∂A =
1

c

∂φ

∂t
+∇ ·A . (2.60)

2.5.1 Lorenz Gauge

The choice, for which

0 =
1

c

∂φ

∂t
+∇ ·A , (2.61)

is called the Lorenz gauge. As can be seen from Eq. (2.27), the right hand side
of Eq. (2.61), which is called the Lorenz condition, is the Lorentz invariant
scalar ∂A. For this case the Maxwell’s equations in vacuum (2.57) and (2.58)
become

�2A = −4π

c
J , (2.62)

�2φ = −4πρ . (2.63)

In electrostatics the Poisson’s equation (1.5), which is given by ∇2φ =

−4πρ, relates the 0’th component of the potential 4-vectorA = (φ,A1, A2,A3)
T

with the 0’th component of the current 4-vector J = (cρ, J1, J2, J3)
T. The

Poisson’s equation is clearly not Lorentz invariant. The above result (2.63)
generalizes it into a Lorentz invariant form.

2.5.2 Coulomb Gauge

Another popular choice is the Coulomb gauge, for which the following holds

0 =∇ ·A . (2.64)

For this case the Maxwell’s equations in vacuum (2.57) and (2.58) become
(
− 1

c2
∂2

∂t2
+∇2

)
A− 1

c

∂∇φ

∂t
= −4π

c
J, (2.65)

∇
2φ = −4πρ . (2.66)
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2.6 Integral Representation and Boundary Conditions

By applying the Stoke’s theorem, which relates a surface integral over S to
the closed curve integral over the boundary C of the surface S by

∫

S

(∇×V) · ds =
∮

C

V · dl , (2.67)

on Eqs. (2.12) and (2.13) and the divergence theorem, which relates a volume
integral over the volume V to the surface integral over the boundary S of the
volume V by

∫

V

(∇ ·V) dv =

∫

S

V · ds , (2.68)

on Eqs. (2.14) and (2.15) one obtains integral representation of the Maxwell’s
equation

∮

C

H · dl = 4π

c

∫

S

(Jext + Jcond) · ds+
1

c

∂

∂t

∫

S

D · ds , (2.69)

∮

C

E · dl = −1

c

∂

∂t

∫

S

B · ds , (2.70)

∫

S

D · ds = 4π

∫

V

ρext dv , (2.71)

∫

S

B · ds = 0 . (2.72)

Consider an interface between two materials. Let ρs be the areal charge
density and let Js be the surface current density on the boundary surface. Let
n̂ be a unit vector normal to the interface between the two material, which
are labelled as 1 and 2. In general, with the help of the vector identity (1.96),
which is given by

A× (B×C) = (A ·C)B− (A ·B)C , (2.73)

one finds that any given vector V can be decomposed into parallel to n̂

component Vn and a perpendicular component Vt according to

V = Vn +Vt , (2.74)

where

Vn = n̂ (n̂ ·V) , (2.75)

Vt = n̂× (V× n̂) . (2.76)

With the help of the integral representation of the Maxwell’s equation (2.69),
(2.70), (2.71) and (2.72) one finds that (it is assumed that both D and B

remain finite along the interface)
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n̂× (H2−H1) =
4π

c
Js , (2.77)

n̂× (E2−E1) = 0 , (2.78)

n̂ · (D2 −D1) = 4πρs , (2.79)

n̂ · (B2 −B1) = 0 . (2.80)

Exercise 2.6.1. Find the boundary conditions on the surface of a perfect
conductor.

Solution 2.6.1. Inside a perfect conductor (σ → ∞) all fields vanish, and
consequently the boundary conditions (2.77), (2.78), (2.79) and (2.80) become

n̂×H =
4π

c
Js , (2.81)

n̂×E = 0 , (2.82)

n̂ ·D = 4πρs , (2.83)

n̂ ·B = 0 . (2.84)

2.7 Isotropic and Linear Medium

For an isotropic and linear medium the following relations hold (in the rest
frame of the medium)

D = ǫE , (2.85)

P = χeE , (2.86)

B = µH , (2.87)

M = χmH , (2.88)

where ǫ is the relative permittivity, χe is the electric susceptibility, µ is the
relative permeability and χm is the magnetic susceptibility, where [see Eqs.
(2.17) and (2.18)]

ǫ = 1 + 4πχe , (2.89)

µ = 1 + 4πχm . (2.90)

The contribution of conducting charge carries to the current density Jcond is
related to E by

Jcond = σE , (2.91)

where σ is the conductivity.

Exercise 2.7.1. energy conservation - Show that for the case where
Jext = 0 the following holds

∫

S

S · ds +

∫

V

σE2 dv +
∂

∂t

∫

V

u dv = 0 , (2.92)
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where S is the Poynting vector, which is given by

S =
c

4π
E×H , (2.93)

and where u is the electromagnetic energy density, which is given by

u =
ǫE2 + µH2

8π
. (2.94)

Solution 2.7.1. By multiplying Eq. (2.12) by E, multiplying Eq. (2.13) by
H, subtracting and employing the vector identity (1.132), which is given by

∇ · (A×B) = B · (∇×A)−A · (∇×B) , (2.95)

one obtains

∇ · S+E · Jcond +
1

4π

(
E · ∂D

∂t
+H · ∂B

∂t

)
= 0 , (2.96)

or in terms of u [see Eq. (2.91)]

∇ · S+ σE2 +
∂u

∂t
= 0 . (2.97)

Applying the divergence theorem (2.68) leads to Eq. (2.92).

Exercise 2.7.2. Maxwell-Minkowski equations - Consider an isotropic
and linear medium. Show that in an inertial frame moving at velocity u with
respect to the medium the following holds

D+ β ×H = ǫ (E+ β ×B) , (2.98)

B− β ×E = µ (H− β ×D) , (2.99)

where β = u/c.

Solution 2.7.2. Let S′ be the rest frame of the medium, in which the fol-
lowing constitutive relations hold [see Eqs. (2.85) and (2.87)]

D′ = ǫE′ , (2.100)

B′ = µH′ . (2.101)

The following holds [see Eqs. (2.35) and (2.36)]

E′ = E‖ + γ (E⊥ + β ×B⊥) , (2.102)

B′ = B‖ + γ (B⊥ − β ×E⊥) , (2.103)

and [see Eq. (2.49)]

D′ = D‖ + γ (D⊥ + β ×H⊥) , (2.104)

H′ = H‖ + γ (H⊥ − β ×D⊥) , (2.105)
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where V‖ (V⊥) denotes the component of a 3-vector V parallel (perpendic-
ular) to u and where β = u/c, and thus

D‖ + γ (D⊥ + β ×H⊥) = ǫ
[
E‖ + γ (E⊥ + β ×B⊥)

]
, (2.106)

B‖ + γ (B⊥ − β ×E⊥) = µ
[
H‖ + γ (H⊥ − β ×D⊥)

]
. (2.107)

By dividing the perpendicular components of both sides of both Eqs. (2.106)
and (2.107) by γ one obtains

D‖ +D⊥ + β ×H⊥ = ǫ
(
E‖ +E⊥ + β ×B⊥

)
, (2.108)

B‖ +B⊥ − β ×E⊥ = µ
(
H‖ +H⊥ − β ×D⊥

)
, (2.109)

and thus Eqs. (2.98) and (2.99) hold (note that V‖+V⊥ = V and β×V⊥ =
β ×V).

Claim. The inhomogeneous Maxwell’s equations (2.12) and (2.14) in an in-
ertial frame moving at velocity u = (u1, u2, u3) with respect to an isotropic
and linear medium can be written as [compare with Eq. (2.45)]

∂gF̂g =
4π

c
JText , (2.110)

where F̂ is given by Eq. (2.29), which reads

F̂ =






0 E1 E2 E3
−E1 0 −B3 B2
−E2 B3 0 −B1
−E3 −B2 B1 0




 , (2.111)

the effective metric g is given by

g =
1√
µ

(
η +

ξ

c2
UUT

)
, (2.112)

η is the Minkowski metric (1.14), the velocity 4-vector U is defined by [com-
pare with Eq. (1.64)]

U =
dX

dτ
= γ (c, u1, u2, u3)

T . (2.113)

where γ = 1/
√
1− (u2/c2), the parameter ξ is given by

ξ = ǫµ− 1 , (2.114)

ǫ is the relative permittivity, µ is the relative permeability and the 4-vector
Jext = (cρext,Jext + Jcond)

T
is defined by Eq. (2.22).

Eyal Buks Wave Phenomena - Lecture Notes 48



2.7. Isotropic and Linear Medium

Proof. Let S′ be the rest frame of the medium. The constitutive relations
D′ = ǫE′ (2.85) and B′ = µH′ (2.87) can be expressed as [see Eqs. (2.29)
and (2.46)]

Ĝ′ = ζF̂ ′ζ , (2.115)

where

F̂ ′ =






0 E′
1 E′

2 E′
3

−E′
1 0 −B′

3 B′
2

−E′
2 B′

3 0 −B′
1

−E′
3 −B′

2 B′
1 0




 , (2.116)

Ĝ′ =






0 D′
1 D′

2 D′
3

−D′
1 0 −H ′

3 H ′
2

−D′
2 H′

3 0 −H ′
1

−D′
3 −H ′

2 H ′
1 0




 , (2.117)

and where the matrix ζ is given by

ζ =
1√
µ






1 + ξ 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




 , (2.118)

where ξ = ǫµ−1. Inverting the Lorentz transformations (2.32), which is given
by F̂ = ΛTF̂ ′Λ, and (2.49) yields

F̂ ′ =
(
Λ−1

)T
F̂Λ−1 , (2.119)

Ĝ′ =
(
Λ−1

)T
ĜΛ−1 , (2.120)

and thus Eq. (2.115) can be rewritten as

Ĝ = ΛTζ
(
Λ−1

)T
F̂Λ−1ζΛ . (2.121)

The above result (2.121) allows writing the Maxwell’s equation ∂ηĜη =
(4π/c)JText (2.45) as

∂gTF̂ g =
4π

c
JText , (2.122)

where

g = Λ−1ζΛη . (2.123)

When the Lorentz transformation Λ is taken to be given by the matrix B (β)
[see Eq. (1.41)] one finds that

Λ−1ζΛη =
1√
µ

(
η +

ξ

c2
UUT

)
, (2.124)
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in agreement with Eq. (2.112). Note that gT = g. In a matrix form the metric
g (2.112) is given by

g =
1√
µ











1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




+

ξ

1− β2






1 β1 β2 β3
β1 β21 β1β2 β1β3
β2 β2β1 β22 β2β3
β3 β3β1 β3β2 β23









 , (2.125)

where β is related to the velocity 3-vector u by β = u/c [see Eq. (2.113)].

With the help of the relation ∂TATη −
(
∂TATη

)T
= F̂ [see Eq. (2.28)]

Eq. (2.110) can be expressed in terms of the potential 4-vector A as

∂g
(
∂TATη −

(
∂TATη

)T)
g =

4π

c
JText . (2.126)

2.8 Harmonic Time Dependency

Consider a monochromatic solution of the Maxwell’s equations, for which all
fields and sources oscillate in time at angular frequency ω. It is convenient to
employ complex notation, in which all fields and sources are expressed as

ψ (r, t) = real
[
ψ (r) e−iωt

]
. (2.127)

Note that in order to avoid cumbersome notation, the same letter ψ denotes
the r and t dependent amplitude ψ (r, t) and the r only dependent amplitude
ψ (r), which is commonly called a phasor.

By substituting into the Maxwell’s equations (2.12), (2.13), (2.14) and
(2.15) one finds for the case of isotropic and linear response that

∇×H =
4πJext

c
− iω

c
ǫeffE , (2.128)

∇×E =
iω

c
µH , (2.129)

∇ · (ǫE) = 4πρext , (2.130)

∇ · (µH) = 0 , (2.131)

where the effective relative dielectric coefficient ǫeff is given by

ǫeff = ǫ+ i
4πσ

ω
. (2.132)

Exercise 2.8.1. Consider two vectors Va and Vb having harmonic time
dependency

Va (r, t) = real
[
Va (r) e

−iωt] , (2.133)

Vb (r, t) = real
[
Vb (r) e

−iωt] . (2.134)

Calculate the time averaged of Va (r, t) ·Vb (r, t).

Eyal Buks Wave Phenomena - Lecture Notes 50



2.9. Inhomogeneous Medium Free of Sources

Solution 2.8.1. The symbol 〈〉 is employed below to label time averaging
[it should not be confused with the spacial averaging that has been defined
by Eq. (2.1), even though the same symbol is employed]. The following holds

〈Va (r, t) ·Vb (r, t)〉 =
3∑

n=1

〈
real

[
Va,ne

−iωt] real
[
Vb,ne

−iωt]〉

=
3∑

n=1

〈
Va,ne

−iωt + V ∗
a,ne

iωt

2

Vb,ne
−iωt + V ∗

b,ne
iωt

2

〉

=
1

2

3∑

n=1

real
(
Va,nV

∗
b,n

)
, (2.135)

(2.136)

thus

〈Va (r, t) ·Vb (r, t)〉 =
1

2
real (Va ·V∗

b) (2.137)

2.9 Inhomogeneous Medium Free of Sources

Consider the case of electromagnetic fields in an inhomogeneous medium free
of sources (i.e. ρext = 0 and Jext = 0,), which is assumed to be isotropic,
linear and stationary. In addition, the conductivity σ is assumed to vanish
and ǫ = ǫ (r) and µ = µ (r) are taken to be time independent scalars. For
that case Eqs. (2.128), (2.129), (2.130) and (2.131) become

∇×H = −ik0ǫE , (2.138)

∇×E = ik0µH , (2.139)

∇ · (ǫE) = 0 , (2.140)

∇ · (µH) = 0 , (2.141)

where

k0 =
ω

c
. (2.142)

Note that Eqs. (2.140) and (2.141) result from Eqs. (2.138) and (2.139) by
the vector identity

∇ · (∇×A) = 0 . (2.143)

Exercise 2.9.1. Show that

∇
2E+ n2k20E+ (∇ logµ)× (∇×E) +∇ (E ·∇ log ǫ) = 0 , (2.144)

∇
2H+ n2k20H+ (∇ log ǫ)× (∇×H) +∇ (H ·∇ logµ) = 0 , (2.145)

where n, which is given by
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n =
√
ǫµ , (2.146)

is the so-called refraction index.

Solution 2.9.1. Applying the operator ∇× to Eq. (2.138) and using the
vector identity (2.56), which is given by

∇× (∇×A) =∇ (∇ ·A)−∇2A , (2.147)

one finds that

∇ (∇ ·H)−∇2H =− iω

c
∇× (ǫE) . (2.148)

Using the vectors identities

∇ · (fA) = f∇ ·A+A ·∇f , (2.149)

and

∇× (fA) = f∇×A+(∇f)×A , (2.150)

together with Eqs. (2.139) and (2.141) leads to Eq. (2.145). Equation (2.144)
is obtained in a similar way.

2.10 The Scalar Approximation

In the scalar approximation the third and forth terms on the right hand sides
of Eqs. (2.144) and (2.145) are disregarded. These terms give rise to coupling
between the components of E and H. After the removal of these terms Eqs.
(2.144) and (2.145) imply that all three components of E and H satisfy the
so-called Helmholtz equation, which is given by

(
∇
2 + n2k20

)
ψ = 0 . (2.151)

Note that for the case of a homogeneous medium, in which both ǫ and µ are
constants, the above statement [i.e. all three components of E and H satisfy
the Helmholtz equation (2.151)] becomes exact.

2.11 Polarization

Consider an electric field, which is denoted in this section by Et, having
harmonic time dependency

Et = real [exp (−iωt)E] , (2.152)
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where the complex phasor vector E is taken to be given by

E = a+ ib , (2.153)

where a and b are real vectors (constants for a given spacial position). The
real time dependent field is given by

Et =
1

2
[exp (−iωt)E+exp (iωt)E∗]

=
1

2
[exp (−iωt) (a+ ib)+ exp (iωt) (a− ib)]

= a cos (ωt) + b sin (ωt) .

(2.154)

Clearly Et (t) is a close, planar and periodic curve, lying in the plane per-
pendicular to a× b.

Claim. The curve Et (t) is an ellipse.

Proof. To show that Et (t) = (Ex, Ey, Ez) is an ellipse one needs to show
that it is a conic section (see Fig. 2.1), namely, the components Ex, Ey Ez

satisfy a 2nd order equation of the type
∑

0≤nx+ny+nz≤2
Anx,ny,nzE

nx
x Eny

y Enz
z = 0 , (2.155)

where all coefficients Anx,ny,nz are time independent real constants. The fol-
lowing holds [see Eq. (2.154)]

E2i (t) = a2i cos
2 (ωt) + b2i sin

2 (ωt) + aibi sin (2ωt) , (2.156)

or

E2i (t)−
1

2

(
a2i + b2i

)
=

1

2

(
a2i − b2i

)
cos (2ωt) + aibi sin (2ωt) , (2.157)

where i = 1, 2, 3. In a matrix form

M




cos (2ωt)
sin (2ωt)
−1



 = 0 , (2.158)

where

M =






a2x−b2x
2 axbx E2x (t)− a2x+b

2
x

2
a2y−b2y
2 ayby E2y (t)−

a2y+b
2
y

2
a2z−b2z
2 azbz E2z (t)− a2z+b

2
z

2




 . (2.159)

The condition for solution existence for the 2 unknowns cos (2ωt) and
sin (2ωt) requires that

detM = 0 , (2.160)

thus, Et (t) is indeed conic section and thus (since it is periodic) an ellipse.
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Fig. 2.1. Conic sections: hyperbole (H), circle (C), ellipse (E) and parabola (P).

The eccentricity e of an ellipse is defined by

e =

√

1− (E2t )min
(E2t )max

, (2.161)

where
(
E2t
)
min

(
(
E2t
)
max

) is the minimum (maximum) value of E2t .

Exercise 2.11.1. Show that eccentricity is given by

e =

√
2 |η|

1 + |η| , (2.162)

where

η =
E2

|E|2
. (2.163)

Solution 2.11.1. Taking the square of Et (t) leads to [see Eq. (2.152)]

E2t (t) =
1

4

[
exp (−2iωt)E2+exp (2iωt) (E∗)2 + 2E ·E∗

]
. (2.164)

Using the notation

η =
E2

|E|2
, (2.165)

where η = |η| eiϑ, and ϑ is real, one finds that

E2t (t) =
|E|2
2

[1 + |η| cos (2ωt− ϑ)] . (2.166)
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Thus, while |η| determines the eccentricity

e =

√

1− (E2t )min
(E2t )max

=

√
2 |η|

1 + |η| , (2.167)

the phase ϑ of η determines the phase of time oscillations.

Exercise 2.11.2. Show that

(
E2t
)
min,max

=
1

2

(
a2 + b2

)
± 1

2

√
4 (a · b)2 + (a2 − b2)2 . (2.168)

Solution 2.11.2. In terms of a and b one has [see Eq. (2.154)]

E2t (t) = a2 cos2 (ωt) + b2 sin2 (ωt) + a · b sin (2ωt) . (2.169)

The extremum points of E2t are found by solving

0 =
dE2t
d (ωt)

= −a2 sin (2ωt) + b2 sin (2ωt) + 2a · b cos (2ωt) , (2.170)

thus

tan (2ωt) =
2a · b
a2 − b2

. (2.171)

Rewriting Eq. (2.169) as

E2t (t) =
1

2

(
a2 + b2

)
+

1

2
cos (2ωt)

(
a2 − b2

)
+ a · b sin (2ωt) , (2.172)

and using Eq. (2.171) together with the identities

sinx = ± tanx√
tan2 x+ 1

, (2.173)

and

cosx = ± 1√
tan2 x+ 1

, (2.174)

lead to

(
E2t
)
min,max

=
1

2

(
a2 + b2

)
± 1

2

1
√(

2a·b
a2−b2

)2
+ 1

[(
a2 − b2

)
+ a · b 4a · b

a2 − b2

]

=
1

2

(
a2 + b2

)
± 1

2

√
4 (a · b)2 + (a2 − b2)2 .

(2.175)
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2.12 Problems

1. Calculate the electric field E, magnetic field B and the Poynting vector
S generated by a point particle of charge q moving in the x direction at
a fixed velocity u.

2. Consider an infinite wire carrying charge per unit length λ, which flows
along the wire with a constant velocity u. Let E and B be the magnitude
of the electric and magnetic fields, respectively, at a distance l from the
wire. Calculate E and B using two methods. The first one is based on the
integral representation of the Maxwell’s equations given by Eqs. (2.69),
(2.70), (2.71) and (2.72). The second method is based on Eqs. (2.193)
and (2.194) (these equations were derived for the problem of a point
charge moving at a constant velocity u). Compare the results obtained
from these two methods.

3. Consider an uncharged dielectric sphere having a homogeneous permit-
tivity ǫ and radius R. Calculate the electric field E inside and outside the
sphere given that far from the sphere E = E0ẑ, where E0 is a constant.

4. Consider a sphere of radius R in vacuum having uniform permanent
magnetization given by M = M0ẑ, where M0 is a constant and ẑ is a
unit vector. Calculate the magnetic fields B and H.

5. The Drude model - Consider a conductor containing charge carriers
having charge q and mass m in in the presence of electrical field E (and
vanishing magnetic field). The density of charge carriers (i.e. number per
unit volume) is ncc. Scattering is taken into account in the Drude model
by adding a damping term to the classical equation of motion [see Eq.
(1.1)]

dp

dt
+

p

τ tr
= qE , (2.176)

where p is the momentum per electron and where τ tr is the so-called
scattering time. Calculate the frequency dependent effective dielectric
coefficient ǫeff (ω) of the conductor.

6. Fresnel equations - Consider a plane wave of wave vector ki striking the
planar interface between two lossless materials having refractive indices
nl =

√
ǫlµl, where for the material hosting the incident wave l = 1 and

for the other material l = 2. The plane containing ki and n̂, where n̂ is a
unit vector normal to the interface, is called the plane of incidence. Let θi
be the angle between ki and n̂. Calculate the fraction of the power that
is reflected from the interface for the cases of s-polarization (i.e. when the
electric field of the incident wave is orthogonal to the plane of incidence)
and p-polarization (i.e. when the electric field of the incident wave is in
the plane of incidence).

7. Consider a layer of width d and a refractive index n3 =
√
ǫ3µ3 sandwiched

between two semi-infinite media having refractive index n1 =
√
ǫ1µ1
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and n2 =
√
ǫ2µ2, respectively. Solutions of the Maxwell’s equations for

which the electromagnetic fields are confined near the central layer are
called surface modes. Find an equation which is satisfied by all angular
frequencies ω corresponding to surface modes having s-polarization and
an equation for the case of p-polarization.

8. The Lifshitz formula - According to the theory of quantum mechanics,
the ground state energy (or zero-point energy) of an electromagnetic
mode having angular frequency ω is �ω/2, where � is Planck’s h-bar
constant.

a) Consider the trilayer of the previous problem and calculate the mu-
tual force (which is commonly called the Casimir force) between layer
1 and layer 2 originating by the dependence of the zero-point energy
u (d) on the distance d between the layers.

b) Calculate the Casimir force for the case where both layers 1 and 2
have metallic dielectric coefficient given by [see Eq. (2.229)]

ǫ1,2 (ω) = 1−
ω2p
ω2

, (2.177)

where ωp is the plasma frequency, ǫ3 = 1 and µ1 = µ2 = µ3 = 1.

9. Stokes parameters - Consider a monochromatic electromagnetic plane
wave propagating in vacuum along the z axis. The components of the
electric field vector E = (Ex, Ey, Ez) are assumed to be given by

Ex = Ex0 cos

(
ω
z − ct

c
+ δx

)
, (2.178)

Ey = Ey0 cos

(
ω
z − ct

c
+ δy

)
, (2.179)

Ez = 0 , (2.180)

where ω, Ex0, Ey0, δx and δy are constants. The so-called Stokes para-
meters are defined by

S0 = E2x0 +E2y0 , (2.181)

S1 = E2x0 −E2y0 , (2.182)

S2 = 2Ex0Ey0 cos (δx − δy) , (2.183)

S3 = 2Ex0Ey0 sin (δx − δy) . (2.184)

Note that when S1 = S2 = 0 the polarization is circular, whereas when
S3 = 0 the polarization is rectilinear. Calculate the Stokes parameters S′0,
S′1, S

′
2 and S′3 as measured by an observer moving at a constant velocity

given by cβ, where the vector β is expressed as β =ββ̂, where β = |β|,
and the unit vector β̂ = (sin θ, 0, cos θ) is assumed to lie in the xz plane.

10. The Drude-Lorentz model - Consider light propagating in the z di-
rection in a medium containing resonators with number density N (res-
onators per unit volume). Each resonator has mass m, charge e, damping
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rate γ and angular frequency ω0. A magnetic field given by H = H0ẑ is
externally applied in the direction of propagation.

a) Calculate the indices of refraction n+ and n− corresponding to clock-
wise and counter clockwise circular states of polarization, respec-
tively. Assume that γ ≪ |ω − ω0|, where ω is the angular frequency
of the propagating light, and eH0/ (mc)≪ ω0.

b) Calculate the Verdet constant V , which is defined by V = ∆φ/ (H0z),
where ∆φ is the rotation angle of linear polarization traveling a dis-
tance z. This polarization rotation is known as the Faraday effect.

c) Calculate the magnetization M generated by the motion of the res-
onators. This optically-induced magnetization is known as the inverse
Faraday effect.

11. Show that the scalars E · B, E · E−B · B, D · H, D ·D−H ·H and
E ·D−B ·H are all Lorentz invariant.

12. The magnetic field B (t,x) vanishes for any position x and at any time
t in a given inertial frame S and the electric field E′ (t′,x′) vanishes for
any position x′ and at any t′ in another inertial frame S′, which moves
at a constant velocity with respect to S. What can be said about the
electric field E (t,x) in the inertial frame S?

13. The Leinard—Wiechert potential - Show that in the Lorenz gauge in
vacuum the potential 4-vector A is related to the current 4-vector J by

A (t,x) =

∫
d3x′

J

(
t− |x−x

′|
c ,x′

)

c |x− x′| . (2.185)

14. Consider a point particle having charge q. The location x′ (t′) of the parti-
cle at time t′ in Cartesian coordinates is given by x′ (t′) = r0 (cosωt

′, sinωt′, 0),
where both r0 > 0 and ω > 0 are constants. Calculate the The Leinard—
Wiechert potential A (t,x) (2.185) at the point x = (0, 0, z).

15. Calculate the Leinard—Wiechert potential for a point particle having
charge q, which moves along the x direction at a fixed velocity u. Use the
result to calculate the electric E and magnetic B fields generated by the
moving particle.

16. Far field - Consider charge distribution having density ρ (t,x′). The
electric dipole moment p is given by

p =

∫
d3x′ x′ρ (t,x′) . (2.186)

The charge distribution is localized inside a sphere of radius rc centered
at the origin of spatial coordinates (i.e. |x′| < rc). Let ωc be a character-
istic angular frequency of radiation emitted from the distribution due to
motion of charges. Express the electric E and magnetic B fields at the
space-time point (t,x) in terms of p in the so-called far field limit, for
which |x| ≫ rc (dipole approximation) and |x| ≫ c/ωc, and calculate the
total emitted radiative power P .
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2.13 Solutions

1. In a frame commoving with the particle the electric field E is given by
the Coulomb’s law

E′ =
qr′

|r′|3
, (2.187)

and the magnetic field vanishes, i.e. B′ = 0, and thus [see Eqs. (2.35)
and (2.36)]

E = E′‖ + γ (E′⊥ − β ×B′
⊥)

=
qx′1x̂1

(x′21 + x′22 + x′23 )
3/2

+ γ
q (x′2x̂2 + x′3x̂3)

(x′21 + x′22 + x′23 )
3/2

,

(2.188)

and

B = B′
‖ + γ (B′

⊥ + β ×E′⊥)

= γβ × q (x′2x̂2 + x′3x̂3)

(x′21 + x′22 + x′23 )
3/2

,

(2.189)

where

β =
u

c
x̂1 , (2.190)

and where

γ =
1

√
1−

(
u
c

)2 . (2.191)

The time t and x coordinates are transformed according to Eq. (1.25)

(
ct′

x′1

)
= γ

(
1 −u

c
−u
c 1

)(
ct
x1

)
, (2.192)

and therefore

E =
qγ

r30
x0 , (2.193)

and

B =
qγ

r30
β × x0 , (2.194)

where
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x0 = x− ut , (2.195)

and where

r0 =

√
γ2 (x1 − ut)2 + x22 + x23 . (2.196)

With the help of Eqs. (2.93), (2.193), (2.194) and (3.65) one finds that
the Poynting vector is given by

S =
cq2γ2

4π

(x0 · x0)β − (x0 · β)x0
r60

, (2.197)

or

S =
q2γ2u

4π

(
x22 + x23

)
x̂1 − (x1 − ut) (x2x̂2 + x3x̂3)

(
γ2 (x1 − ut)2 + x22 + x23

)3 . (2.198)

Note that no radiation is emitted from the moving particle. This can be
seen from the energy conservation law (2.92), which for this case (the
conductivity σ vanishes) reads

∫

S

S · ds+ ∂

∂t

∫

V

u dv = 0 , (2.199)

and from the fact that |S| roughly decays as |x|−4 [see Eq. (2.198)].
2. In the first method, using Eq. (2.71) one finds that E = 2λ/l [see Eqs.

(2.17) and (2.68)], and using Eq. (2.69) one finds that B = (u/c) (2λ/l)
[see Eqs. (2.18) and (2.67)]. In the second method, using Eqs. (2.193) and
(2.194) one finds that E = λγulI and B = (u/c)E, where the integral
I is given by [the charge q in Eqs. (2.193) and (2.194) is replaced by
λu× dt, and integration over time t is performed]

I =

∫ ∞

−∞

dt
(
(γut)2 + l2

)3/2 , (2.200)

thus using the definite integral

∫ ∞

−∞

dq

(1 + q2)3/2
= 2 , (2.201)

one finds that E = 2λ/l and B = (u/c) (2λ/l), in agreement with the
first method.

3. The coordinates are chosen such that the center of the sphere is located
at the origin. Since the magnetic induction B vanishes for this problem
of electrostatics E can be expressed in terms of a scalar potential φ as
[see Eq. (2.13)]
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E = −∇φ . (2.202)

The transformation from Cartesian to spherical coordinates is given by

x = r sin θ cosϕ , (2.203)

y = r sin θ sinϕ , (2.204)

z = r cos θ , (2.205)

where r ≥ 0, 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π, and thus in spherical coordinates
one has

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

= r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ ϕ̂

1

r sin θ

∂

∂ϕ
.

(2.206)

By symmetry, the scalar potential φ is expected to be independent on ϕ,
and thus it can be expressed as

φ (r, θ) =

{
φin (r, θ) r < R
φout (r, θ) r > R

. (2.207)

The requirement that E = E0ẑ far from the sphere implies that φout ≃
−E0z = −E0r cos θ when r ≫ R. On the surface of the sphere the
boundary condition (2.78) reads

n̂×∇φout = n̂×∇φin , (2.208)

and the boundary condition (2.79) reads [recall Eq. (2.85), which reads
D = ǫE]

n̂ ·∇φout = ǫn̂ ·∇φin , (2.209)

where n̂ is a unit vector normal to the surface of the sphere, thus at
r = R the solution is required to satisfy

∂φout
∂θ

=
∂φin
∂θ

, (2.210)

and

∂φout
∂r

= ǫ
∂φin
∂r

. (2.211)

All these requirements are satisfied by

φ

E0
=

{ − 3
2+ǫr cos θ r < R(

ǫ−1
ǫ+2

R3

r2 − r
)
cos θ r > R

, (2.212)
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and thus [see Eqs. (2.202) and (2.206)]

E

E0
=






3 r̂ cos θ−θ̂ sin θ2+ǫ r < R

r̂

(
1 + 2(ǫ−1)

r3

R3
(2+ǫ)

)
cos θ + θ̂

(
ǫ−1

r3

R3
(2+ǫ)

− 1

)
sin θ r > R

. (2.213)

4. For this magnetostatic problem the filed H can be expressed in terms of
a scalar function ϕm as H = −∇ϕm, since Jtotal = Jmag [see Eq. (2.8)],
and thus ∇ ×H = 0 [see Eqs. (2.12)]. In addition, the following holds
∇ · B = 0 [see Eq. (2.15)] and H = B−4πM [see Eq. (2.18)], and thus
ϕm satisfies the following Poisson equation [see Eq. (1.5)]

∇
2ϕm = −4πρm , (2.214)

where ρm = −∇ ·M. The solution is given by [see Eq. (1.3)]

ϕm (r) =

∫
d3r′

ρm (r′)

|r− r′| . (2.215)

On the surface of the sphere the discontinuity of M gives rise to an
effective surface charge density σm given in spherical coordinates [see
Eqs. (2.68), (2.203), (2.204) and (2.205)] by σm = M0 cos θ (the sphere’s
center is assumed to be located at the origin). Using the so-called addition
theorem, which is given by

1

|r− r′| =
∞∑

l=0

4π

2l + 1

rl<
rl+1>

l∑

m=−l
Y m∗
l

(
θ′, ϕ′

)
Ym
l (θ, ϕ) , (2.216)

where in spherical coordinates r = r (sin θ cosϕ, sin θ sinϕ, cos θ), r′ =
r′
(
sin θ′ cosϕ′, sin θ′ sinϕ′, cos θ′

)
, r< = min (r, r′), r> = max (r, r′), and

Y m
l (θ, ϕ) are the spherical harmonics functions, together with the or-

thogonality relation

∫ 2π

0

dϕ′
∫ 1

−1
d
(
cos θ′

)
Ym′∗
l′

(
θ′, ϕ′

)
Ym
l

(
θ′, ϕ′

)
= δl.l′δm.m′ , (2.217)

one finds that (note that cos θ′ = Y 01
(
θ′, φ′

)
/
√
3/4π)

ϕm (r) =

{ 4πM0r cos θ
3 = 4πM0z

3 r < R
4πM0R

3 cos θ
3r2 r ≥ R

. (2.218)

Using the relation H = −∇ϕm one obtains [see Eq. (2.206)]

H (r) =

{
−4πM0

3 ẑ r < R
4πR3M0

3r3

(
2r̂ cos θ + θ̂ sin θ

)
r ≥ R

, (2.219)
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or (note that r̂ cos θ − θ̂ sin θ = ẑ, where r̂ and θ̂ are unit vectors in the
radial and azimuthal directions, respectively)

H (r) =

{ −m
R3 r < R

−m−3r̂(r̂·m)
r3 r ≥ R

, (2.220)

where the dipole moment m is given by

m =
4πR3

3
M , (2.221)

and thus

B (r) =

{ 2m
R3 r < R

−m−3r̂(̂r·m)
r3 r ≥ R

. (2.222)

5. In terms of the current density vector J, which is related to p by the
relation

p =
m

qncc
J , (2.223)

Eq. (2.176) yields

m

q2ncc

(
∂J

∂t
+

1

τ tr
J

)
= E . (2.224)

When harmonic time dependency at angular frequency ω is assumed Eq.
(2.224) yields

m

q2ncc

(
−iω+ 1

τ tr

)
J (ω) = E (ω) , (2.225)

and thus the conductivity σ is given by [see Eq. (2.91)]

σ (ω) =
σ0

1− iωτ tr
, (2.226)

where

σ0 =
q2nccτ tr

m
, (2.227)

and therefore the effective dielectric coefficient ǫeff is given by [see Eq.
(2.132)]

ǫeff (ω) = 1 +
4πi

ω

σ0
1− iωτ tr

. (2.228)

When ωτ tr ≫ 1 this becomes
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ǫeff (ω) = 1−
ω2p
ω2

, (2.229)

where ωp, which is given by

ω2p =
4πq2ncc

m
, (2.230)

is the so-called plasma frequency.
6. The interface between the two materials is taken to be the z = 0 plane,

where n = n1 (n = n2) for z < 0 (z > 0) and the plane of incidence is
taken to be the plane spanned by n̂ = ẑ and x̂. Consider a solution for
the electric field E composed of incident, reflected and refracted plane
waves having wave vectors ki, kr and kt, respectively. For the case of
s-polarization the solution is expressed as [see Eq. (2.151)]

Es =

{
Ei
(
eiki·r + rse

ikr·r
)
ŷ z < 0

tsEie
ikt·rŷ z > 0

, (2.231)

and for the case of p-polarization as

Ep =

{
Ei

(
eiki·r ki×ŷki

+ rpe
ikr·r kr×ŷ

kr

)
z < 0

Eitpe
ikt·r kt×ŷ

kt
z > 0

, (2.232)

where rs and ts (rp and tp) are the reflection and transmission ampli-
tudes, respectively, for the case of s-polarization (p-polarization) and Ei
is the amplitude of incident wave. The boundary condition (2.78) can be
satisfied for every point in the plane z = 0 only when ki, kr and kt have
the same tangential component. This requirement is satisfied by express-
ing ki, kr and kt in terms of the corresponding angles θi, θr and θt as
[see Eq. (2.151)]

ki =
n1ω

c
(sin θi, 0, cos θi) , (2.233)

kr =
n1ω

c
(sin θr, 0,− cos θr) , (2.234)

kt =
n2ω

c
(sin θt, 0, cos θt) , (2.235)

where θr is related to θi by the so-called law of reflection

θr = θi , (2.236)

and θt is related to θi by the so-called Snell’s law

n1 sin θi = n2 sin θt . (2.237)

The magnetic field H is related to E by Eq. (2.139), which reads
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H = −i
c

ωµ
∇×E , (2.238)

thus [see Eqs. (1.96), (2.150), (2.231) and (2.232)]

Hs =

{
Ein1
µ1

(
eiki·r ki×ŷki

+ rse
ikr·r kr×ŷ

kr

)
z < 0

Ein2
µ2

tse
ikt·r kt×ŷ

kt
z > 0

, (2.239)

and

Hp =

{
−Ein1

µ1

(
eiki·r + rpe

ikr·r
)
ŷ z < 0

−Ein2
µ2

tpe
ikt·rŷ z > 0

. (2.240)

The boundary conditions (2.77) and (2.78) yield for the case of s-
polarization [see Eqs. (2.231) and (2.239)]

√
ǫ1
µ1

(1− rs) cos θr =

√
ǫ2
µ2

ts cos θt , (2.241)

1 + rs = ts , (2.242)

and for the case of p-polarization [see Eqs. (2.232) and (2.240)]
√

ǫ1
µ1

(1 + rp) =

√
ǫ2
µ2

tp , (2.243)

(1− rp) cos θr = tp cos θt . (2.244)

The solutions are given by

rs =

√
ǫ1
µ1

cos θi −
√

ǫ2
µ2

cos θt
√

ǫ1
µ1

cos θi +
√

ǫ2
µ2

cos θt
, (2.245)

and

rp =

√
ǫ2
µ2

cos θi −
√

ǫ1
µ1

cos θt
√

ǫ2
µ2

cos θi +
√

ǫ1
µ1

cos θt
. (2.246)

Note that when total internal reflection occurs, i.e. when n1 > n2 and
[see Eq. (2.237)]

sin θi >
n2
n1

, (2.247)

one has |rs|2 = |rp|2 = 1 [note that Eq. (2.237) yields no real solution for

θt for this case]. Consider the case where µ1 = µ2. For that case |rp|2 = 0
when θi = θB, where θB is the so-called Brewster’s angle, which is given
by [see Eqs. (2.237) and (2.246)]

θB = tan−1
n2
n1

. (2.248)
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7. Consider first the case of s-polarization. For this case, the solution for
the electric field E for each layer is assumed to have the form [compare
with Eq. (2.231)]

E = ŷey (z) e
iκ·ρ , (2.249)

where κ = (kx, ky) and ρ = (x, y). The Helmholtz equation (2.151)
implies that

e′′y
ey

= K2 , (2.250)

where

K2 = κ2 −
(nω

c

)2
. (2.251)

Note that for the case of surface modes K2 > 0. The magnetic field H is
given by [see Eqs. (2.139) and (2.150)]

H =
1

ik0µ
∇×E

=

(
−e′y, 0, 0

)
+ i (0, 0, kxey)

ik0µ
eiκ·ρ ,

(2.252)

where k0 = ω/c [see Eq. (2.142)]. Next, consider an interface between
two materials at a plane of constant z. The Snell’s law (2.237) implies
that the lateral wave vector κ obtains the same value on both sides of
the interface. Thus, for this case of s-polarization the boundary condition
(2.78) implies that ey is continuous, and the boundary condition (2.77)
implies that µ−1e′y is continuous. For the trilayer, the refractive index n
is taken to be given by

n (z) =






n1 =
√
ǫ1µ1 z < 0

n3 =
√
ǫ3µ3 0 ≤ z ≤ d

n2 =
√
ǫ2µ2 z < d

. (2.253)

Consider a solution having the form [see Eq. (2.250)]

ey (z) =






AeK1z z < 0
BeK3z +Ce−K3z 0 ≤ z ≤ d

De−K2z z < d
, (2.254)

where [see Eq. (2.251)]

Kl =

√

κ2 −
(nlω

c

)2
. (2.255)
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In a matrix form the boundary conditions at the interfaces z = 0 and
z = d can be expressed as

Ms

(
A B C D

)T
= 0 , (2.256)

where

Ms =






1 −1 −1 0
0 eK3d e−K3d −e−K3d

K1

µ1
−K3

µ3

K3

µ3
0

0 K3

µ3
eK3d −K3

µ3
e−K3d K2

µ2
e−K3d




 . (2.257)

A nontrivial solutions exists provided that

0 = detMs

= e−2K3d

(
µ3
K3
− µ1

K1

)(
µ3
K3
− µ2

K2

)

µ1
K1

µ2
K2

(
µ3
K3

)2 As ,

(2.258)

where

As = e2K3d

µ3
K3

+ µ1
K1

µ3
K3
− µ1

K1

µ3
K3

+ µ2
K2

µ3
K3
− µ2

K2

− 1 . (2.259)

Thus the angular frequencies ω associated with s-polarization surface
modes can be found by solving the equation As = 0. Similarly, for the
case of p-polarization, the solution for the magnetic field H for each layer
is assumed to have the form

H = ŷhy (z) e
iκ·ρ , (2.260)

where [see Eq. (2.151)]

h′′y
hy

= K2 . (2.261)

The electric field E is given by [see Eq. (2.138)]

E =
i

k0ǫ
∇×H

= −
(
−h′y, 0, 0

)
+ i (0, 0, kxhy)

ik0ǫ
eiκ·ρ .

(2.262)

Thus, for p-polarization the boundary condition (2.77) implies that hy
is continuous, and the boundary condition (2.78) implies that ǫ−1h′y is
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continuous. In a similar fashion one finds that the angular frequencies ω
associated with p-polarization surface modes can be calculated by solving
the equation Ap = 0, where

Ap = e2K3d
ǫ3
K3

+ ǫ1
K1

ǫ3
K3
− ǫ1

K1

ǫ3
K3

+ ǫ2
K2

ǫ3
K3
− ǫ2

K2

− 1 . (2.263)

8. For the above discussed trilayer, the Casimir force between layers 1 and
2 is calculated below by summing over all angular frequencies ω corre-
sponding to surface modes with either s-polarization or p-polarization
[see Eqs. (2.255), (2.259) and (2.263)].

a) The Casimir pressure (force per unit area) P (d) is given by

P (d) = −∂u (d)

∂d
, (2.264)

where u (d) is the zero point energy per unit area associated with
the surface modes, which is found by summing over all angular fre-
quencies corresponding to both s-polarization and p-polarization, and
multiplying the sum by �/2A, where A is the area. The summation
over allowed values of kx and ky can be performed using the rule

∑

kx,ky

→ A

4π2

∫ ∞

−∞
dkx

∫ ∞

−∞
dky →

A

2π

∫ ∞

0

dκ κ . (2.265)

For a given κ the angular frequencies ω can be found by solving
As (ω, κ) = 0 and Ap (ω, κ) = 0. This can be performed with the
help of the argument theorem

P (d) = − �

4π

∂

∂d

∫ ∞

0

dκ κΥ (κ) , (2.266)

where

Υ (κ) =
1

2πi

∮

C

dω ω

(
∂ logAs

∂ω
+

∂ logAp
∂ω

)
, (2.267)

and where the integration contour C in the ω complex plane is as-
sumed to enclose all zeros of As and Ap. The contour C is chosen to
contain a section along the imaginary axis from ω = −iR to ω = iR
and a semi-circle of radius R in the real positive half complex plane
(i.e. right to the imaginary axis). In the limit R → ∞ the integral
along the semi-circle vanishes. By integrating along the imaginary
axis and by performing integration by parts Eq. (2.266) becomes

P (d) =
�

8π2
∂

∂d

∫ ∞

0

dκ κ

∫ ∞

−∞
dΩ (logAs + logAp) , (2.268)
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where ω = iΩ, thus (note that the integrand is an even function of
Ω)

P (d) = − �

2π2

∫ ∞

0

dκ κ

∫ ∞

0

dΩ

×
(
K3 (As + 1)

As
+

K3 (Ap + 1)

Ap

)

= − �

π2

∫ ∞

0

dκ κ

∫ ∞

0

dΩ K3

− �

2π2

∫ ∞

0

dκ κ

∫ ∞

0

dΩ K3

(
1

As
+

1

Ap

)
.

(2.269)

The first term is independent on ǫ1 and ǫ2. After disregarding it Eq.
(2.269) becomes

P (d) = − �

2π2

∫ ∞

0

dκ κ

∫ ∞

0

dΩ K3

(
1

As
+

1

Ap

)
. (2.270)

The variable p is defined by

κ2 =
n23Ω

2

c2
(
p2 − 1

)
, (2.271)

the variables s1,2 by

s1,2 =

√

p2 − 1 +
n21,2
n23

, (2.272)

and the variable x by

x = 2K3d . (2.273)

The following holds (recall that ω = iΩ)

K1 =
n3Ω

c

√

p2 − 1 +
n21
n23

, (2.274)

K2 =
n3Ω

c

√

p2 − 1 +
n22
n23

, (2.275)

K3 =
n3Ω

c
p , (2.276)

or
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K1 =
x

2pd

√

p2 − 1 +
n21
n23

, (2.277)

K2 =
x

2pd

√

p2 − 1 +
n22
n23

, (2.278)

K3 =
x

2d
. (2.279)

By employing the above definitions and relations one finds that Eq.
(2.269) can be expressed as [see Eqs. (2.259) and (2.263)]

P (d) = − �c

32π2d4

∫ ∞

1

dp

p2

∫ ∞

0

dx x3n−13

×
(

1

ζs,1ζs,2e
x − 1

+
1

ζp,1ζp,2e
x − 1

)
,

(2.280)

where

ζs,n =
µnK3 + µ3Kn

µnK3 − µ3Kn
, (2.281)

ζp,n =
ǫnK3 + ǫ3Kn

ǫnK3 − ǫ3Kn
, (2.282)

and n ∈ {1, 2}.
b) For this case [recall that ω = iΩ and see Eqs. (2.277), (2.278) and

(2.279)]

ζs,n =
1 +

√
1 + x−2

(
d
dp

)2

1−
√
1 + x−2

(
d
dp

)2 , (2.283)

ζp,n =
1 + x−2

(
p d
dp

)2
+

√
1 + x−2

(
d
dp

)2

1 + x−2
(
p d
dp

)2
−
√
1 + x−2

(
d
dp

)2 , (2.284)

where

dp =
c

2ωp
. (2.285)

For the present case the following holds [see Eqs. (2.283) and (2.284)]
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1

ζ2s,ne
x − 1

+
1

ζ2p,ne
x − 1

=
2

ex − 1

− 4xex

(ex − 1)2

(
1 +

1

p2

)
dp
d

+O

((
dp
d

)2)

,

(2.286)

thus when dp ≪ d the Casimir force (2.280) is approximately given
by

P (d) = Ppc (d) + Pfcc (d) , (2.287)

where the term Ppc (d), which is given by

Ppc (d) = −
�c

16π2d4

∫ ∞

1

dp

p2

∫ ∞

0

x3dx

ex − 1

= − π2�c

240d4
,

(2.288)

represents the force in the limit of infinite conductivity, and where
the term Pfcc (d), which is given by

Pfcc (d) = −
32

3

dp
d
Ppc (d) , (2.289)

is the correction due to finite conductivity. The above results are
obtained using the following identities

∫ ∞

0

x3dx

ex − 1
=

π4

15
, (2.290)

∫ ∞

1

dp

p2
= 1 , (2.291)

∫ ∞

0

x4exdx

(ex − 1)2
=

4π4

15
, (2.292)

∫ ∞

1

(
1 + 1

p2

)
dp

p2
=

4

3
. (2.293)

9. The transformed electric field E′ =
(
E′
x, E

′
y, E

′
z

)
is given by [see Eq.

(2.35)]

E′ = E‖ + γ (E⊥ + β ×B⊥)

= γE+ (1− γ)
(
E · β̂

)
β̂ + γββ̂ ×B ,

(2.294)
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where γ = 1/
√
1− β2 and B = ẑ × E = (−Ey, Ex, 0) [see Eq. (2.139)],

and thus for the case where β̂ = (sin θ, 0, cos θ) one has

E′
x =

(
1 + (γ − 1) cos2 θ − βγ cos θ

)
Ex , (2.295)

E′
y = γ (1− β cos θ)Ey , (2.296)

E′
z = ((1− γ) cos θ + βγ)Ex sin θ . (2.297)

Let n̂′ be a unit vector in the direction of propagation of the wave as
measured by the moving observer. With the help of the aberration of
light formula (1.61) one finds that

n̂′ =
n̂− γ

(
1− γ

1+γ (β · n̂)
)
β

γ (1− (β · n̂)) , (2.298)

where for the current case n̂ = ẑ. The vector n̂′ lie in the xz plane
and it makes an angle α with the z axis given by [note that β2 =(
1 + γ−1

) (
1− γ−1

)
]

tanα = − ((1− γ) cos θ + βγ) sin θ

1 + (γ − 1) cos2 θ − βγ cos θ
, (2.299)

and the following holds tanα = −E′
z/E

′
x [see Eqs. (2.295) and (2.297)].

Rotation of E′ about the y axis by an angle α leads to (note that the
rotation preserves both the y component and the length)




E′
x

E′
y

E′
z



→




E′
xR

E′
yR

E′
zR



 =





√
E′2
x +E′2

z

E′
y

0



 , (2.300)

and thus
(
E′
xR

E′
yR

)
= γ (1− β cos θ)

(
Ex

Ey

)
, (2.301)

and therefore the Stokes parameters are transformed according to





S′0
S′1
S′2
S′3




 = γ2 (1− β cos θ)2






S0
S1
S2
S3




 . (2.302)

As can be seen from Eq. (1.183), the factor γ (1− β cos θ) is the frequency
ratio ω′/ω due to the Doppler effect.

10. In the presence of an applied electric filed given by E = (Ex, Ey, 0) e
−iωt

[see Eq. (2.127)], where Ex, Ey and ω are constants, the mechanical
equation of motion is given by

m
(
r̈+ γṙ+ ω20r

)
= −eE− e

c
ṙ×H . (2.303)
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a) The vector r can be expressed as r = (rx, ry, 0) e
−iωt = (r−ê+ + r+ê−) e−iωt,

where r± = (rx ± iry) /
√
2 and ê± = (x̂± iŷ) /

√
2. With the help of

the identity ê± × ẑ = ±iê± Eq. (2.303) yields in steady state
(
ω20 − ω2 − iωγ

)
(r−ê+ + r+ê−)

+ ωωH (r−ê+ − r+ê−)

= − e

m
(E−ê+ +E+ê−) ,

(2.304)

where (Ex, Ey, 0) = E−ê+ + E+ê− and the cyclotron frequency ωH
is given by

ωH =
eH0
mc

, (2.305)

and thus

r±
E±

= −
e
m

ω20 − ω2 − iωγ ∓ ωωH
, (2.306)

or (recall that it is assumed that γ ≪ |ω − ω0| and ωH ≪ ω0)

r±
E±

= −
e
m

(
1± ωωH

ω20−ω2
)

ω20 − ω2
+O

(
ω2H
)
. (2.307)

With the help of the relations D = E + 4πP and P = χeE [see
Eqs. (2.17) and (2.86)] one finds that the permittivity ǫ = 1 + 4πχe
corresponding to circular polarization ê± is given by

ǫ± = 1 +
ω2p

(
1± ωωH

ω20−ω2
)

ω20 − ω2
+O

(
ω2H
)
, (2.308)

where

ωp =

√
4πNe2

m
, (2.309)

is the plasma frequency, or

ǫ± = n20

(

1±
ω2pωωH

n20 (ω
2
0 − ω2)

2

)

+O
(
ω2H
)
, (2.310)

where

n0 =

(

1 +
ω2p

ω20 − ω2

)1/2
, (2.311)

and the corresponding indices of refraction are given by n± = ǫ
1/2
± .
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b) According to its definition, the Verdet constant is given by

V =
ω (n+ − n−)

cH0
. (2.312)

hence

V =
e

mc2n0

ω2pω
2

(ω20 − ω2)
2 . (2.313)

c) The magnetization M is given by [see Eq. (2.137) and note that
ê∗± = ê∓ and ê− × ê+ = iẑ]

M =
πeN

2c
r× ṙ∗

=
iπeNω

2c
(r−ê+ + r+ê−)×

(
r∗−ê− + r∗+ê+

)
(2.314)

=
πeNω

2c

(
|r−|2 − |r+|2

)
ẑ ,

(2.315)
thus in the limit of γ → 0 and ωH → 0 [see Eq. (2.306)]

M =
πeNω

2c

( e
m

ω20 − ω2

)2 (
|E−|2 − |E+|2

)
ẑ

=
cn0V

8ω

(
|E−|2 − |E+|2

)
ẑ .

(2.316)

11. The following holds [see Eqs. (1.21), (2.32) and (2.49)]

ηF̂ηF̂ = Λ−1ηF̂ ′ηF̂ ′Λ, (2.317)

ηĜηĜ = Λ−1ηĜ′ηĜ′Λ, (2.318)

and [see Eqs. (1.14), (2.29) and (2.46)]

1

2
Tr
(
ηF̂ηF̂

)
= E2 −B2, (2.319)

1

2
Tr
(
ηĜηĜ

)
= D2 −H2. (2.320)

In general, for any two square matrices M1 and M2 the following holds
Tr (M1M2) = Tr (M2M1), and thus

Tr
(
ηF̂ηF̂

)
= Tr

(
ηF̂ ′ηF̂ ′

)
, (2.321)

Tr
(
ηĜηĜ

)
= Tr

(
ηĜ′ηĜ′

)
. (2.322)

i.e. both E2−B2 and D2−H2 are Lorentz invariant. The following holds
[see Eqs. (2.35), (2.36) and (3.315)]
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E ·B = E′‖ ·B′
‖ + γ2 (E′⊥ − β ×B′

⊥) · (B′
⊥ + β ×E′⊥)

= E′‖ ·B′
‖ + γ2

(
1− β2

)
E′⊥ ·B′

⊥ + γ2 (E′⊥ · (β ×E′⊥)− (β ×B′
⊥) ·B′

⊥)

= E′ ·B′ ,

(2.323)

and thus E ·B is Lorentz invariant. In a similar way one finds that D ·H
is Lorentz invariant [see Eqs. (2.104) and (2.105)]. Moreover, with the
help of the general identity

(A×B) ·C = (B×C) ·A = (C×A) ·B , (2.324)

one finds that [see Eqs. (2.35), (2.36), (2.104) and (2.105)]

E ·D−B ·H = E′‖ ·D′
‖−B′

‖ ·H′
‖

+γ2 (E′⊥ − β ×B′
⊥) · (D′

⊥ − β ×H′
⊥)

−γ2 (B′
⊥ + β ×E′⊥) · (H′

⊥ + β ×D′
⊥)

= E′‖ ·D′
‖−B′

‖ ·H′
‖ + γ2

(
1−β2

) (
E′⊥ ·D′

⊥−B′
⊥ ·H′

⊥
)

= E′ ·D′−B′ ·H′ ,

(2.325)

and thus E ·D−B ·H is Lorentz invariant.
12. Both E ·B and E ·E−B ·B are Lorentz invariant, and thus the electric

field E in the inertial frame S vanishes for any position x and at any
time t.

13. In the Lorenz gauge the Maxwell’s equations in vacuum can be expressed
as [see Eqs. (2.62) and (2.63)]

�2A = −4π

c
J , (2.326)

where �2 = −c−2∂2/∂t2 + ∇
2 is the D’Alembertian operator, A =

(φ,A1, A2,A3)
T is the potential 4-vector and J = (cρ, J1, J2, J3)

T is the
current 4-vector. Both A (t,x) and J (t,x) can be Fourier expanded (in
time only) as

A (t,x) =
1√
2π

∫ ∞

−∞
dω A (ω,x) eiωt , (2.327)

J (t,x) =
1√
2π

∫ ∞

−∞
dω J (ω,x) eiωt . (2.328)

Substituting into Eq. (2.326) yields
(
ω2

c2
+∇2

)
A (ω,x) = −4π

c
J (ω,x) . (2.329)

As is shown below in chapter 5 [see Eqs. (5.84) and (5.95)], the following
holds
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(
k2 +∇2

)
g (x− x′) = δ (x− x′) , (2.330)

where k is a constant, and the so-called Green function g (x− x′) is given
by

g (x− x′) = − e±ik|x−x′|
4π |x− x′| . (2.331)

Thus the solution of Eq. (2.329) can be expressed as

A (ω,x) =

∫
d3x′

e±i
ω
c |x−x′|

c |x− x′| J (ω,x′) . (2.332)

Applying the inverse Fourier transform in time leads to [see Eq. (5.6)]

A (t,x) =

∫
d3x′

∫ ∞

−∞
dt′

J (t′,x′)

c |x− x′|
1

2π

∫ ∞

−∞
dω e

iω

(
t±|x−x

′|
c

−t′
)

︸ ︷︷ ︸
=δ

(
t±|x−x

′|
c

−t′
)

=

∫
d3x′

J

(
t± |x−x

′|
c ,x′

)

c |x− x′| .

(2.333)

Due to the principle of causality, the solution with the + sign is rejected.
The potential with the minus sign, which is given by Eq. (2.185), is
commonly called the retarded potential. As is expected from the principle
of causality, propagation at the speed of light results in the value of J at
time t− |x− x′| /c and location x′ affecting the value of A at time t and
location x.

14. For the current case Eq. (2.185) yields [see Eq. (1.112)]

A (t,x) =

(
q
r0
,−qω

c sinωtr,
qω
c cosωtr, 0

)T

√
1 +

(
z
r0

)2 , (2.334)

where the retarded time tr is given by

tr = t−
√

r20 + z2

c
. (2.335)

15. For a general point particle of charge q the current 4-vector is given by
[see Eqs. (1.37), (1.110), (1.111) and (1.112)]

J = q (c, ẋp)
T
δ (x− xp) , (2.336)
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where xp and ẋp are the position and velocity, respectively, of the point
particle, hence the Leinard—Wiechert potential at time t and position
x = (x1, x2, x3) is given by [see Eq. (2.185)]

A (t,x) =

∫
d3x′

q (1,β (t′r))
T
δ (x′ − xp (t

′
r))

|x− x′| , (2.337)

where the retarded time t′r is given by t′r = t − td, the delay time td is

given by td = |x− x′| /c, γ = 1/
√
1− β2, β = |ẋp| /c, and β = ẋp/c. A

delta function in time and time integration can be added

A (t,x) =

∫
d3x′

∫
dt′

q (1,β (t′))T δ (x′ − xp (t
′)) δ (t′ − t′r)

|x− x′| . (2.338)

Integration over space yields

A (t,x) =

∫
dt′

q (1,β (t′))T δ (f (t′))

|x− xp (t′)|
, (2.339)

where the function f (t′) is given by

f (t′) = t′ − t′r

= t′ − t+
|x− xp (t′)|

c
.

(2.340)

For the case where the function f (t′) has a single zero at tr, the following
holds

δ (f (t′)) =
δ (t′ − tr)∣∣∣df(t

′)
dt′

∣∣∣

=
δ (t′ − tr)

1− n̂p · β
,

(2.341)

where the unit vector n̂p is given by

n̂p (t
′) =

x− xp (t′)

|x− xp (t′)|
, (2.342)

and thus A (t,x) can be expressed as

A (t,x) =
q (1,β (tr))

T

(1− n̂p (tr) · β (tr)) |x− xp (tr)|
. (2.343)

For the current case, the particle position is given by xp (t) = (ut, 0, 0),
and thus the condition f (t′) = 0 yields [see Eq. (2.340)]
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0 = tr − t+
|x− (utr, 0, 0)|

c
, (2.344)

hence

tr − t = −
γ2
(
β (x1 − ut)±

√
(x1 − ut)2 +

x22+x
2
3

γ2

)

c

= −
γ2

(
xr·ẋp
c ±

√(
xr·ẋp
c

)2
+ |xr|2

γ2

)

c
,

(2.345)

where

xr = x− xp (t) . (2.346)

For the solution with the plus sign, which satisfies the causality condition,
Eq. (2.343) yields [see Eq. (2.340), recall that f (tr) = 0, and note that
x− xp (tr) = xr − (u (tr − t) , 0, 0)]

A (t,x) =
q (1,β)T

|x− xp (tr)| − (x− xp (t′)) · β

=
q (1,β)T

−c (tr − t)− (xr − (u (tr − t) , 0, 0)) · β

=
q (1,β)T

−c(tr−t)
γ2 − xr · β

=
γq (1,β)T

r0
,

(2.347)

where

r0 =

√
|xr|2 + γ2 (xr · β)2 =

√
γ2 (x1 − ut)2 + x22 + x23 . (2.348)

Hence the electric field is given by [see Eq. (2.25) and recall that A =

(φ,A1, A2,A3)
T]

E = −∇φ−1

c

∂A

∂t

= −γq
(
∇

(
1

r0

)
+
1

c

∂

∂t

(
1

r0

)
β

)

=
γqxr
r30

,

(2.349)
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and the magnetic field is given by [see Eq. (2.23)]

B = ∇×A

= γq∇× β

r0

= γq

(
∇

1

r0

)
× β

= −γq
((
γ2 (x1 − ut) , x2, x3

))

r30
× β

= γq
β × xr

r30
,

(2.350)

in agreement with Eqs. (2.193) and (2.194), respectively.
16. In the dipole approximation (i.e. when |x′| ≪ |x|) the Leinard—Wiechert

potential 4-vector A becomes [see Eq. (2.185)]

A (t,x) =

∫
d3x′

J

(
t− |x−x

′|
c ,x′

)

c |x− x′|

≃ 1

c |x|

∫
d3x′ J

(
t− |x|

c
,x′
)

.

(2.351)

With the help of the continuity equation (1.117) one finds that [see Eqs.
(1.112) and (2.186)]

ṗ = −
∫

d3x′ x′ (∇ · J) , (2.352)

where overdot denotes a derivative with respect to time and J is the
3-vector current density. Integration by parts yields

ṗ =

∫
d3x′ J , (2.353)

and thus in this approximation the 3-vector potential A becomes

A (t,x) =
ṗ
(
t− |x|

c

)

c |x| . (2.354)

The scalar potential φ can be evaluated using the Lorenz gauge condition
(2.61), which for the current case becomes [see Eq. (2.354)]

∂φ

∂t
= −∇ ·

ṗ
(
t− |x|

c

)

|x| =
ṗ
(
t− |x|

c

)
+ |x|

c p̈
(
t− |x|

c

)

|x|2
· x̂ , (2.355)
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where x̂ = x/ |x| is a unit vector parallel to x̂, and thus by integration
one obtains

φ = φ0 +
p
(
t− |x|

c

)
+ |x|

c ṗ
(
t− |x|

c

)

|x|2
· x̂ , (2.356)

where the electrostatic term φ0 is given by [see Eq. (2.351)]

φ0 =
1

|x|

∫
d3x′ ρ . (2.357)

The magnetic B and electric E fields can be calculated using Eqs. (2.23)
and (2.25). In the far field limit only the terms of lowest nonvanishing

order in |x|−1 are kept, and thus [see Eq. (2.150)]

B =∇×A = − x̂× p̈r

c2 |x| , (2.358)

and

E = −∇φ−1

c

∂A

∂t
=

(p̈r · x̂) x̂− p̈r

c2 |x| , (2.359)

or [see Eq. (1.96)]

E =
x̂× (x̂× p̈r)

c2 |x| , (2.360)

where p̈r denotes the value of p̈ at the retarded time t − |x| /c. The
Poynting vector (2.93) is given by [see Eq. (3.65)]

S =
c

4π
E×B =

|x̂× p̈r|2 x̂
4πc3 |x|2

. (2.361)

The total radiated power P is calculated by surface integration over a
sphere [see Eq. (2.92)]

P =

∫

S

S · ds = |p̈r|2
4πc3

∫ 1

−1
d cos θ sin2 θ

∫ 2π

0

dϕ , (2.362)

thus

P =
2 |p̈r|2
3c3

. (2.363)
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In the theory of geometrical optics the Maxwell’s equations are simplified
based on the assumption that the characteristic wavelength λ of electromag-
netic waves can be considered as small (in comparison with relevant length
scales in the problem under study).

3.1 Scalar Geometrical Optics

In this section the short wavelength approximation is demonstrated for the
relatively simple case of a scalar field. Consider the following scalar wave
equation [compare with Eq. (3.195)]

(
n2 (r)

c2
∂2

∂t2
−∇2

)
U (r, t) = 0 . (3.1)

By substituting a solution having the form

U (r, t) = u (r) e−iωt , (3.2)

into Eq. (3.1) one finds that u (r) satisfies the following Helmholtz equation
[see Eq. (2.151)]

(
∇
2 + n2k20

)
u (r) = 0 , (3.3)

where

k0 =
ω

c
. (3.4)

Consider a solution for u (r) having the form

u (r) = uE (r) e
ik0ψ(r) , (3.5)

where uE (r) is expressed as an asymptotic expansion in powers of 1/k0

uE (r) = u0 (r) +
1

k0
u1 (r) +

1

k20
u2 (r) + · · · , (3.6)

and where the real function ψ (r) is called the eikonal (image in greek). In
geometrical optics the parameter 1/k0 is assumed small.
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Claim. To first order in 1/k0 the following holds

(∇ψ)2 = n2 , (3.7)

and

u0∇
2ψ + 2 (∇ψ) · (∇u0) = 0 . (3.8)

Proof. By substituting Eq. (3.5) into Eq. (3.3) and employing the general
identity

∇
2 (fg) = f∇2g + g∇2f + 2 (∇f) · (∇g) , (3.9)

one obtains

k−20 ∇
2uE+ ik−10 uE

(
∇
2ψ + ik0 (∇ψ)

2
)
+2ik−10 (∇ψ) ·(∇uE)+n2uE = 0 .

(3.10)

Collecting all terms of zeroth order in 1/k0 yields

[
n2 − (∇ψ)2

]
u0 = 0 , (3.11)

and collecting all terms of 1’st order in 1/k0 yields

i
[
u0∇

2ψ + 2 (∇ψ) · (∇u0)
]
+
[
n2 − (∇ψ)2

]
u1 = 0 . (3.12)

Unless u0 (r) vanishes everywhere Eq. (3.11) leads to Eq. (3.7), which is called
the eikonal equation. By employing the eikonal equation one finds that Eq.
(3.12) becomes Eq. (3.8). Note that multiplying Eq. (3.8) by u0 leads to

u20∇
2ψ + (∇ψ) ·

(
∇u20

)
= 0 , (3.13)

thus Eq. (3.8) can be rewritten as

∇ ·
(
u20∇ψ

)
= 0 . (3.14)

3.2 Vectorial Geometrical Optics

As has been shown in the previous section, the eikonal equation (3.7) can be
derived from the scalar approximation. However, the vectorial nature of elec-
tromagnetism requires a vectorial analysis. The starting point of such analy-
sis is the version of the Maxwell’s equations given by Eqs. (2.138), (2.139),
(2.140) and (2.141)
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∇×H = −ik0ǫE , (3.15)

∇×E = ik0µH , (3.16)

∇ · (ǫE) = 0 , (3.17)

∇ · (µH) = 0 , (3.18)

where

k0 =
ω

c
. (3.19)

Recall that Eqs. (2.138), (2.139), (2.140) and (2.141) have been derived
based on the assumptions that the medium is inhomogeneous, free of sources,
isotropic, linear and stationary, the conductivity σ vanishes, and ǫ = ǫ (r) and
µ = µ (r) are taken to be time independent scalars. In addition, harmonic
time dependency has been assumed.

3.2.1 Asymptotic Expansion

In the so-called Luneberg-Kline asymptotic expansion E andH are expressed
in terms of the eikonal function ψ (r) as

E (r) = exp [ik0ψ (r)]
∞∑

m=0

Em (r)

(ik0)
m , (3.20)

and

H (r) = exp [ik0ψ (r)]
∞∑

m=0

Hm (r)

(ik0)
m . (3.21)

Exercise 3.2.1. Show that

∇×Hm = −ǫEm+1 − (∇ψ)×Hm+1 , (3.22)

∇×Em = µHm+1 − (∇ψ)×Em+1 , (3.23)

∇ · (ǫEm) = −ǫEm+1 ·∇ψ , (3.24)

∇ · (µHm) = −µHm+1 ·∇ψ . (3.25)

Solution 3.2.1. Substituting Eqs. (3.20) and (3.21) into Eqs. (2.138), (2.139),
(2.140) and (2.141) leads to

∞∑

m=0

1

(ik0)
m∇×[Hm exp (ik0ψ)] = −ǫ exp (ik0ψ)

∞∑

m=−1

1

(ik0)
mEm+1 , (3.26)

∞∑

m=0

1

(ik0)
m∇× [Em exp (ik0ψ)] = µ exp (ik0ψ)

∞∑

m=−1

1

(ik0)
mHm+1 , (3.27)
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∞∑

m=0

1

(ik0)
m∇ · [ǫEm exp (ik0ψ)] = 0 , (3.28)

and
∞∑

m=0

1

(ik0)
m∇ · [µHm exp (ik0ψ)] = 0 . (3.29)

By using the vectors identities (2.149) and (2.150) one obtains

∞∑

m=0

1

(ik0)
m∇×Hm =

∞∑

m=−1

1

(ik0)
m [−ǫEm+1 − (∇ψ)×Hm+1] , (3.30)

∞∑

m=0

1

(ik0)
m∇×Em =

∞∑

m=−1

1

(ik0)
m [µHm+1 − (∇ψ)×Em+1] , (3.31)

∞∑

m=0

1

(ik0)
m∇ · (ǫEm) +

∞∑

m=−1

1

(ik0)
m ǫEm+1 ·∇ψ = 0 , (3.32)

∞∑

m=0

1

(ik0)
m∇ · (µHm) +

∞∑

m=−1

1

(ik0)
mµHm+1 ·∇ψ = 0 , (3.33)

in agreement with Eqs. (3.22), (3.23), (3.24) and (3.25).

3.2.2 Eikonal Equation

By substituting the Luneberg-Kline asymptotic expansion (3.20) and (3.21)
into the maxwell’s equations (2.138), (2.139), (2.140) and (2.141) while keep-
ing only k0 independent terms one obtains

ǫE0 + (∇ψ)×H0 = 0 , (3.34)

µH0 − (∇ψ)×E0 = 0 , (3.35)

E0 ·∇ψ = 0 , (3.36)

H0 ·∇ψ = 0 . (3.37)

Equations (3.34) and (3.35) imply that

n2E0 + (∇ψ)× [(∇ψ)×E0] = 0 , (3.38)

thus, by using the vector identity (1.96), which is given by

A× (B×C) = (A ·C)B− (A ·B)C , (3.39)

together with Eq. (3.36) one obtains
[
n2 − (∇ψ)2

]
E0 = 0 . (3.40)

The assumption that E0 does not vanish everywhere leads to the eikonal
equation [see Eq. (3.7)]

(∇ψ)2 = n2 . (3.41)
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3.3 Optical Rays

The optical rays are defined as trajectories orthogonal to the wave front
surfaces of constant ψ. Let r (s) be an optical ray with arc-length parame-
trization, namely dr/ds = ŝ, where ŝ is a unit vector. The ray equation reads

dr

ds
=
∇ψ

n
= ŝ . (3.42)

The normal unit vector ν̂ and the curvature κ are defined by the relation

dŝ

ds
= κν̂ . (3.43)

One can easily show that ν̂ · ŝ = 0 by taking the derivative of the relation
ŝ · ŝ = 1 with respect to s. The vectors ŝ, ν̂ together with the binormal unit
vector b̂, which is defined by b̂ = ŝ× ν̂, form a local orthonormal coordinate
frame.

Claim. The following holds

d

ds




ŝ

ν̂

b̂



 =




0 κ 0
−κ 0 τ
0 −τ 0








ŝ

ν̂

b̂



 , (3.44)

where τ is real.

Proof. By taking the derivative of ŝ · ν̂ = 0 with respect to s one finds that

ŝ·dν̂
ds

= −κ . (3.45)

Similarly, by taking the derivative of b̂ · ν̂ = 0 with respect to s one obtains

b̂ · dν̂
ds

= −ν̂ · db̂
ds

. (3.46)

By employing the definition b̂ = ŝ× ν̂ and Eq. (3.43) one finds that

db̂

ds
= ŝ× dν̂

ds
, (3.47)

thus

ŝ·db̂
ds

= 0 . (3.48)

Moreover, by taking the derivative of b̂ · b̂ = 1 with respect to s one finds
that
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b̂·db̂
ds

= 0 , (3.49)

thus db̂/ds is parallel to ν̂. The torsion τ is defined as

db̂

ds
= −τ ν̂ . (3.50)

The above results (and definitions) can be summarized by Eq. (3.44).

Alternatively, Eq. (3.44) can be expressed as

d

ds




ŝ

ν̂

b̂



 = δ ×




ŝ

ν̂

b̂



 , (3.51)

where

δ =τ ŝ+ κb̂ . (3.52)

Exercise 3.3.1. Show that for any closed curve C the following holds
∮

C

(nŝ) · dl = 0 . (3.53)

Solution 3.3.1. With the help of Eq. (3.42) one finds that

∇× (nŝ) =∇×∇ψ = 0 , (3.54)

and thus according to Stoke’s theorem [see Eq. (2.67)] Eq. (3.53), which is
called the Lagrange’s integral invariant, holds.

3.3.1 Reflection and Refraction

Consider an optical ray striking the interface between two homogeneous ma-
terials of refraction indices n1 and n2. Part of the ray is reflected and part is
refracted. The angles between the incident, reflected and refracted rays and
the normal to the interface are denoted as θi, θr and θt, respectively (see Fig.
3.1).

By assuming that the theory of geometrical optics is applicable for the
case of abrupt change in n at the interface between two different materials,
one can obtain a relation between the angles θi, θr and θt. By employing
the Lagrange’s integral invariant (3.53), which implies that the tangential
component of nŝ is continuous [compare with Eq. (2.78)], one obtains the
relation

θi = θr ,

and the so-called Snell’s law, which is given by [compare with Eq. (2.237)]

n1 sin θi = n2 sin θt . (3.55)
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Fig. 3.1. Incident, reflected and refracted rays.

3.3.2 The Ray Equation

A ray can be traced by solving the ray equation, which is given by Eq. (3.56)
below.

Claim. The following holds

κν̂ =∇ (logn)− ŝ
d (logn)

ds
. (3.56)

Proof. Taking the derivative d/ds of Eq. (3.42) leads to

d

ds

(
n
dr

ds

)
=

d

ds
∇ψ =

1

n
(∇ψ ·∇)∇ψ . (3.57)

By using the vector identities

∇
(
A2
)
= 2 [A× (∇×A)+ (A ·∇)A] , (3.58)

and

∇× (∇ψ) = 0 , (3.59)

one finds that

d

ds

(
n
dr

ds

)
=

1

2n
∇ (∇ψ)2 , (3.60)

or [see Eq. (3.41)]

d

ds

(
n
dr

ds

)
=

1

2n
∇n2 =∇n . (3.61)
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Moreover, the following holds

d

ds

(
n
dr

ds

)
= ŝ

dn

ds
+ nκν̂ . (3.62)

The last two results directly lead to Eq. (3.56).

By multiplying Eq. (3.56) by ν̂ one obtains

κ = ν̂ ·∇ (logn) , (3.63)

thus the ray is curved towards the regime of higher n. One also finds that
the vector ∇n is in the so-called osculating plane of the ray (ŝν̂ plane).

Exercise 3.3.2. Show that

dŝ

ds
= ŝ× (∇ (logn)× ŝ) . (3.64)

Solution 3.3.2. The general identity [see Eq. (1.96)]

A× (B×A) = (A ·A)B− (A ·B)A , (3.65)

together with Eq. (3.56) lead to Eq. (3.64).

Exercise 3.3.3. Consider a parametrization of an optical ray given by

r (s) = r (σ (s)) , (3.66)

where

ds

dσ
= n . (3.67)

Show that

d2r

dσ2
= −∇U , (3.68)

where

U = −n2

2
. (3.69)

Solution 3.3.3. With the help of Eqs. (3.61) and the relation [see (3.67)]

d

ds
=

1

n

d

dσ
, (3.70)

one finds that

d2r

dσ2
=∇

(
n2

2

)
. (3.71)
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The above result (3.68) demonstrate the analogy between geometrical
optics and mechanics (Newton’s second law).

Exercise 3.3.4. Consider a spherically symmetric medium , for which

n = n (r) , (3.72)

where r is the distance to the origin. Show that nr× ŝ is a constant along an
optical ray traveling in that medium.

Solution 3.3.4. The following holds

d

ds
(nr× ŝ) =

dr

ds
× (nŝ) + r× d (nŝ)

ds
. (3.73)

The first term on the right hand side of Eq. (3.73) vanishes since dr/ds = ŝ

[see Eq. (3.42)]. The same identity (3.42) together with Eq. (3.61) lead to

d (nŝ)

ds
=∇n , (3.74)

and thus also the second term on the right hand side of Eq. (3.73) vanishes
provided that n = n (r), which implies that

d

ds
(nr× ŝ) = 0 , (3.75)

i.e. nr× ŝ is a constant along an optical ray.

3.3.3 Fermat’s Principle

In the case of a homogeneous medium the light velocity is given by c/n
[see Eq. (2.151)]. In geometrical optics it is assumed that the length scale
characterizing changes in the refraction index n in the medium is much larger
than the optical wavelength, and consequently c/n can be considered as the
local value of light velocity in the medium.

Let C be a curve given by the parametrization xC (q)

xC (q) = (xC1 (q) , xC2 (q) , xC3 (q)) , (3.76)

where q ∈ [q1, q2]. The time of flight T of light traveling along the curve C is
given by

T = c−1
∫ q2

q1

dq n (xC) |ẋC| , (3.77)

where

ẋC =
dxC
dq

, (3.78)
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or, alternatively by

T = c−1
∫ q2

q1

dq L (xC, ẋC) , (3.79)

where L is given by

L (xC, ẋC) = n (xC)
√
ẋ2C , (3.80)

and

ẋC = (ẋC1 (q) , ẋC2 (q) , ẋC3 (q)) . (3.81)

Consider another curve C′, which is assumed to be infinitesimally close
to the curve C, and which is given by

x′C (q) = xC (q) + δx (q) . (3.82)

It is assumed that δx (q1) = δx (q2) = 0, i.e. the curves C and C ′ are taken
to have the same initial and final points. To lowest nonvanishing order in
δx (q) = (δC1 (q) , δC2 (q) , δC3 (q)) the change δL in L is given by

δL =
3∑

n=1

∂L
∂xCn

δCn +
∂L

∂ẋCn

d (δCn)

dq
, (3.83)

thus, to lowest nonvanishing order in δx the change δT in the time of flight
T is given by

δT = c−1
∫ q2

q1

dq δL (xC, ẋC)

= c−1
∫ q2

q1

dq
3∑

n=1

∂L
∂xCn

δCn +
∂L

∂ẋCn

d (δCn)

dq
.

(3.84)

Integration by parts yields [recall that δx (q1) = δx (q2) = 0]

δT = c−1
∫ q2

q1

dq
3∑

n=1

(
∂L

∂xCn
− d

dq

∂L
∂ẋCn

)
δCn , (3.85)

or

δT = c−1
∫ q2

q1

dq

(√
ẋ2C∇n− d

dq

nẋC√
ẋ2C

)

· δx . (3.86)

Claim. The requirement the δT = 0 for an arbitrary δx implies that the
curve C satisfies Eq. (3.61).
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Proof. The requirement implies that [see Eq. (3.86)]

d

dq

nẋC√
ẋ2C

=
√
ẋ2C∇n . (3.87)

With arc-length parameterization the curve C is expressed as xC (q (s)),
where

∣∣∣∣
dxC
ds

∣∣∣∣ = 1 . (3.88)

With the help of the following relation

d

dq
=

ds

dq

d

ds
, (3.89)

Eq. (3.87) becomes

d

ds

(
n
dxC
ds

)
=∇n , (3.90)

i.e. the curve C satisfies Eq. (3.61).

The above claim demonstrates that the ray equation (3.61) can be ob-
tained by assuming the so-called Fermat’s principle, which states that an
optical ray locally minimizes the time of flight of light traveling from a given
initial point to a given final point.

Exercise 3.3.5. Show that for an optical ray connecting an initial point r1
to a final one r2 the time of flight T is given by

T =
ψ (r2)− ψ (r1)

c
, (3.91)

where ψ is the eikonal.

Solution 3.3.5. By multiplying Eq. (3.42) by the unit vector dr/ds = ŝ one
obtains

n =
dr

ds
·∇ψ , (3.92)

thus the time of flight T for an optical ray r (s) in arc-length parametrization
is given by [see Eq. (3.77)]

T = c−1
∫ s2

s1

ds n

∣∣∣∣
dr

ds

∣∣∣∣

= c−1
∫ s2

s1

ds n

= c−1
∫ s2

s1

ds

(
dr

ds
·∇ψ

)

= c−1
∫ r2

r1

dr ·∇ψ ,

(3.93)
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and therefore Eq. (3.91) holds.

As is demonstrated in the exercise below, transformation of coordinates is
commonly made simpler by employing the Fermat’s principle for the deriva-
tion of the ray equation.

Exercise 3.3.6. Consider a cylindrically symmetric medium, for which the
refractive index n depends only on the distance r =

√
x2 + y2 to the sym-

metry axis, which is taken to be the z axis. Express the ray equation in
cylindrical coordinates (r, φ, z), where φ = tan−1 (y/x).

Solution 3.3.6. As was shown above, the ray equation can be obtained from
the set of equations [see Eq. (3.85)]

∂L
∂xCn

=
d

dq

∂L
∂ẋCn

, (3.94)

where L is given by Eq. (3.80). For the case of cylindrical coordinates one
obtains

∂L
∂r

=
d

dq

∂L
∂ṙ

, (3.95)

∂L
∂φ

=
d

dq

∂L
∂φ̇

, (3.96)

∂L
∂z

=
d

dq

∂L
∂ż

. (3.97)

The following holds

xC = (r cosφ, r sinφ, z) , (3.98)

ẋC =

(
dr

dq
cosφ− r sinφ

dφ

dq
,
dr

dq
sinφ+ r cosφ

dφ

dq
,
dz

dq

)
, (3.99)

and thus

ẋ2C =

(
dr

dq

)2
+

(
r
dφ

dq

)2
+

(
dz

dq

)2
, (3.100)

and [see Eq. (3.80)]

L = n
√
ẋ2C = n

√

ṙ2 +
(
rφ̇
)2

+ ż2 . (3.101)

With the help of the above result Eqs. (3.95). (3.96) and (3.97) become
√
ẋ2C

∂n

∂r
+ n

∂
√
ẋ2C

∂r
=

d

dq

nṙ
√
ẋ2C

, (3.102)

√
ẋ2C

∂n

∂φ
=

d

dq

nr2φ̇
√
ẋ2C

, (3.103)

√
ẋ2C

∂n

∂z
=

d

dq

nż
√
ẋ2C

. (3.104)
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With arc-length parameterization the curve C is expressed as xC (q (s)),
where

∣∣∣∣
dxC
ds

∣∣∣∣ = 1 , (3.105)

and where

d

dq
=

ds

dq

d

ds
, (3.106)

and thus the following holds

√
ẋ2C =

ds

dq
, (3.107)

and Eqs. (3.102), (3.103) and (3.104) become

∂n

∂r
+ nr

(
dφ

ds

)2
=

d

ds

(
n
dr

ds

)
, (3.108)

∂n

∂φ
=

d

ds

(
nr2

dφ

ds

)
, (3.109)

∂n

∂z
=

d

ds

(
n
dz

ds

)
. (3.110)

For the case of cylindrically symmetric medium n = n (r), and thus

∂n

∂r
+ nr

(
dφ

ds

)2
=

d

ds

(
n
dr

ds

)
, (3.111)

0 =
d

ds

(
nr2

dφ

ds

)
, (3.112)

0 =
d

ds

(
n
dz

ds

)
. (3.113)

3.4 Transport Equation

The so-called transport equation [see Eq. (3.114) below] is needed in order
to evaluate the evolution of polarization along an optical ray.

Claim. The vector E0 satisfies the transport equation, which is given by

2 (∇ψ ·∇)E0 +E0
[
∇
2ψ −∇ (logµ) ·∇ψ

]
+2 [E0 ·∇ (logn)]∇ψ = 0 .

(3.114)
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Proof. Eliminating Hm+1 and Hm [lowering the index in Eq. (3.23) by one]
from Eq. (3.23) and substituting into Eq. (3.22) yield

∇×
[
1

µ
∇×Em−1

]
+∇×

[
∇ψ

µ
×Em

]

= −ǫEm+1 −
∇ψ

µ
× (∇×Em)− (∇ψ)×

[
1

µ
(∇ψ)×Em+1

]
.

(3.115)

The two terms involved with Em are treated as follows. Using the vector
identities

∇ (A ·B) = A× (∇×B)+B× (∇×A)+(B ·∇)A+(A ·∇)B , (3.116)

and (1.128), which is given by

∇× (A×B) = A (∇ ·B)−B (∇ ·A) + (B ·∇)A− (A ·∇)B , (3.117)

one finds that

∇× (A×B) +A× (∇×B)

= A (∇ ·B)−B (∇ ·A)+∇ (A ·B)−B× (∇×A)−2 (A ·∇)B ,

(3.118)

thus

∇×
(
∇ψ

µ
×Em

)
+
∇ψ

µ
× (∇×Em)

=
∇ψ

µ
(∇ ·Em)−Em

(
∇ · ∇ψ

µ

)
+∇

(
∇ψ

µ
·Em

)
−Em×

(
∇× ∇ψ

µ

)
−2

(
∇ψ

µ
·∇

)
Em .

(3.119)

By using Eq. (2.150) and the vector identity ∇× (∇f) = 0 one obtains

∇× ∇ψ

µ
=

1

µ
∇×∇ψ +∇

(
1

µ

)
×∇ψ =∇

(
1

µ

)
×∇ψ . (3.120)

Substituting into Eq. (3.115) yields

2 (∇ψ ·∇)Em −∇ψ (∇ ·Em) + µEm

(
∇ · ∇ψ

µ

)

−µ∇

(
∇ψ

µ
·Em

)
+ µEm×

(
∇

(
1

µ

)
×∇ψ

)

= n2Em+1 + (∇ψ)× [(∇ψ)×Em+1] + µ∇×
[
1

µ
∇×Em−1

]
,

(3.121)
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where n =
√
ǫµ. By using Eq. (1.96) for the fifth term on the left hand side

and for the second term on the right hand side one finds that

2 (∇ψ ·∇)Em −∇ψ (∇ ·Em) + µEm

(
∇ · ∇ψ

µ

)

−µ∇
(
∇ψ

µ
·Em

)
+ µ (Em ·∇ψ)∇

(
1

µ

)
− µ

(
Em ·∇

(
1

µ

))
∇ψ

=
[
n2 − (∇ψ)

2
]
Em+1 + [(∇ψ) ·Em+1] (∇ψ) + µ∇×

[
1

µ
∇×Em−1

]
.

(3.122)

With the help of Eq. (3.41) one finds that the first term on the left hand side
vanishes. Next, Eq. (3.24), which reads

−∇ψ ·Em =
1

ǫ
∇ · (ǫEm−1) , (3.123)

is employed to rewrite the forth term on the left hand side, thus

∇

(
∇ψ

µ
·Em

)
=∇

(
1

µ

)
(∇ψ ·Em) +

1

µ
∇ (∇ψ ·Em)

=∇

(
1

µ

)
(∇ψ ·Em)− 1

µ
∇

[
1

ǫ
∇ · (ǫEm−1)

]
,

(3.124)

hence

2 (∇ψ ·∇)Em −∇ψ (∇ ·Em) + µEm

(
∇ · ∇ψ

µ

)
− µ

(
Em ·∇

(
1

µ

))
∇ψ

= [(∇ψ) ·Em+1] (∇ψ) + µ∇×
[
1

µ
∇×Em−1

]
−∇

[
1

ǫ
∇ · (ǫEm−1)

]
.

(3.125)

Using Eqs. (3.24) and (2.149) for the second term on the left hand side one
finds that

−∇ψ∇ ·Em = −∇ψ

[
1

ǫ
∇ · (ǫEm)− 1

ǫ
Em ·∇ǫ

]

= ∇ψ

[
∇ψ ·Em+1 +

1

ǫ
Em ·∇ǫ

]
,

(3.126)

thus

2 (∇ψ ·∇)Em +∇ψ

(
1

ǫ
Em ·∇ǫ

)
+ µEm

(
∇ · ∇ψ

µ

)
− µ

(
Em ·∇

(
1

µ

))
∇ψ

= µ∇×
[
1

µ
∇×Em−1

]
−∇

[
1

ǫ
∇ · (ǫEm−1)

]
.

(3.127)
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After arranging terms this becomes

2 (∇ψ ·∇)Em +Em

[
∇
2ψ −∇ (logµ) ·∇ψ

]
+ 2 [Em ·∇ (logn)]∇ψ

= µ∇×
[
1

µ
∇×Em−1

]
−∇

[
1

ǫ
∇ · (ǫEm−1)

]
.

(3.128)

For the case m = 0 Eq. (3.128) becomes Eq. (3.114).

3.4.1 Polarization Evolution

In the exercise below the transport equation (3.114) is rewritten in terms of
the unit vector ê0, which points in the direction of E0.

Exercise 3.4.1. Show that

d

ds
ê0 = −κ (ê0 · ν̂) ŝ , (3.129)

where ê0 is a unit vector in the direction of E0

ê0 ≡
E0√
E0 ·E∗0

. (3.130)

Solution 3.4.1. By multiplying the transport equation (3.114) by E∗0, using
Eq. (3.36), and taking the real part of the resulting equation one obtains

[
∇
2ψ − [∇ (logµ) · (∇ψ)]

]
(E0 ·E∗0) + (∇ψ ·∇) (E0 ·E∗0) = 0 . (3.131)

Substituting E0 =
√
E0 ·E∗0ê0 [see Eq. (3.130)] into Eq. (3.114) leads to

1

2

[
∇
2ψ − [∇ (logµ) · (∇ψ)]

]√
E0 ·E∗0ê0 +

√
E0 ·E∗0 (∇ψ ·∇) ê0

+
ê0

2
√
E0 ·E∗0

(∇ψ ·∇) (E0 ·E∗0) +
(√

E0 ·E∗0ê0 ·∇ (logn)
)
∇ψ = 0 ,

(3.132)

and thus [see Eq. (3.131)]

(∇ψ ·∇) ê0 + (ê0 ·∇ (logn))∇ψ = 0 , (3.133)

or

d

ds
ê0 = − [ê0 ·∇ (logn)] ŝ , (3.134)

thus Eq. (3.129) holds [see Eq. (3.56)]. Note that with the help of Eq. (1.96),
which is given by
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A× (B×C) = (A ·C)B− (A ·B)C , (3.135)

Eq. (3.129) can be rewritten as [as can be seen from Eq. (3.36), ê0 · ŝ = 0]

d

ds
ê0 = −κê0 × b̂ , (3.136)

where b̂ = ŝ× ν̂ is the binormal unit vector.

Using the notation

ê0 = eν ν̂ + ebb̂ , (3.137)

one finds using Eq. (3.44) that

deν
ds
ν̂+

deb
ds

b̂+ eν

(
−κŝ+τ b̂

)
− ebτ ν̂ = −κeν ŝ , (3.138)

thus

d

ds

(
eν
eb

)
= iKg

(
eν
eb

)
, (3.139)

where

Kg = τσ2 = τ

(
0 −i
i 0

)
. (3.140)

The fact that σ2 is Hermitian, namely σ†2 = σ2, ensures that the s evolu-
tion of ê0 is unitary. The solution of Eq. (3.139) reads

(
eν (s)
eb (s)

)
= exp (iσ2θ)

(
eν (0)
eb (0)

)
, (3.141)

where

θ =

∫ s

0

ds′τ (s′) . (3.142)

Using the fact that σ22 = 1, where 1 denotes the 2 × 2 identity matrix, one
finds that

exp (iσ2θ) =
∞∑

n=0

(iσ2θ)
n

n!
= cos θ + iσ2 sin θ , (3.143)

thus
(
eν (s)
eb (s)

)
=

(
cos θ sin θ
− sin θ cos θ

)(
eν (0)
eb (0)

)
. (3.144)

As is shown by Eq. (3.153) below, for the case of a closed curve, i.e. when
ŝ (s) = ŝ (0), the following holds

θ = Ω , (3.145)

where Ω is the solid angle subtends by the closed curve ŝ (s′) at the origin.
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Exercise 3.4.2. Calculate the integrated torsion (3.142) for the case of a
closed curve, i.e. when ŝ (s) = ŝ (0).

Solution 3.4.2. Consider a family of optical rays r (s, u), where s is an arc-
length parameter along an optical ray for any given value of u, i.e. |dr/ds| = 1.
Consider the integrated torsion τ over the following infinitesimal closed curve

dθ =

(∫ (s+ds
2 ,u−du

2 )

(s−ds
2 ,u−du

2 )
+

∫ (s+ds
2 ,u+

du
2 )

(s+ds
2 ,u−du

2 )
+

∫ (s−ds
2 ,u+

du
2 )

(s+ds
2 ,u+

du
2 )

+

∫ (s−ds
2 ,u−du

2 )

(s−ds
2 ,u+

du
2 )

)

τdsdu .

(3.146)

Using the relation

τ = −ν̂ · db̂
ds

= b̂ · dν̂
ds

, (3.147)

one finds to lowest order in ds and du that

dθ =

[

b̂

(
s, u− du

2

)
· dν̂

(
s, u− du

2

)

ds
− b̂

(
s, u+

du

2

)
· dν̂

(
s, u+ du

2

)

ds

]

ds

+

[

b̂

(
s+

ds

2
, u

)
· dν̂

(
s+ ds

2 , u
)

du
− b̂

(
s− ds

2
, u

)
· dν̂

(
s− ds

2 , u
)

du

]

du

= b̂ (s, u) ·
[
dν̂

(
s, u− du

2

)

ds
− dν̂

(
s, u+ du

2

)

ds

]

ds

+
db̂ (s, u)

du
·
[

−dν̂
(
s, u− du

2

)

ds
− dν̂

(
s, u+ du

2

)

ds

]
dsdu

2

+b̂ (s, u) ·
[
dν̂

(
s+ ds

2 , u
)

du
− dν̂

(
s− ds

2 , u
)

du

]

du

+
db̂ (s, u)

ds
·
[
dν̂

(
s+ ds

2 , u
)

du
+

dν̂
(
s− ds

2 , u
)

du

]
dsdu

2

= b̂ (s, u) ·
[
−d2ν̂ (s, u)

dsdu
+

d2ν̂ (s, u)

dsdu

]
dsdu

+

[
db̂ (s, u)

ds
· dν̂ (s, u)

du
− db̂ (s, u)

du

dν̂ (s, u)

ds

]

dsdu

=

[
db̂ (s, u)

ds
· dν̂ (s, u)

du
− db̂ (s, u)

du

dν̂ (s, u)

ds

]

dsdu .

(3.148)

In general, for a unit vector û (α), where α is a parameter, the following holds
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û · dû
dα

= 0 , (3.149)

thus only the components in the ŝ direction contribute

dθ =

[(

ŝ · db̂
ds

)(
ŝ · dν̂

du

)
−
(

ŝ · db̂
du

)(
ŝ · dν̂

ds

)]

dsdu . (3.150)

Moreover, since ŝ · b̂ = ŝ · ν̂ = 0, one obtains

dθ =

[(
dŝ

ds
· b̂
)(

dŝ

du
· ν̂
)
−
(
dŝ

du
· b̂
)(

dŝ

ds
· ν̂
)]

dsdu

= ŝ ·
(
dŝ

du
× dŝ

ds

)

︸ ︷︷ ︸
dA

dsdu ,

(3.151)

where dA is the area of the infinitesimal closed loop on the unit sphere. This
result can be used for evaluating the integral

∆θ =

∮

C

τdsdu (3.152)

over a closed loop C by dividing the area into infinitesimally small loops.
Thus one concludes that

∆θ = Ω , (3.153)

where Ω is the solid angle that C subtends at the origin.

3.5 Energy Conservation

From Eq. (3.36) one finds that E0 has no component in the ŝ direction, thus
one can write

E0 = αν0ν̂ + αb0b̂ . (3.154)

Using Eq. (3.35) one finds that

H0 =

√
ǫ

µ

(
αν0b̂− αb0ν̂

)
. (3.155)

The vectors E0, H0, and ŝ are orthogonal to each other. The Poynting phasor
vector [See Eq. (2.93)]
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S =
c

8π
E0 ×H∗

0

=
c

8π

√
ǫ

µ

(
αν0ν̂ + αb0b̂

)
×
(
α∗ν0b̂− α∗b0ν̂

)

=
c

8π

√
ǫ

µ

(
|αν0|2 + |αb0|2

)
ŝ ,

(3.156)

is parallel to ŝ and real and the following holds [See Eq. (2.137)]

ǫ |E0|2 = µ |H0|2 = n (8π/c)S · ŝ =n (8π/c) |S| . (3.157)

The local time averaged electric and magnetic energy densities are given by
[see Eq. (2.137)]

〈we〉 =
ǫ

16π
|E0|2 , (3.158)

and

〈wm〉 =
µ

16π
|H0|2 , (3.159)

thus in geometrical optics 〈we〉 = 〈wm〉. Denoting the total time averaged
energy density as 〈w〉 = 〈we〉+ 〈wm〉 one finds that

S = v 〈w〉 ŝ , (3.160)

where v = c/n is the velocity of ray propagation.
As was shown in the previous chapter, energy conservation in a lossless

medium leads to a relation between the divergence of the Poynting vector S
and the rate of change in the density of electromagnetic energy u [see Eq.
(2.97)].

Claim. In geometrical optics the phasor S satisfies

∇ · S = 0 . (3.161)

Proof. Using Eq. (2.149) one finds that

µ∇ ·
(
1

µ
∇ψ

)
=∇2ψ − [∇ (logµ) · (∇ψ)] , (3.162)

thus [see Eq. (3.131)]

∇ ·
(
∇ψ

µ

)
(E0 ·E∗0) +

(
∇ψ

µ
·∇

)
(E0 ·E∗0) = 0 . (3.163)

The relations ∇ψ = nŝ and n =
√
ǫµ lead to
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∇ ·
(√

ǫ

µ
ŝ

)
(E0 ·E∗0) +

(√
ǫ

µ
ŝ ·∇

)
(E0 ·E∗0) = 0 , (3.164)

or
[
(E0 ·E∗0)

√
ǫ

µ

]
∇ · ŝ+ ŝ ·∇

[
(E0 ·E∗0)

√
ǫ

µ

]
= 0 , (3.165)

thus [see Eq. 2.149]

∇ ·
[
(E0 ·E∗0)

√
ǫ

µ
ŝ

]
= 0 , (3.166)

in agreement with Eq. (3.161) [see Eq. (3.157)].

3.5.1 Intensity Along an Optical Ray

The intensity I along an optical ray is defined by

I = v 〈w〉 . (3.167)

Exercise 3.5.1. Show that

d

ds
log I = −∇ · ŝ . (3.168)

Solution 3.5.1. With the help of Eqs. (3.160), (3.161) and (3.167) one ob-
tains

0 =∇ · S =∇ · (I ŝ) , (3.169)

thus [see Eq. (2.149)]

0 = I∇ · ŝ+ ŝ ·∇I , (3.170)

in agreement with Eq. (3.168). Note that with the help of Eq. (3.42) the
above result (3.168) can alternatively be written as

d

ds

(
log

I

n

)
= − 1

n
∇
2ψ . (3.171)

As can be seen from Eq. (3.168), the evolution of the intensity I along an
optical ray depends on the quantity ∇ · ŝ. The geometrical meaning of the
term ∇ · ŝ is discussed below.

Consider a point P on an optical ray. Let S be the surface of constant ψ
(eikonal) containing the point P . Let M be the plane tangent to S at point
P (see Fig. 3.2). Let x′y′z be a coordinate system for which P is the origin, ẑ
is normal to M and x̂′ and ŷ′ are two orthogonal vectors in M . The surface
S can be described by a graph
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(x′, y′, f (x′, y′)) , (3.172)

where f (ρ̄ = 0) = 0 and ∇̄f (ρ̄ = 0) = 0, and the overbar denotes a vector in
xy plane. In general, the Taylor expansion of f around a point ρ̄ is given by

f
(
ρ̄+ δ̄

)
= exp

(
δ̄ · ∇̄

)
f (ρ̄)

= f (ρ̄) +
(
δ̄ · ∇̄

)
f (ρ̄) +

1

2!

(
δ̄ · ∇̄

)2
f (ρ̄) +

1

3!

(
δ̄ · ∇̄

)3
f (ρ̄) + · · · .

(3.173)

Thus, to lowest nonvanishing order near ρ̄ = 0 one has

f (x′, y′) =
1

2

(
x′

∂

∂x′
+ y′

∂

∂y′

)2
f

=
1

2
(x′, y′)

(
fx′x′ fx′y′
fy′x′ fy′y′

)

︸ ︷︷ ︸
F

(
x′

y′

)
.

(3.174)

The matrix F is symmetric (FT = F ), therefore F has real eigenvalues
and F has eigenvectors orthogonal to each other. Thus, it is possible to chose
an alternative set of coordinates xyz, where as before both x̂ and ŷ lie in
M , x̂ and ŷ are orthogonal to each other and both are orthogonal to ẑ. The
directions x̂ and ŷ are the principle directions of point P on S. With these
coordinates to lowest nonvanishing order the following holds

f (x, y) =
1

2

(
x2

R1
+

y2

R2

)
, (3.175)

where the principle curvatures are given by

R1 =
1

fxx
, (3.176)

and

R2 =
1

fyy
. (3.177)

Using this coordinate system the eikonal function can be expressed as

ψ (r) = exp (r ·∇)ψ (0)

= ψ (0) + (r ·∇)ψ (0) +
1

2!
(r ·∇)2 ψ (0) + ....

= ψ (0) + xψx + yψy + zψz

+
1

2
(x, y, z)




ψxx ψxy ψxz
ψyx ψyy ψyz
ψzx ψzy ψzz








x
y
z



+ · · · ,

(3.178)
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Fig. 3.2. The tangent plane.

On the surface S the eikonal function is constant ψ = ψ (0), thus

ψ (x, y, f (x, y)) = ψ (0) . (3.179)

Substituting this condition in the expansion (3.178) yields

xψx + yψy +
1

2

(
x2

R1
+

y2

R2

)
ψz

+
1

2

(
x, y,

1

2

(
x2

R1
+

y2

R2

))


ψxx ψxy ψxz
ψyx ψyy ψyz
ψzx ψzy ψzz










x
y

1
2

(
x2

R1
+ y2

R2

)




+· · · = 0 ,

thus

ψx = ψy = 0 , (3.180)

and

ψz = −R1ψxx = −R2ψyy . (3.181)

By using Eq. (2.149) one finds that

∇ · ŝ = ∇ · ∇ψ√
∇ψ ·∇ψ

=
1√

∇ψ ·∇ψ

(
∇
2ψ − 1

2

∇ (∇ψ ·∇ψ)

∇ψ ·∇ψ
·∇ψ

)

=
1

|ψz|
(
ψxx + ψyy + ψzz − ψzz

)
,

(3.182)

thus

∇ · ŝ = − ψz
|ψz|

(
1

R1
+

1

R2

)
. (3.183)
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Exercise 3.5.2. Calculate the intensity I (s) along an optical ray propagat-
ing in vacuum.

Solution 3.5.2. With the help of Eq. (3.183) the evolution equation for the
intensity I (s) along an optical ray (3.171) can be expressed in terms of the
principle curvatures R1 (s) and R2 (s) (it is assumed that ψz = −|ψz| and
n = 1; recall that ∇ψ = nŝ)

d log I

ds
= − 1

R1 (s)
− 1

R2 (s)
. (3.184)

As can be seen from the following identity

d
ds

(
R1R2

(R1+s)(R2+s)

)

R1R2

(R1+s)(R2+s)

= − 1

R1 + s
− 1

R2 + s
, (3.185)

the solution can be taken to be given by

I (s) =
R1R2

(R1 + s) (R2 + s)
, (3.186)

where R1 and R2 are the principle curvatures for s = 0.

The above result (3.186) for the intensity I (s) along an optical ray for
the case n = 1 can be used in order to express the electric filed E (s) in
geometrical optics along an optical ray [see Eq. (3.20) and note that the
relation ∇ψ = nŝ for the case of a constant n implies that along the optical
ray ψ can be taken to be given by ψ = ns]

E (s) = E (0) eik0s

√
R1R2

(R1 + s) (R2 + s)
. (3.187)

3.6 Problems

1. eikonal approximation in 4-vector formalism - When the potential
4-vector A = (φ,A1, A2, A3)

T = (φ,A)T [see Eq. (2.26)] is expressed as

A = AeiΨ , (3.188)

the Maxwell’s equation (2.126) becomes

∂g
(
∂TATeiΨη −

(
∂TATeiΨη

)T)
g =

4π

c
JText . (3.189)

The left hand side of the equation above (3.189) contains a variety of
derivative terms. In the eikonal approximation it is assumed that the
terms containing derivatives of Ψ are much larger than terms containing
derivatives of all other variables (i.e. the metric g (2.112), which depends
on the relative permittivity ǫ, on the relative permeability µ, and on the
velocity 4-vector U , and the envelope 4-vector A).
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a) Show that in the eikonal approximation Eq. (3.189) becomes

i∂g
(
KTATη − ηAK

)
g =

4π

c
JText , (3.190)

where

K = ∂Ψ =

(
1

c

∂Ψ

∂t
,
∂Ψ

∂x1
,
∂Ψ

∂x2
,
∂Ψ

∂x3

)
. (3.191)

b) Show that when the so-called generalized Lorenz gauge condition,
which reads

∂gηA = 0 , (3.192)

is imposed Eq. (3.190) becomes

−KgKTATηg =
4π

c
JText . (3.193)

c) Employ the eikonal approximation to show that when the velocity
3-vector u vanishes the generalized Lorenz gauge condition (3.192)
can be expressed as

0 =
n2

c

∂φ

∂t
+∇ ·A = 0 . (3.194)

d) Employ the eikonal approximation to show that when u = 0, JText = 0
and the generalized Lorenz gauge condition is imposed the Maxwell’s
equation can be expressed as

0 =

(
n2

c2
∂2

∂t2
−∇2

)
AT . (3.195)

e) Show that when JText = 0 and the generalized Lorenz gauge condition
is imposed the Maxwell’s equation (3.193) can be expressed as

0 = KηKT +
n2 − 1

c2
(KU)2 . (3.196)

f) harmonic time dependency - Consider the case where the phase
factor Ψ has the form

Ψ = −ωt+ k0ψ (r) , (3.197)

where the angular frequency ω is a constant, ψ is time independent,
and k0 is given by

k0 =
ω

c
. (3.198)
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For this case Eq. (3.191) becomes

K = k0 (−1,∇ψ) . (3.199)

The real function ψ (r) is commonly called the eikonal function .
Express the relation (3.196) for the case where Ψ is given by Eq.
(3.197) and the generalized Lorenz gauge condition is imposed.

g) Show that when Ψ is given by Eq. (3.197), the velocity 3-vector u

vanishes and the generalized Lorenz gauge condition is imposed the
following holds

A ·∇ψ = n2φ . (3.200)

h) Show that in the eikonal approximation when the generalized Lorenz
gauge condition is imposed the fields E and B are given by

E = ik0A⊥ , (3.201)

B =∇ψ ×E , (3.202)
where A⊥ is the component of A perpendicular to ∇ψ.

2. The components of a given 3-vector u = (u1, u2, u3) are assumed to
satisfy Eq. (3.8), i.e.

un∇
2ψ + 2 (∇ψ) · (∇un) = 0 , (3.203)

where n ∈ {1, 2, 3}. The unit vector û is defined as a normalized vector
in the direction of u, i.e.

û =
u√
u · u∗

= (û1, û2, û3) . (3.204)

a) Show that

0 = (∇ψ) · (∇ûn) . (3.205)

b) Contrary to Eq. (3.205), which is obtained from scalar geometri-
cal optics, Eq. (3.129) for the electric field unit vector ê0, which is
based on the transport equation (3.114), is obtained from a vectorial
treatment. Show that these results agree only when the medium is
homogeneous.

3. Consider an optical ray striking the interface between two homogeneous
materials of refraction indices n1 and n2. Show that Snell’s law (2.237)
(according to which n1 sin θi = n2 sin θt, where θi and θt are the angles
of incidence and transmission, respectively) can be obtained from the
Fermat’s principle.

4. Calculate the torsion τ of an helix, which in Cartesian coordinates is
given by

r (s) = (rx, ry, rz) = (R cos ks,R sin ks, αks) , (3.206)

where R, k, and α are real constant and s is a real parameter.
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5. Let C be a curve given by a general parametrization r (q), where q ∈
[q1, q2]. Express the curvature κ and the torsion τ in terms of the vectors
ṙ = dr/dq, r̈ = d2r/dq2 and

...
r = d3r/dq3.

6. Consider a right circular conic surface whose axis is the z axis, its apex
is the origin and its aperture is 2ϕ. Let r (θ), which is given by

r (θ) = (rx, ry, rz) = r (θ)

(
cos θ, sin θ,

1

tanϕ

)
, (3.207)

be a curve on the conic surface, where θ ∈ [θ1, θ2], and θ1 < θ2. Under
what condition upon the function r (θ) the total length from the starting
point at r1 = r (θ1) to the final one at r2 = r (θ2) is locally minimized
by the curve r (θ)?

7. The refractive index n in Cartesian coordinates (x1, x2, x3) is assumed
to depend only on the coordinate x3. Consider an optical ray traveling
in the plane x2 = 0.

a) Calculate the trajectory of the ray for the case where the refractive
index n is given by

n = n0 exp (−γx3) , (3.208)

where n0 > 1 and γ > 0 are constants. Assume that the ray passes
through the origin point (x1, x2, x3) = (0, 0, 0) and the angle between
the ray and the x1 axis at that point is φ0.

b) Calculate the trajectory of the ray for the case where the refractive
index n is given by

n = n0
L

x3
, (3.209)

where n0 > 1 and L > 0 are constants. Assume that the ray passes
through the point (x1, x2, x3) = (0, 0, L) and the angle between the
ray and the x1 axis at that point vanishes.

8. Brachistochrone curve - A particle having mass m moves from point
A having Cartesian coordinates (x, y, z) = (0, 0, 0) to point B having
Cartesian coordinates (X, 0, Z), where Z < 0, under the influence of a
uniform gravitational potential given by U = mgz. The initial velocity
at the starting point A vanishes. The particle moves along a frictionless
slide connecting the points A and B. Find a trajectory for the slide that
minimizes the travel time from point A to point B.

9. The refractive index n in Cartesian coordinates (x1, x2, x3) is assumed to
depend only on the coordinate x3. Consider an optical ray traveling in
the plane x2 = 0. The ray passes through the origin point (x1, x2, x3) =
(0, 0, 0). Express the coordinate x1 along the ray as a function of the
coordinate x3.
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10. hanging rope - Consider a rope having a constant mass per unit length
λ. The rope is supported at its both ends. Determine the shape of a rope
which minimizes its total potential energy in a constant gravitational
field having potential given by V (r) = gx3, where g is the gravitational
acceleration on Earth’s surface, and x3 axis is parallel to the gravitational
field.

11. Consider a spherically symmetric medium, for which the refractive index
n depends only on the radial coordinate r =

√
x2 + y2 + z2. Let r (s) be

an arc-length parameterization of an optical ray traveling in the medium.
The variables L2 and L3 are defined by

L2 = n2r2

[

1−
(
dr

ds

)2]

, (3.210)

L3 = nr2 sin2 θ
dφ

ds
, (3.211)

where, in general, the spherical coordinates (r, θ, φ) are related to the
Cartesian coordinates (x, y, z) by

(x, y, z) = r (sin θ cosφ, sin θ sinφ, cos θ) . (3.212)

Calculate the derivatives dL2/ds and dL3/ds along the optical ray.
12. Consider a spherically symmetric medium, for which the refractive index

n depends only on the radial coordinate r =
√

x2 + y2 + z2. Calculate
the optical rays for the case where

a) n (r) is given by

n (r) =

√

2−
( r

R

)2
, (3.213)

where R is a positive constant (Luneburg lens). Assume that r ≤ R.
b) n (r) is given by

n (r) =
n0

1 +
(
r
R

)2 , (3.214)

where n0 and R are positive constants (Maxwell’s fish-eye).

13. Gravitational lensing - According to the general theory of relativity
a gravitational field gives rise to deflection of optical rays. Consider an
optical ray traveling in vacuum in the presence of a gravitational filed
Φ (r). For the case of a weak gravitational field (i.e. to first order in Φ)
the gravity-induced deflection can be evaluated from the ray equation of
geometrical optics for rays traveling in a medium having refractive index
given by

n (r) = 1− 2Φ (r)

c2
. (3.215)
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For the case of a point mass M the gravitational potential Φ is given by

Φ (r) = −GM

r
,

where G = 6.67259×10−11m3 kg−1 s−2 is the gravitational constant and
where r = |r|. Calculate the deflection angle α of an optical ray travelling
near a point mass. Express the result in terms of the smallest distance
r0 between the optical ray and the point mass.

14. Reflection off a moving mirror - Consider a mirror moving with
respect to an inertial frame denoted by S′ at a constant velocity given
by βc, where 0 ≤ β < 1 and c is the speed of light.

a) Find a relation between the angle of incidence θ′i and the angle of
reflection θ′r. Assume that in the rest frame of the mirror, which
is denoted by S, the so-called law of reflection (2.236), according
to which θi = θr, holds (θi and θr are the angles of incidence and
reflection, respectively, as being measure in S).

b) Show that the result obtained in (a), i.e. the relation between θ′i and
θ′r, is consistent with the Fermat’s principle.

15. Eliminating Hm+1 from Eq. (3.23) and substituting into Eq. (3.22) yield

−µ∇×Hm−∇ψ× (∇×Em) = n2Em+1+(∇ψ)× [(∇ψ)×Em+1] ,

(3.216)

thus, for the case m = 0 one has

−µ∇×H0−∇ψ× (∇×E0) = n2E1+(∇ψ)× [(∇ψ)×E1] . (3.217)

Use the above result (3.217) in order to derive the transport equation
(3.114).

16. Show that

ν̂ ·∇× ŝ = 0 , (3.218)

and

b̂ ·∇× ŝ = κ . (3.219)

17. Show that the eccentricity e of the polarization ellipse [see Eq. (2.162)]
is a constant along an optical ray.

18. Consider a medium whose refractive index n is given in Cartesian coor-
dinates (x, y, z) by

n = n0
√
1−K2 (x2 + y2) , (3.220)

where both n0 andK are real positive constants. Let r (s) = (x (s) , y (s) , z (s))
be an arc-length parametrization of an optical ray traveling in the
medium, for which the following is assumed to hold
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x2 (s) + y2 (s) = R2 , (3.221)

where R is a positive constants. Let ê0 (s) be a unit vector pointing
in the direction of the electric field. The polarization is assumed to be
rectilinear, i.e. the unit vector ê0 (s) is assumed to be real. Let φe (s)
be the angle between ê0 (s) and the binormal unit vector b̂. Calculate
dφe/ds.

19. Consider a trajectory of a point particle having massm and charge q from
the spacial point r1 at time t1 to point r2 at time t2 (as measured in a
given inertial frame of reference). The relativistic action S corresponding
to a given trajectory is defined by

S = −mc2
∫

dτ − q

c

∫
dτ UTηA , (3.222)

where τ is the proper time [see Eq. (1.13)], U = dX/dτ is the velocity
4-vector of the particle [see Eq. (1.64)], η is the Minkowski metric (1.14)

and A = (φ,A1,A2, A3)
T = (φ,A)T is the electromagnetic potential 4-

vector (2.26). Note that the integral along the trajectory
∫
dτ evaluates

the time of flight of the particle as measured by a clock that is carried
along with the moving particle [compare with Eq. (3.77)]. Note also that,
as can be seen from Eq. (1.20), the term UTηA is Lorentz invariant, since

(U ′)
T
ηA′ = UTΛTηΛA = UTηA . (3.223)

A trajectory that is consistent with the laws of classical mechanics is
called a classical trajectory. The principle of least action states that
among all possible trajectories from point r1 at time t1 to point r2 at
time t2 the action is locally minimized by a classical trajectory. Employ
the principle of least action to derive the classical equations of motion of
the particle.

20. Consider a point particle of mass m and charge q moving in an electro-
magnetic field.

a) Find an equation of motion for the velocity 4-vector U = dX/dτ ,
where τ is the proper time.

b) Consider the case where in a frame commoving with the particle
the electric E and magnetic B fields are given by E = E1x̂1 and
B = B1x̂1, where both Ex and Bx are constants. Solve the equation
of motion for this case.

3.7 Solutions

1. By applying the eikonal approximation to the term ∂TATeiΨ one finds
that

∂TAT = ∂TAeiΨ ≃ ieiΨKTAT = iKTAT . (3.224)
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a) With the help of Eq. (3.224) one finds that Eq. (3.189) becomes Eq.
(3.190).

b) When generalized Lorenz gauge condition (3.192) is imposed Eq.
(3.190) becomes

i∂gKTATηg =
4π

c
JText . (3.225)

In the eikonal approximation Eq. (3.225) can be replaced by Eq.
(3.193) [see Eqs. (3.188), (3.224) and (3.191), and note that it is
assumed that terms containing derivatives of K can be neglected
as well]. Moreover, in the eikonal approximation Eq. (3.192) can be
replaced by

KgηA = 0 . (3.226)

c) With the help of the eikonal approximation and Eq. (2.112), which
reads g = µ−1/2

(
η +

(
ξ/c2

)
UUT

)
, one finds that Eq. (3.192) can be

rewritten as

∂A+
ξ

c2
∂UUTηA = 0 . (3.227)

For a vanishing u the velocity 4-vector U becomes U = (c, 0, 0, 0)T

[see Eq. (2.113)], and thus Eq. (3.194) holds (recall that ξ = n2− 1).
d) With the help of the eikonal approximation one finds that for this

case [see Eqs. (2.112) and (3.224)]

i∂gKTAT =
1√
µ
∂

(
η +

ξ

c2
UUT

)
∂TAT

=
1√
µ

[
∂η∂T +

(
n2 − 1

) 1

c2
∂2

∂t2

]
AT

=
1√
µ

(
n2

c2
∂2

∂t2
−∇

)
AT ,

(3.228)
and thus Eq. (3.225) leads to Eq. (3.195).

e) With the help of Eq. (2.112) one finds that

KgKT =
1√
µ

(
KηKT +

n2 − 1

c2
KUUTKT

)
, (3.229)

and thus Eq. (3.193) leads to Eq. (3.196).

f) By expressing the velocity 4-vector as U = γc (1,β)T, where β is
related to the velocity 3-vector u by β = u/c [see Eq. (2.113)], one
finds that Eq. (3.196) becomes [see Eq. (3.199)]

0 = 1− (∇ψ)2 +

(
n2 − 1

)
(1− β ·∇ψ)2

1− β2
, (3.230)
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or

(∇ψ)2 = n2 +

(
n2 − 1

) [
(1− β ·∇ψ)

2 −
(
1− β2

)]

1− β2
. (3.231)

Note that when β = 0 Eq. (3.231) yields (∇ψ)2 = n2.
g) For this case Eq. (3.226) becomes [see Eqs. (2.125) and (3.199)]

K






n2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




A = 0 , (3.232)

thus Eq. (3.200) holds.
h) With the help of Eqs. (2.29) and (3.224) one finds that in the eikonal

approximation Eq. (2.28) becomes

iKTATη −
(
iKTATη

)T
=






0 E1 E2 E3
−E1 0 −B3 B2
−E2 B3 0 −B1
−E3 −B2 B1 0




 , (3.233)

or [see Eqs. (2.26) and (3.199)]

ik0






0 A1 − ∂ψ
∂x1

φ A2 − ∂ψ
∂x2

φ A3 − ∂ψ
∂x3

φ
∂ψ
∂x1

φ−A1 0 − ∂ψ
∂x1

A2 +
∂ψ
∂x2

A1 − ∂ψ
∂x1

A3 +
∂ψ
∂x3

A1
∂ψ
∂x2

φ−A2 − ∂ψ
∂x2

A1 +
∂ψ
∂x1

A2 0 − ∂ψ
∂x2

A3 +
∂ψ
∂x3

A2
∂ψ
∂x3

φ−A3 − ∂ψ
∂x3

A1 +
∂ψ
∂x1

A3 − ∂ψ
∂x3

A2 +
∂ψ
∂x2

A3 0






=






0 E1 E2 E3
−E1 0 −B3 B2
−E2 B3 0 −B1
−E3 −B2 B1 0




 ,

(3.234)
and thus

E = ik0 (A− φ∇ψ) , (3.235)

and

B = ik0 (∇ψ ×A) . (3.236)

With the help of the gauge condition A · ∇ψ = n2φ (3.200) Eq.
(3.235) can be rewritten as

E = ik0

(
A− A ·∇ψ

n2
∇ψ

)
. (3.237)
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According to the eikonal equation (3.7) (∇ψ)2 = n2, and thus
E = ik0A⊥, in agreement with Eq. (3.201), where A⊥ = A−A‖
is the component of A perpendicular to ∇ψ and where A‖ =
n−2 (A ·∇ψ)∇ψ is the component of A parallel to ∇ψ. With the
help of the above result (3.201) Eq. (3.236) becomes Eq. (3.202).
Thus, both fields E and B are perpendicular to ∇ψ, and they are
also perpendicular to each other.

2. With the help of Eq. (3.203) and the relation un =
√
u · u∗ûn [see Eq.

(3.204)] one finds that

0 =
√
u · u∗ûn∇2ψ + 2 (∇ψ) ·

(
∇

(√
u · u∗ûn

))

= 2ûn

[√
u · u∗
2

∇
2ψ + (∇ψ) ·∇

(√
u · u∗

)]
+ 2
√
u · u∗ (∇ψ) · (∇ûn) .

(3.238)

a) The following holds
2
√
u · u∗ (∇ψ) ·∇

√
u · u∗ = (∇ψ) ·∇ (u · u∗)

=
3∑

n=1

(∇ψ) ·∇ (unu
∗
n)

=
3∑

n=1

(∇ψ) · (u∗n∇un + un∇u∗n) ,

(3.239)
where [see Eq. (3.203)]

3∑

n=1

(∇ψ) · (u∗n∇un + un∇u∗n) = − (u · u∗)∇2ψ , (3.240)

and thus

(∇ψ) ·∇
√
u · u∗ = −

√
u · u∗
2

∇
2ψ . (3.241)

The above results (3.238) and (3.241) yield together to Eq. (3.205).
b) With the help of the relation

d

ds
=
∇ψ ·∇

n
,

one finds that Eq. (3.205) can be rewritten as

dû

ds
= 0 , (3.242)

whereas Eq. (3.129) can be written as [see Eq. (3.134)]
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dê0
ds

= − [ê0 ·∇ (logn)] ŝ , (3.243)

thus only when the medium is homogeneous agreement is obtained.

3. The interface between the materials is taken to be the plane z = 0.
Consider a transmission process from the initial point r1 = (−αL, 0, L)
inside the material of refracting index n1 to the point r2 = (αL, 0,−L)
inside the material of refractive index n2, where α > 0 is dimensionless
and L > 0 is the distance between both points r1 and r2 and the interface.
The optical ray is assumed to be made of two straight sections (explain
why), the first from the point r1 to a point on the interface r0 = (ηL, 0, 0),
where η is a dimensionless real number, and the second is from the point
r0 to the point r2. The total time of flight T can be expressed as

cT = n1 |r1 − r0|+ n2 |r2 − r0| , (3.244)

where

r1 − r0

|r1 − r0|
=

(− (α+ η)L, 0, L)

L
√
(α+ η)2 + 1

= (− sin θi, 0, cos θi) , (3.245)

r2 − r0

|r2 − r0|
=

((α− η)L, 0, L)

L
√
(α− η)2 + 1

= (sin θt, 0, cos θt) . (3.246)

The requirement that T is minimized leads to

0 =
dT

dη
=

L

c



 n1 (α+ η)
√
(α+ η)2 + 1

− n2 (α− η)
√
(α− η)2 + 1



 , (3.247)

and thus

n1 sin θi = n2 sin θt . (3.248)

4. The following holds

dr

ds
= k (−R sin ks,R cos ks, α) . (3.249)

The condition for s to be an arc-length parameter reads

1 =

∣∣∣∣
dr

ds

∣∣∣∣ = k
√

R2 + α2 , (3.250)

or

k =
1√

R2 + α2
. (3.251)

The following holds
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ŝ =
dr

ds
=

1√
R2 + α2

(
−R sin

s√
R2 + α2

, R cos
s√

R2 + α2
, α

)
, (3.252)

and

dŝ

ds
=

R

R2 + α2

(
− cos

s√
R2 + α2

,− sin
s√

R2 + α2
, 0

)
, (3.253)

thus

κ =
R

R2 + α2
, (3.254)

and

ν̂ = −
(
cos

s√
R2 + α2

, sin
s√

R2 + α2
, 0

)
. (3.255)

Moreover, one has

b̂ = ŝ× ν̂ =
1√

R2 + α2

∣∣∣∣∣∣

x y z

−R sin s√
R2+α2

R cos s√
R2+α2

α

− cos s√
R2+α2

− sin s√
R2+α2

0

∣∣∣∣∣∣

=
1√

R2 + α2

(
α sin

s√
R2 + α2

,−α cos
s√

R2 + α2
, R

)
,

(3.256)

thus

db̂

ds
= − α

R2 + α2

(
− cos

s√
R2 + α2

,− sin
s√

R2 + α2
, 0

)

= −τ ν̂ ,

(3.257)

where the torsion τ is given by

τ =
α

R2 + α2
. (3.258)

5. Let r (s) be an arc-length parametrization of the same curve. The curva-
ture κ is given by [see Eqs. (3.43) and (3.44)]

κ =

∣∣∣∣
dr

ds
× d2r

ds2

∣∣∣∣ =
∣∣∣∣
d2r

ds2

∣∣∣∣ , (3.259)

and the torsion τ is given by [see Eq. (3.50)]

τ = ν̂·d (ν̂ × ŝ)

ds
, (3.260)
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where ŝ = dr/ds and ν̂ = κ−1
(
d2r/ds2

)
, and thus [see Eqs. (3.44) and

(2.324)]

τ = ν̂ · dν̂
ds
× ŝ =

dr
ds ·

(
d2r
ds2 × d3r

ds3

)

∣∣d2r
ds2

∣∣2
. (3.261)

Using the relation

d

ds
=

dq

ds

d

dq
=

1

|ṙ|
d

dq
, (3.262)

one finds that in general parametrization Eq. (3.259) becomes [recall that
A×A = 0 for any vector A]

κ =
|ṙ× r̈|
|ṙ|3

, (3.263)

and Eq. (3.261) becomes [see Eq. (2.324)]

τ =

dr
ds ·

(
d2r
ds2 × d3r

ds3

)

∣∣d2r
ds2

∣∣2
=

d3r
ds3 ·

(
dr
ds × d2r

ds2

)

(
|ṙ×r̈|
|ṙ|3

)2 . (3.264)

The following holds

dr

ds
× d2r

ds2
=

ṙ

|ṙ| ×
d ṙ
|ṙ|
ds

=
ṙ× r̈

|ṙ|3
, (3.265)

and thus [again, recall that A×A = 0 for any vector A]

τ =
|ṙ|3 d3rds3 · (ṙ× r̈)

|ṙ× r̈|2
=

...
r · (ṙ× r̈)

|ṙ× r̈|2
, (3.266)

or [see Eq. (2.324)]

τ =
ṙ · (r̈× ...

r )

|ṙ× r̈|2
. (3.267)

6. The length of the curve l is given by

l =

∫ θ2

θ1

dθ L , (3.268)

where
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L =

∣∣∣∣
dr

dθ

∣∣∣∣

=

∣∣∣∣r
′
(
cos θ, sin θ,

1

tanϕ

)
+ r (− sin θ, cos θ, 0)

∣∣∣∣

=

√

r2 +

(
r′

sinϕ

)2
,

(3.269)

and where r′ = dr/dθ. The total length is locally minimized provided
that [see Eq. (3.85)]

∂L
∂r

=
d

dθ

∂L
∂r′

, (3.270)

thus

r
√

r2 +
(

r′

sinϕ

)2 =
d

dθ

r′

sin2 ϕ√
r2 +

(
r′

sinϕ

)2 . (3.271)

In terms of the variable q, which is defined by

tan q =
r′

r sinϕ
, (3.272)

Eq. (3.271) becomes

sinϕ
√

1 + tan2 q
=

d

dθ

tan q
√

1 + tan2 q
, (3.273)

and thus by using the identity

d

dq

tan q
√
1 + tan2 q

=
1

√
1 + tan2 q

, (3.274)

one obtains

dq

dθ
= sinϕ . (3.275)

The solution is given by

q = (θ0 + θ) sinϕ . (3.276)

where θ0 is a constant, or in terms of r and r′ by

tan ((θ0 + θ) sinϕ) =
r′

r sinϕ
. (3.277)
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Integration yields

r =
r0

cos ((θ0 + θ) sinϕ)
. (3.278)

where r0 is a constant. Note that the above result (3.278) can be alterna-
tively obtained by unfolding the conic surface into a planar circular sector
(having angle φ = 2π sinϕ). Straight lines are the curves that minimize
length between two given points on the planar circular sector. Mapping
such straight lines back to the conic surface yields Eq. (3.278).

7. Let xC (q) = (x1 (q) , x2 (q) , x3 (q)) be an optical ray traveling through
the medium. For the case where the parameter q is chosen to be the
coordinate x1 Eqs. (3.80) and (3.94) yield

0 =
d

dx1

n
√
ẋ2C

, (3.279)

√
ẋ2C

∂n

∂x3
=

d

dx1

nf
√
ẋ2C

, (3.280)

where

ẋ2C = 1 + f2 , (3.281)

and where

f =
dx3
dx1

, (3.282)

and thus the following holds

∂ logn

∂x3

(
1 + f2

)
=

df

dx1
. (3.283)

a) For this case ∂ logn/∂x3 = −γ. Integrating Eq. (3.283) yields (recall
the initial condition f = dx3/dx1 = tanφ0 for x1 = 0)

−γx1 = tan−1 f − φ0 , (3.284)

and thus (recall that x3 = 0 for x1 = 0)

x3 =
1

γ
log

cos (γx1 − φ0)

cosφ0
. (3.285)

b) For this case ∂ logn/∂x3 = −1/x3, and thus Eq. (3.283) becomes
[see Eq. (3.282)]

− 1

x3

(

1 +

(
dx3
dx1

)2)

=
d2x3
dx21

. (3.286)

Eyal Buks Wave Phenomena - Lecture Notes 118



3.7. Solutions

The following holds

d2x23
dx21

=
d

dx1

(
2x3

dx3
dx1

)
= 2

((
dx3
dx1

)2
+ x3

d2x3
dx21

)

, (3.287)

and thus Eq. (3.286) can be rewritten as

d2x23
dx21

= −2 . (3.288)

The initial conditions lead to

x21 + x23 = L2 . (3.289)

8. According to the Fermat’s principle, the trajectory can be found by solv-
ing the ray equation (3.42) for the case where the refractive index n is
given by n =

√
Z/z (note that conservation of the total energy U+mv2/2

implies that the velocity v is related to the coordinate z by v =
√−2gz).

For motion in the xz plane the ray equation can be expressed as [see Eq.
(3.283)]

d logn

dz

(
1 + f2

)
=

df

dx
, (3.290)

where d logn/dz = −1/ (2z) and where f = dz/dx. In terms of the angle
α, which is related to f by

α = tan−1
(
− 1

f

)
, (3.291)

one finds that

d (n sinα)

dz
= n

d sinα

dz
+ sinα

dn

dz

= n




d sin

(
tan−1

(
− 1f

))

df

df
dx
dz
dx

+ sinα
dn
dz

n





=
n

(1 + f2)3/2

(
df

dx
− d logn

dz

(
1 + f2

))
,

(3.292)

and thus [see Eq. (3.290)]

d (n sinα)

dz
= 0 , (3.293)

i.e. the trajectory locally satisfies Snell’s law [compare with Eq. (3.55)].
With the help of Eqs. (3.292) and (3.293) one obtains (recall that
d logn/dz = −1/ (2z) and note that f = − cotα)
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0 = n

(
cosα

dα

dz
− sinα

2z

)
,

and thus

dz

dα
= 2z cotα , (3.294)

dx

dα
=

dx

dz

dz

dα
= −2z . (3.295)

Integration leads to

z (α) = R (−1 + cos 2α) , (3.296)

x (α) = R (2α− sin 2α) , (3.297)

i.e. the trajectory which minimizes the travel time is a cycloid, and the
constant R is its radius. The coordinate x can be expressed as a function
of the coordinate z as

x = R

(
cos−1

R+ z

R
− sin

(
cos−1

R+ z

R

))
. (3.298)

The radius R is determined by solving

X = R

(
cos−1

R+ Z

R
− sin

(
cos−1

R+ Z

R

))
. (3.299)

9. The x1 component of the ray equation (3.61) reads

d

ds

(
n
dx1
ds

)
= 0 . (3.300)

The following holds [since s is an arc-length parameter, see Eq. (3.100)]

1 =

(
dx1
ds

)2
+

(
dx3
ds

)2
, (3.301)

hence

d

ds
=

dx3
ds

d

dx3
=

1√
1 + tan2 θ

d

dx3
= cos θ

d

dx3
, (3.302)

where

tan θ =
dx1
dx3

, (3.303)

and thus Eq. (3.300), which can be rewritten as

d

dx3
(n sin θ) = 0 . (3.304)
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represents the Snell’s law, according to which the term n sin θ ≡ α is a
constant along the ray [compare with Eq. (3.55)]. Hence the following

holds [see Eq. (3.303) and recall that tan θ = sin θ/
√
1− sin2 θ]

dx1
dx3

=
1

√(
n
α

)2 − 1
. (3.305)

By integration one finds that (recall that the ray passes through the
origin point)

x1 =

∫ x3

0

dx′3√(
n(x′3)
α

)2
− 1

. (3.306)

Alternatively, by using Eq. (3.283), which reads

d logn

dx3

(
1 + f2

)
=

df

dx1
, (3.307)

where f = dx3/dx1 [see Eq. (3.282)], together with the relation (3.304),

which implies that α = n sin θ = n/
√
1 + cot2 θ = n/

√
1 + f2 is a con-

stant along the ray [see Eq. (3.303)], one finds that [the term n is replaced

by α
√
1 + f2, and the term 1 + f2 is replaces by (n/α)2]

f

1 + f2
df

dx3

(n
α

)2
=

df

dx1
, (3.308)

hence

1

f
=

1
√(

n
α

)2 − 1
, (3.309)

in agreement with Eq. (3.305).
10. Consider an infinitesimal rope section of length ds located at the point

r = (x1, x2, x3). The contribution of this section to the total potential
energy is gx3λds. The rope problem is mathematically equivalent to the
problem of finding an optical ray that minimizes the time of flight in
a medium having refractive index given by n = x3/x0, where x0 is a
constant. According to Fermat’s principle, the solution to the optical
minimization problem satisfies the ray equation (3.61). The solution given
by Eq. (3.306) yields (it is assumed that the ray lays in the x2 = 0 plane)

x1
x0

=
1

x0

∫
dx′3√(
x′3
x0

)2
− 1

=
x10
x0

+ cosh−1
x3
x0

, (3.310)
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where x10 is a constant, thus

x3
x0

= cosh

(
x1 − x10

x0

)
. (3.311)

This curve is commonly called the catenary curve. The constants x0 and
x10 are determined by the locations of the clamping points and by the
total length of the rope.

11. Let xC (q) = (r (q) , θ (q) , φ (q)) be a general parametrization of the op-
tical ray. For the case of spherical coordinates the following holds

ẋ2C = ṙ2 +
(
rθ̇
)2

+
(
r sin θφ̇

)2
, (3.312)

where overdot denotes a derivative with respect to the parameter q, and
thus the ray equation corresponding to the coordinate φ in arc-length
parametrization for the case of spherically symmetric medium is given
by [compare with Eqs. (3.111), (3.112) and (3.113)]

0 =
d

ds

(
nr2 sin2 θ

dφ

ds

)
. (3.313)

The above result (3.313) implies that dL3/ds = 0 [see Eq. (3.211)]. Recall
Eq. (3.75), which states that for the case of a spherically symmetric
medium the following holds

d

ds
(nr× ŝ) = 0 . (3.314)

With the help of the general vector identity

(A×B) · (C×D) = (A ·C) (B ·D)− (A ·D) (B ·C) ,

(3.315)

one finds that [see Eqs. (3.42) and (3.210)]

(nr× ŝ) · (nr× ŝ) = n2r2
(r
r
× ŝ

)
·
(r
r
× ŝ

)

= n2r2

[

1−
(
r

r
· dr
ds

)2]

= n2r2

[

1−
(
dr

ds

)2]

= L2 ,

(3.316)

and thus dL2/ds = 0.
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12. In a spherically symmetric medium the vector nr× ŝ is a constant along
an optical ray r (s) [see Eq. (3.75)]. Thus, the optical ray is a curve in a
plane containing the origin. In spherical coordinates (r, θ, φ) the plane is
taken to be a plane of a constant angle φ. For this case an optical ray in
arc-length parametrization satisfies [see Eq. (3.312)]

1 =

(
dr

ds

)2
+

(
r
dθ

ds

)2
. (3.317)

The variable L2 given by Eq. (3.210) is a constant along an optical ray
in a spherically symmetric medium, and thus

dr

ds
=

√

1− L2

n2r2
, (3.318)

and [see Eq. (3.317)]

dθ

ds
=

L

nr2
, (3.319)

and thus

dθ

dr
=

L

r
√
n2r2 − L2

. (3.320)

or

dθ

dρ
=

1

ρ

√(
nρ
l

)2 − 1
, (3.321)

where

ρ =
r

R
, (3.322)

l =
L

R
. (3.323)

a) For this case Eq. (3.321) yields [see Eq. (3.213)]

dθ

dρ
=

1

ρ
√
(2−ρ2)ρ2

l2 − 1
. (3.324)

The variable transformation

ρ =
l√

1 + q
(3.325)

leads to

dθ

dq
= − 1

2
√
1− l2 − q2

, (3.326)
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and the transformation

q =
√
1− l2 cosψ , (3.327)

to

dθ

dψ
=

1

2
, (3.328)

and thus

cos (2θ + 2ψ0) =

(
L
r

)2 − 1
√
1−

(
L
R

)2 , (3.329)

where ψ0 is a constant, which can be taken to be zero. Using the
notation

r20 =
L2

1−
√
1−

(
L
R

)2 , (3.330)

η =

√

1− L2

R2
, (3.331)

Eq. (3.329) can be rewritten as

(
r

r0

)2
=

1− η

1 + η cos 2θ
, (3.332)

and thus the optical ray is an ellipse having eccentricity e given by
[compare with Eq. (2.162)]

e =

√
2η

1 + η
=

2

√
1−

(
L
R

)2

1 +
√
1−

(
L
R

)2 . (3.333)

b) For this case Eq. (3.321) yields [see Eq. (3.214)]

dθ

dρ
=

1

ρ

√(
n0ρ

l(1+ρ2)

)2
− 1

. (3.334)

Integration leads to

θ − θ0 = arcsin



 1
√(

n0
l

)2 − 4

ρ2 − 1

ρ



 , (3.335)

where θ0 is a constant, and thus
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r sin (θ − θ0) =
r2 −R2

R
√(

n0R
L

)2 − 4
. (3.336)

In Cartesian coordinates
x = r cos θ , (3.337)

y = r sin θ , (3.338)
Eq. (3.336) becomes

y cos θ0 − x sin θ0 =
x2 + y2 −R2

R

√(
n0R
L

)2 − 4
, (3.339)

or

x20 + y20 +R2 = (x+ x0)
2 + (y − y0)

2 , (3.340)

where

x0 = R

√(
n0R

2L

)2
− 1 sin θ0 , (3.341)

y0 = R

√(
n0R

2L

)2
− 1 cos θ0 , (3.342)

i.e. the optical ray is a circle centered at (−x0, y0) having radius

√
x20 + y20 +R2 =

n0R2

2L
. (3.343)

13. For the case of a spherically symmetric medium the optical rays in spher-
ical coordinates can be evaluated by solving Eq. (3.320), which for the
current case becomes

dθ

dr
=

L

r
√(

1 + rS
r

)2
r2 − L2

, (3.344)

where L is a constant along an optical ray, and where the so-called
Schwarzschild radius rS is given by

rS =
2GM

c2
. (3.345)

Integration yields

θr =

∫
L

r
√(

1 + rS
r

)2
r2 − L2

dr

=
L

√
L2 − r2S

tan−1
ρrS − L2

√
L2 − r2S

√
ρ2 − L2

,

(3.346)
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where θr = θ−θ0, the angle θ0 is a constant and ρ = rS+r. The following
holds [see Eq. (3.346)]

lim
ρ→L

θr =
πL

2
√

L2 − r2S
=

π

2
+O

(
r2S
)
, (3.347)

and

lim
ρ→∞

θr =
L

√
L2 − r2S

tan−1
rS√

L2 − r2S
=

rS
L

+O
(
r3S
)
. (3.348)

The smallest distance r0 between the optical ray and the point mass (for
which ρ = L) is given by r0 = L− rS, and thus the deflection angle α is
given by

α = 2
rS
r0

+O
(
r2S
)
. (3.349)

14. With the help of the aberration of light formula (1.62) one finds that

cos θ′i =
cos θ + β

1 + β cos θ
, (3.350)

cos θ′r =
cos θ − β

1− β cos θ
. (3.351)

a) The above results (3.350) and (3.351) yield

cos θ′r =

(
1 + β2

)
cos θ′i − 2β

1− 2β cos θ′i + β2
. (3.352)

Alternatively, with the help of Eqs. (3.350) and (3.351) one finds that

sin θ′i + sin θ′r
sin

(
θ′r − θ′i

) =
sin θ′i + sin θ′r

sin θ′r cos θ
′
i − cos θ′r sin θ′i

= β . (3.353)

b) Consider the case where the reflecting plane of the moving mirror
at time t is the plane z = −βct. Consider a reflection process from
the initial point rA = (−αL, 0, L) to the final point rB = (αL, 0, L),
where α > 0 is dimensionless and L > 0 is the distance between both
points rA and rB and the mirror at time t = 0. The optical ray is
made of two straight sections, the first from the point rA at time
t = 0 to a point on the mirror rM = (ηL, 0,−βct1) at time t1 > 0,
where η is dimensionless, and the second is from the point rM at time
t1 to the point rB at some later time. The following holds

rA − rM

|rA − rM|
=

(− (α+ η)L, 0, L+ βct1)√
(α+ η)2 L2 + (L+ βct1)

2

=
(
sin θ′i, 0, cos θ

′
i

)
,

(3.354)
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rB − rM

|rB − rM|
=

((α− η)L, 0, L+ βct1)√
(α− η)

2
L2 + (L+ βct1)

2

=
(
sin θ′r, 0, cos θ

′
r

)
.

(3.355)
The requirement that the speed of light is c yields

ct1 = |rA − rM| =
√
(α+ η)2 L2 + (L+ βct1)

2 . (3.356)

This condition (3.356) can be rewritten as

g

(
η,

ct1
L

)
= 0 , (3.357)

where

g (x, z) = (α+ x)2 + (1 + βz)2 − z2 .

The total time of flight T can be expressed as

T =
L

c
τ

(
η,

ct1
L

)
, (3.358)

where

τ (x, z) =

(
z +

√
(α− x)2 + (1 + βz)2

)
. (3.359)

For the optical trajectory that minimizes T the following holds

∇τ = ξ∇g , (3.360)

where ∇ = (∂/∂x, ∂/∂z) is a two-dimensional gradient and ξ is a
Lagrange multiplier. Condition (3.360), which can be rewritten as

∂τ
∂x
∂g
∂x

=
∂τ
∂z
∂g
∂z

, (3.361)

or

− (α−x)√
(α−x)2+(1+βz)2

2 (α+ x)
=

1 + β(1+βz)√
(α−x)2+(1+βz)2

2β (1 + βz)− 2z
, (3.362)

together with Eqs. (3.354) and (3.355) lead to

sin θ′r
sin θ′i

=
1 + β cos θ′r
β cos θ′i − 1

, (3.363)

and thus

sin θ′i + sin θ′r
sin

(
θ′r − θ′i

) = β , (3.364)

in agreement with Eq. (3.353).

Eyal Buks Wave Phenomena - Lecture Notes 127



Chapter 3. Geometrical Optics

15. Using Eqs. (1.96) and (3.41) one finds that

−µ∇×H0 −∇ψ × (∇×E0) = n2 (̂s ·E1) ŝ , (3.365)

or [see Eq. (3.35)]

−µ
[
∇×

[
∇ψ

µ
×E0

]
+
∇ψ

µ
× (∇×E0)

]
= n2 (̂s ·E1) ŝ . (3.366)

Solution existence of the above equation requires that the vector F0,
which is defined as

F0 ≡∇×
[
∇ψ

µ
×E0

]
+
∇ψ

µ
× (∇×E0) , (3.367)

is parallel to ŝ. In what follows we rewrite F0 in a way allowing identifying
the components parallel and orthogonal to ŝ. Using Eq. (3.118) one finds
that

F0 =
∇ψ

µ
(∇ ·E0)−E0

(
∇ · ∇ψ

µ

)
+∇

(
∇ψ

µ
·E0

)

−E0×
(
∇× ∇ψ

µ

)
−2

(
∇ψ

µ
·∇

)
E0 .

(3.368)

The third term on the right vanishes [see Eq. (3.36)]. Moreover, using
Eq. (2.150) and ∇×∇ψ = 0 one finds that

F0 =
∇ψ

µ
(∇ ·E0)−E0

(
∇ · ∇ψ

µ

)

−E0×
[
∇

(
1

µ

)
×∇ψ

]
−2

(
∇ψ

µ
·∇

)
E0 .

(3.369)

In addition, using the vector identity (1.96), which is given by

A× (B×C) = (A ·C)B− (A ·B)C , (3.370)

for the third term on the right and using again Eq. (3.36) leads to

F0 =
∇ψ

µ
(∇ ·E0)−E0

(
∇ · ∇ψ

µ

)

+

(
E0 ·∇

(
1

µ

))
∇ψ−2

(
∇ψ

µ
·∇

)
E0 .

(3.371)

Using Eq. (2.149) for the second term on the right and multiplying by µ
leads to
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µF0 =∇ψ (∇ ·E0)−E0
[
∇
2ψ −∇ (logµ) ·∇ψ

]

− [E0 ·∇ (logµ)]∇ψ−2 (∇ψ ·∇)E0 .

(3.372)

The forth term on the right can be rewritten using Eqs. (3.44) and (3.154)
as

(∇ψ ·∇)E0 = n
d

ds

(
αν0ν̂ + αb0b̂

)

= n

[
dαν0
ds

ν̂ +
dαb0
ds

b̂+αν0

(
−κŝ+τ b̂

)
− αb0τ ν̂

]

n

[(
dαν0
ds

− αb0τ

)
ν̂ +

(
dαb0
ds

+αν0τ

)
b̂−αν0κŝ

]
,

(3.373)

thus, using Eqs. (3.36) and (3.56) one finds that

ŝ· [(∇ψ ·∇)E0] = −nE0 · κν̂ =−E0 ·∇n . (3.374)

Using the last result together with Eq. (3.372) one can write the condition
for F0 to be parallel to ŝ as

0 = −E0
[
∇
2ψ −∇ (logµ) ·∇ψ

]
−2 (∇ψ ·∇)E0 − 2ŝ (E0 ·∇n) ,

(3.375)

or

2 (∇ψ ·∇)E0+E0
[
∇
2ψ −∇ (logµ) ·∇ψ

]
+2 [E0 ·∇ (logn)]∇ψ = 0 ,

(3.376)

in agreement with Eq. (3.114).
16. By using Eq. (2.150) and ψ = nŝ one finds that

0 =∇×∇ψ =∇× (nŝ) = n∇× ŝ+(∇n)× ŝ , (3.377)

thus, by multiplying by ŝ one obtains

ŝ ·∇× ŝ = 0 , (3.378)

and

∇× ŝ = ŝ× (∇ logn) . (3.379)

Therefor, the following hold [see Eq. (3.56)]

ν̂ ·∇× ŝ = ν̂ · [̂s× (∇ logn)] = − (∇ logn) · b̂ = 0 , (3.380)

and

b̂ ·∇× ŝ = b̂ · [̂s× (∇ logn)] = (∇ logn) · ν̂ = κ . (3.381)
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17. By multiplying Eq. (3.114) by E0 one obtains

2E0·(∇ψ ·∇)E0+E
2
0

[
∇
2ψ −∇ (logµ) ·∇ψ

]
+2 [E0 ·∇ (logn)] (E0 ·∇ψ) = 0 .

(3.382)

As can be seen from Eq. (3.36), the last term vanishes. Using Eq. (2.149)
one finds that

∇
2ψ −∇ (logµ) ·∇ψ = µ∇ ·

(
∇ψ

µ

)
, (3.383)

thus

2E0 ·
(
∇ψ

µ
·∇

)
E0 +E20∇ ·

(
∇ψ

µ

)
= 0 . (3.384)

Using ∇ψ = nŝ and n =
√
ǫµ lead to

2

√
ǫ

µ
E0 · (̂s ·∇)E0 +E20∇ ·

(√
ǫ

µ
ŝ

)
= 0 , (3.385)

or
√

ǫ

µ
ŝ ·∇E20 +E20∇ ·

(√
ǫ

µ
ŝ

)
= 0 , (3.386)

thus [see Eq. (2.149)]

∇ ·
(
E20

√
ǫ

µ
ŝ

)
= 0 . (3.387)

Define the ratio [see Eq. (2.165)]

η ≡ E20/ |E0|2 . (3.388)

According to Eqs. (3.166) and (3.387) both |E0|2 and E20 have the same
s dependence

E20 (s)

√
ǫ (s)

µ (s)
= E20 (s0)

√
ǫ (s0)

µ (s0)
exp

[
−
∫ s

s0

ds′ (∇ · ŝ)
]

. (3.389)

Thus, η is a constant on the ray, and consequently, the eccentricity e of
the polarization ellipse is a constant as well, as can be seen from Eq.
(2.162).

18. The ray equation is given by [see Eq. (3.61)]

d

ds

(
n
dr

ds

)
=
∇n2

2n
= −n20K

2 (xx̂+ yŷ)

n
. (3.390)
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Since x2 (s)+y2 (s) = R2 the refractive index along the ray is a constant
given by

nr = n0
√
1−K2R2 , (3.391)

and thus the ray equation (3.390) becomes

d2r

ds2
= −k2 (xx̂+ yŷ) , (3.392)

where

k =
K√

1−K2R2
. (3.393)

The general solution for which x2 (s) + y2 (s) = R2 is given by

x (s) = R cos (ks+ φ0) , (3.394)

y (s) = R sin (ks+ φ0) , (3.395)

z (s) = z0 + αks , (3.396)

where φ0, z0 and α are constants. The requirement that

1 =

∣∣∣∣
dr

ds

∣∣∣∣ =
√

k2 (R2 + α2) , (3.397)

yields

α =

√
1− k2R2

k
. (3.398)

As can be seen from Eqs. (3.142) and (3.144)

dφe
ds

= τ , (3.399)

where τ is a torsion, which for the case of an helix is given by Eq. (3.258),
thus

dφe
ds

=
α

R2 + α2
=

K
√
1− 2K2R2

1−K2R2
, (3.400)

where 2K2R2 ≤ 1.
19. The action (3.222) can be expressed in terms of a Lagrangian L as [see

Eq. (1.15)]

S =

∫ t2

t1

dt L , (3.401)

where L is given by
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L = −mc2
√

1− ṙ · ṙ
c2

+
q

c
ṙ ·A− qφ , (3.402)

and where overdot denotes a derivative with respect to time t, i.e. ṙ =
dr/dt = (dx1/dt,dx2/dt,dx3/dt). Consider a trajectory

r (t) = rc (t) + δr (t) , (3.403)

where rc (t) is assumed to be a classical trajectory and where δr (t) is
considered as infinitesimally small. It is assume that r (t1) = rc (t1) = r1
and r (t2) = rc (t2) = r2, i.e. δr (t1) = δr (t2) = 0. To lowest order in
δr = (δx1, δx2, δx3) the change in the action δS is given by

δS =

t2∫

t1

dt δL =

t2∫

t1

dt
3∑

n=1

(
∂L
∂xn

δxn +
∂L
∂ẋn

d

dt
δxn

)
. (3.404)

Integrating the second term by parts leads to

δS =

t2∫

t1

dt
3∑

n=1

(
∂L
∂xn

− d

dt

∂L
∂ẋn

)
δxn

+
N∑

n=1

[
∂L
∂ẋn

δxn

∣∣∣∣
t2

t1

.

(3.405)

The last term vanishes since δr (t1) = δr (t2) = 0. The principle of least
action requires that δS = 0 for arbitrary δxn, and thus

∂L
∂xn

=
d

dt

∂L
∂ẋn

. (3.406)

The set of equations (3.406) is called the Euler-Lagrange equations. For
the coordinate x1 Eq. (3.406) reads

d

dt

∂L
∂ẋ1

=
∂L
∂x1

, (3.407)

and the following holds

d

dt

∂L
∂ẋ1

= ṗ1 +
q

c

(
∂A1
∂t

+ ẋ1
∂A1
∂x1

+ ẋ2
∂A1
∂x2

+ ẋ3
∂A1
∂x3

)
, (3.408)

where

p1 = mγẋ1 , (3.409)
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γ =
1

√
1− ṙ·ṙ

c2

, (3.410)

and

∂L
∂x1

= −q ∂ϕ

∂x1
+

q

c

(
ẋ1

∂A1
∂x1

+ ẋ2
∂A2
∂x

+ ẋ3
∂A3
∂x

)
, (3.411)

thus [see Eqs. (2.23) and (2.25)]

ṗ1 = −q
∂ϕ

∂x1
− q

c

∂A1
∂t︸ ︷︷ ︸

qE1

+
q

c






ẋ2

(
∂A2
∂x1

− ∂A1
∂x2

)

︸ ︷︷ ︸
−

(∇×A)3

ẋ3

(
∂A1
∂x3

− ∂A3
∂x1

)

︸ ︷︷ ︸
(∇×A)2︸ ︷︷ ︸

(ṙ×(∇×A))1






,

(3.412)

or

ṗ1 = qE1 +
q

c
(ṙ×B)1 . (3.413)

Similar equations are obtained for ṗ2 and ṗ3 in the same way. These 3
equations can be written in a 3-vector form as

ṗ = q

(
E+

1

c
ṙ×B

)
, (3.414)

where

p = mγṙ . (3.415)

Alternatively, Eq. (3.414) can be rewritten as [see Eq. (3.415)]

r̈ =
q

mγ

(
E+

1

c
ṙ×B

)
− γ̇ṙ

γ
, (3.416)

where [see Eq. (3.410)]

γ̇

γ
=

1

c

u
c

1− u2

c2

u̇ , (3.417)

and where
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u = |ṙ| . (3.418)

With the help of Eqs. (3.414) and (3.415) and the relation

dp2

dt
= 2p · ṗ , (3.419)

one finds [by multiplying Eq. (3.414) from the left by p] that

1

2

dp2

dt
= p · ṗ = qmγṙ ·E , (3.420)

thus [see Eq. (3.410)]

u̇ =
q
(
1− u2

c2

)

muγ
ṙ ·E . (3.421)

Combining Eqs. (3.416), (3.417) and (3.421) yields

r̈ =
q

mγ

(
E+

1

c
ṙ×B− (ṙ ·E) ṙ

c2

)
. (3.422)

20. Recall that the equation of motion in a 3-vector form is given by Eq.
(3.414).

a) In general, the force 4-vector F = dP/dτ (1.77), where P = mdX/dτ
[see Eq. (1.64)], is related to the force 3-vector f = dp/dt (1.79) by
[see Eq. (1.81)]

F = γ

(
f · ṙ
c

, f

)T
, (3.423)

where ṙ = dr/dt and where γ = 1/
√
1− ṙ · ṙ/c2. For the case of a

point particle of charge q in electromagnetic field the force 3-vector
f is given by [see Eq. (3.414)]

f = q

(
E+

1

c
ṙ×B

)
, (3.424)

and thus with the help of the relation (1.68), which is given by

1

dτ
= γ

1

dt
, (3.425)

one finds that

F =
q

c
ηF̂

dX

dτ
, (3.426)

where F̂ is given by [see Eq. (2.29)]
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F̂ =






0 E1 E2 E3
−E1 0 −B3 B2
−E2 B3 0 −B1
−E3 −B2 B1 0




 , (3.427)

and the Minkowski metric η is given by [see Eq. (1.14)]

η =






1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




 , (3.428)

or

dU

dτ
=

qηF̂

mc
U , (3.429)

where

U =
dX

dτ
. (3.430)

Note that the right hand side of Eq. (3.429) is transformed according
to the Lorentz transformation, i.e. [see Eqs. (1.11) and (2.32)]

ΛηF̂U = ηF̂ ′U ′ . (3.431)

b) For the case where E = E1x̂1 and B = B1x̂1 one has

qηF̂

mc
=

q

mc






0 E1 0 0
E1 0 0 0
0 0 0 B1
0 0 −B1 0




 , (3.432)

and thus [see Eq. (3.429)]
d

dτ

(
U0
U1

)
=

qE1
mc

σE

(
U0
U1

)
, (3.433)

d

dτ

(
U2
U3

)
=

qB1
mc

σB

(
U2
U3

)
, (3.434)

where the 2× 2 matrices σE and σB, which are given by

σE =

(
0 1
1 0

)
, (3.435)

σB =

(
0 1
−1 0

)
, (3.436)

satisfy the relation σ2E = −σ2B = 1, where 1 is the 2 × 2 identity
matrix. The solution is thus given by(

U0 (τ)
U1 (τ)

)
= exp

(
qE1τ

mc
σE

)(
U0 (0)
U1 (0)

)
, (3.437)

(
U2 (τ)
U3 (τ)

)
= exp

(
qB1τ

mc
σB

)(
U2 (0)
U3 (0)

)
. (3.438)
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With the help of the Taylor expansion

exp (M) = 1 +M +
M2

2!
+

M3

3!
+

M4

4!
+ · · · , (3.439)

one obtains(
U0 (τ)
U1 (τ)

)
=

(
cosh qE1τ

mc sinh qE1τ
mc

sinh qE1τ
mc cosh qE1τ

mc

)(
U0 (0)
U1 (0)

)
, (3.440)

(
U2 (τ)
U3 (τ)

)
=

(
cos qB1τ

mc sin qB1τ
mc

− sin qB1τ
mc cos qB1τ

mc

)(
U2 (0)
U3 (0)

)
. (3.441)

As can be seen from the comparison with Eq. (1.201), the particle
moves along the x1 axis with a constant proper acceleration given
by qE1/m. In the plane spanned by the x2 and x3 axes, on the
other hand, the particle undergoes a circular motion having cyclotron
frequency given by qB1/mc.
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4. Paraxial Approximation

Consider a medium having cylindrical symmetry along an axis, which is taken
to be the z axis. In the paraxial approximation it is assumed that light prop-
agates along the z axis, which is commonly referred to as the optical axis,
and it remains confined close to it. This chapter discusses the paraxial ap-
proximation for both optical rays and optical waves.

4.1 Paraxial Rays

Consider an optical ray in cylindrical coordinates (r, φ, z). For simplicity, it
is assumed that the angle φ is kept constant along the ray, i.e. the ray is
assumed to be planar. The plane is taken to be the xz plane. In arc-length
parametrization the ray r (s) can be expressed in terms of the angle θ (s)
between the optical ray and the z axis as

dr

ds
= (sin (θ (s)) , 0, cos (θ (s))) . (4.1)

In the paraxial approximation it is assumed that the angle θ is small.

4.1.1 ABCD Matrix

Let r (z) be the radial coordinate of an optical ray and let r′ = dr/dz. When
the transformation from the input values rin = r (zin) and r′in = r′ (zin) to
the output values rout = r (zout) and r′out = r′ (zout) is found to be a linear
one, it can be expressed by the so-called ABCD ray matrix

(
rout
r′out

)
=

(
A B
C D

)(
rin
r′in

)
. (4.2)

Exercise 4.1.1. Calculate the ABCD ray matrix for the cases of (see Fig.
4.1) (a) translation in a homogeneous medium (b) refraction at a planar in-
terface between a medium having refractive index n1 and a medium having
refractive index n2 (c) refraction at a curved interface having radius R be-
tween a medium having refractive index n1 and a medium having refractive
index n2 (d) transmission through a thin lens having focal length f .
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Solution 4.1.1. (a) Optical rays in a homogeneous medium are straight
lines, and thus for this case [see Fig. 4.1(a)]

(
A B
C D

)
=

(
1 d
0 1

)
, (4.3)

where d = zout − zin. (b) In the paraxial approximation the incidence and
transmission angles θi and θt are both assumed small, and consequently the
Snell’s law (3.55), which is given by

n1 sin θi = n2 sin θt , (4.4)

can be approximated by the relation

n1θi = n2θt . (4.5)

In this approximation the ABCD matrix is given by [see Fig. 4.1(b)]

(
A B
C D

)
=

(
1 0
0 n1
n2

)
. (4.6)

(c) For this case [see Fig. 4.1(c)]

θi ≃ r′in +
rin
R

, (4.7)

θt ≃ r′out +
rin
R

, (4.8)

and thus [see Eqs. (4.5)]

(
A B
C D

)
=

(
1 0

n1−n2
n2R

n1
n2

)
. (4.9)

(d) For a lens of focal length f the focusing condition implies that

(
A B
C D

)
=

(
1 0
− 1f 1

)
. (4.10)

Exercise 4.1.2. Calculate the focal distance f of a lens made of a material
having refractive index n. The two surfaces of the lens have radii of curvature
R1 and R2, respectively. According to the sign convention for radii of curva-
ture, for the case of a biconvex lens, for example, the radius of the surface
closest to the light source is taken to be positive, whereas the other radius is
taken to be negative.

Solution 4.1.2. The ABCD matrix is given by [see Eqs. (4.9) and (4.10)]
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Fig. 4.1. The ABCD ray matrix.

(
A B
C D

)
=

(
1 0

−n−1
R2

n

)(
1 0
1−n
nR1

1
n

)
(4.11)

=

(
1 0
− 1f 1

)
, (4.12)

(4.13)

where the focal length f is given by the so-called lensmaker’s equation

1

f
= (n− 1)

(
1

R1
− 1

R2

)
. (4.14)

Note that for the cases of a translation (4.3) and a lens (4.10) [see also Eq.
(4.50) below] the determinant of the ABCD matrix equals unity and A = D.
The underlying symmetry property that is responsible for these properties is
discussed below.

Exercise 4.1.3. Let M be the ABCD matrix of a given optical element,
which relates rays entering the element from one interface, which is labelled
as L, to rays exiting the element through the opposite interface, which is
labelled as R. The element can be positioned in a given point along an optical
axis in two orientations. In the first one the interface R is facing the positive
direction of the optical axis and in the other orientation the interface R is
facing the negative direction. What can be said about the matrix M given
that the optical element functions in the same way in both orientations.

Solution 4.1.3. Consider an input and output rays that satisfy the following
relation [see Eq. (4.2)]

(
rout
r′out

)
=

(
A B
C D

)(
rin
r′in

)
. (4.15)
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The inversion symmetry that the optical element is assumed to posses implies
that the following must hold (note that when reversing the direction of an
optical ray r→ r and r′ → −r′)

(
rin
−r′in

)
=

(
A B
C D

)(
rout
−r′out

)
, (4.16)

thus
(
rout
r′out

)

=

(
1 0
0 −1

)−1(
A B
C D

)−1(
1 0
0 −1

)(
rin
r′in

)
.

(4.17)

The requirement that both Eqs. (4.15) and (4.17) must hold for any (rin, r′in)
T

implies that
(
A B
C D

)
=

(
1 0
0 −1

)−1(
A B
C D

)−1(
1 0
0 −1

)

=
1

AD −BC

(
D B
C A

)
,

(4.18)

thus (unless B = C = 0)

AD −BC = detM = 1 , (4.19)

and

A = D . (4.20)

Below the stability of optical cavities is analyzed using ABCD matrices.

Exercise 4.1.4. An optical cavity of length d is formed between two concave
and perfectly reflecting mirrors facing each other (both mirrors are centered
with respect to the optical axis of the system, and both are normal to the
optical axis). The left (right) mirror has a radius of curvature R1 (R2). Under
what conditions stable light trapping inside the cavity is possible?

Solution 4.1.4. The focal length of a mirror having a radius of curvature R
is R/2. The ABCD matrix corresponding to an integer number N of cycles
back and forth between the two mirrors is given by

(
A B
C D

)
= MN

0 , (4.21)

where

Eyal Buks Wave Phenomena - Lecture Notes 140



4.1. Paraxial Rays

M0 = M2M1 , (4.22)

and where M1 and M2 are given by [see Eqs. (4.3) and (4.10)]

Mn =

(
1 0

− 2
Rn

1

)(
1 d
0 1

)
. (4.23)

The following holds det (Mn) = 1, and thus det (M0) = 1, and therefore the
eigenvalues λ± of M0 are given by

λ± =
Tr (M0)

2
±

√(
Tr (M0)

2

)2
− 1 . (4.24)

Light trapping inside the cavity is expected to be stable when the absolute
values of both eigenvalues of M0 do not exceed unity, a condition that is
satisfied provided that

∣∣∣∣
Tr (M0)

2

∣∣∣∣ ≤ 1 . (4.25)

The trace of M0 is given by

Tr (M0) = 2− 4d

R1
− 4d

R2
+

4d2

R1R2
, (4.26)

and thus the condition (4.25) can be expressed as

0 ≤ Tr (M0) + 2

4
= g1g2 ≤ 1 , (4.27)

where

gn = 1− d

Rn
. (4.28)

4.1.2 Möbius Transformation

The intersection points zin and zout of the (extrapolated) input and output
rays, respectively, with the optical axis are given by

zin =
rin
r′in

, (4.29)

zout =
rout
r′out

. (4.30)

The following holds

zout =
rout
r′out

=
Arin +Br′in
Crin +Dr′in

= fA,B,C,D (zin) , (4.31)
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where

fA,B,C,D (zin) =
Azin +B

Czin +D
. (4.32)

Note that fA,B,C,D (zin) is a Möbius transformation.

Claim. The following holds

fA2,B2,C2,D2 (fA1,B1,C1,D1 (z)) = fA,B,C,D (z) , (4.33)

where
(
A B
C D

)
=

(
A2 B2
C2 D2

)(
A1 B1
C1 D1

)
. (4.34)

Proof. With the help of Eq. (4.32) one finds that

fA2,B2,C2,D2 (fA1,B1,C1,D1 (z)) =
A2

A1z+B1

C1z+D1
+B2

C2
A1z+B1

C1z+D1
+D2

=
(A2A1 +B2C1) z +A2B1 +B2D1
(C2A1 +D2C1) z +C2B1 +D2D1

,

(4.35)

thus Eq. (4.33) holds.

4.1.3 Ray Equation

For the case of cylindrically symmetric medium the refractive index n de-
pends on r only. Recall that for this case the ray equations in arc-length
parametrization are given by Eqs. (3.111), (3.112) and (3.113).

Exercise 4.1.5. Consider a planar optical ray, for which φ is assumed to be
a constant. Show that

d2r

dz2
=

1

2n2c

dn2

dr
, (4.36)

where nc is a constant.

Solution 4.1.5. With the help of Eq. (3.113)

0 =
d

ds

(
n
dz

ds

)
, (4.37)

one finds that

n
dz

ds
= nc , (4.38)
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where nc is a constant. By employing the relation [see Eq. (4.38)]

d

ds
=

dz

ds

d

dz
=

nc
n

d

dz
, (4.39)

Eq. (3.111), which for the case of a constant φ is given by

dn

dr
=

d

ds

(
n
dr

ds

)
, (4.40)

becomes

dn

dr
=

n2c
n

d2r

dz2
, (4.41)

or

1

2n2c

dn2

dr
=

d2r

dz2
. (4.42)

Exercise 4.1.6. Consider a planar optical ray, for which φ is assumed to be
a constant. Show that

(
dr

dz

)2
=

n2 − n2c
n2c

, (4.43)

where nc is a constant.

Solution 4.1.6. When φ is a constant the requirement that |dr/ds| = 1
implies that [see Eq. (3.100)]

1 =

(
dr

ds

)2
+

(
dz

ds

)2
. (4.44)

Multiplying Eq. (4.36) by dr/dz yields

1

2n2c

dn2

dz
=

dr

dz

d2r

dz2
, (4.45)

or

d

dz

((
dr

dz

)2
− n2

n2c

)

= 0 , (4.46)

thus

(
dr

dz

)2
− n2

n2c
= C , (4.47)

where C is a constant. On the other hand [see Eqs. (4.38) and (4.44)]
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(
dr

dz

)2
− n2

n2c
=

(
dr
ds
dz
ds

)2
− n2

n2c

=
1− n2c

n2

n2c
n2

− n2

n2c

= −1 ,

(4.48)

and thus Eq. (4.43) holds.

4.1.4 Graded Index Medium

The index of refraction in a graded index (GRIN) medium is given by

nGRIN (r) = n0
√
1− g2r2 , (4.49)

where both n0 and g are constants.

Claim. The ABCD ray matrix of a GRIN medium is given by
(
A B
C D

)
=

(
cos (gz) 1

g sin (gz)

−g sin (gz) cos (gz)

)
. (4.50)

Proof. With the help of Eqs. (4.36) and (4.49) one finds that

d2r

dz2
= −n20

n2c
g2r . (4.51)

Recall that the constant nc is given by nc = n cos θ [see Eqs. (4.1) and (4.38)].
In the paraxial approximation it is assumed that θ≪ 1 and thus the equation
of motion becomes

d2r

dz2
= −g2r . (4.52)

The solution thus reads

r (z) = r0 cos (gz) +
r′0
g
sin (gz) , (4.53)

where both r0 and r′0 are constants. The derivative r′ = dr/dz is given by

r′ (z) = −gr0 sin (gz) + r′0 cos (gz) . (4.54)

The above results (4.53) and (4.54) lead to Eq. (4.50) [see Eq. (4.2)].

As can be seen from Eq. (4.50) the ABCD matrix is periodic in z, and
the period is given by the so-called pitch p of the medium, which is given by

p =
2π

g
. (4.55)
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4.2 Paraxial Waves

Recall that in the scalar approximation all three components of the vector
fields E and H satisfy the Helmholtz equation (2.151), which is given by

(
∇
2 + n2k20

)
ψ = 0 , (4.56)

where n is the refractive index and where [see Eq. (2.142)]

k0 =
ω

c
. (4.57)

4.2.1 Paraxial Approximation

Consider a solution having the form

ψ = A (x, y, z) einak0z , (4.58)

where the constant na represents a characteristic value of the refractive index
n in the medium. Substituting into Eq. (4.56) yields

∇
2
⊥A+

∂

∂z

(
∂A

∂z
+ 2inak0A

)
+
(
n2 − n2a

)
k20A = 0 , (4.59)

where

∇
2
⊥ =

∂2

∂x2
+

∂2

∂y2
. (4.60)

In the paraxial approximation, which assumes

∣∣∣∣
∂A

∂z

∣∣∣∣≪ 2nak0 |A| ,

this becomes

i
∂A

∂z
= HA , (4.61)

where

H = − 1

2nak0
∇
2
⊥ −

(
n2 − n2a

)
k0

2na
. (4.62)

4.2.2 Gaussian Beam in GRIN Medium

Consider a GRIN medium, whose refractive index nGRIN is given by Eq.
(4.49). For this case Eq. (4.61) becomes (the constant na is chosen to be
given by na = n0)
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i
∂A

∂z
=

(
− 1

2n0k0
∇
2
⊥ +

n0k0g2r2

2

)
A . (4.63)

Consider a gaussian beam solution, for which A has the form

A = A0e
−i
(
P (z)−n0k0r

2

2q(z)

)

, (4.64)

where A0 is a constant. The complex beam parameter q (z) is expressed as

1

q (z)
=

1

R (z)
+

2i

n0k0w2 (z)
, (4.65)

where R (z) is the radius of curvature of the Gaussian beam and w (z) is the
spot size. The following claim demonstrates the so-called ABCD law.

Claim. The complex beam parameter evolves along the z axis according to

q (z) =
Aq0 +B

Cq0 +D
, (4.66)

where q0 = q (z = 0) and the A, B, C and D parameters are the elements of
the ABCD ray matrix that characterizes the propagation of optical rays in
the medium [see Eq. (4.50)]

(
A B
C D

)
=

(
cos (gz) 1

g sin (gz)

−g sin (gz) cos (gz)

)
. (4.67)

Proof. In cylindrical coordinates (r, φ, z) the following holds

∇
2
⊥ =

1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂φ2
, (4.68)

and thus Eq. (4.63) yields

dP

dz
+

i

q
+

n0k0r2

2q2

(
dq

dz
− 1− g2q2

)
= 0 . (4.69)

The above must hold for every r, and thus

dq

dz
= 1 + g2q2 , (4.70)

and

dP

dz
= − i

q
. (4.71)

The general solution of Eq. (4.70) reads
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q (z) =
tan (gz +C)

g
, (4.72)

where C is a constant. In terms of the initial value q0 = q (z = 0), which is
related to C by

q0 =
tanC

g
, (4.73)

one finds with the help of the identity

tan (x+ y) =
tanx+ tan y

1− tanx tan y
, (4.74)

that

q (z) =
cos (gz) q0 +

1
g sin (gz)

−g sin (gz) q0 + cos (gz)
, (4.75)

in agreement with Eq. (4.66).

4.2.3 Homogeneous Case

In the homogeneous limit, i.e. in the limit g→ 0, Eq. (4.75) becomes [see Eq.
(4.70)]

lim
g→0

q (z) = q0 + z . (4.76)

Consider the case where the beam’s waist is located at z = 0. For that case
1/R (z = 0) = 0 [see Eq. (4.65)]. The width of the waist is denoted by w0,
i.e. [see Eq. (4.65)]

1

q0
=

2i

n0k0w20
. (4.77)

With the help of Eq. (4.76) one finds that [see Eq. (4.65)]

R (z) = z

(

1 +
|q0|2
z2

)

, (4.78)

and

w2 (z) = w20

(

1 +
z2

|q0|2

)

. (4.79)

As can be seen from Eqs. (4.65). (4.78) and (4.79), far from the beam’s
waist (i.e. when |z| ≫ |q0|) the following holds
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1

q (z)
≃ 1

R (z)
≃ 1

z
. (4.80)

This result suggests that far from the beam’s waist the gaussian beam para-
meter q (z) coincides with the intersection point of ray optics. Recall that the
same ABCD Möbius transformation is employed for (a) relating the intersec-
tion point zout of an output ray to the the intersection point zin of an input
ray [see Eq. (4.32)], and (b) relating an output gaussian beam parameter q (z)
to an input gaussian beam parameter q0 [see Eq. (4.66)]. This observation is
consistent with the ABCD law, according to which the same coefficients A,
B, C and D are employed in both cases (for a given cylindrically symmetric
optical system).

Claim. The ABCD law is applicable for the case of translation in a homoge-
neous medium.

Proof. The claim is easily proved with the help of Eq. (4.76), according to
which

q (z) =
Aq0 +B

Cq0 +D
, (4.81)

where the parameters A, B, C and D are the elements of the ABCD ray ma-
trix (4.3) that characterizes the propagation of optical rays in a homogeneous
medium, which is given by

(
A B
C D

)
=

(
1 d
0 1

)
, (4.82)

where d is the translation distance along the optical axis.

4.3 Fiber Bragg Grating

Consider an optical fiber extended along the z axis and having refractive
index given by

n (x, y, z) =
√

n20 (x, y) + n2p , (4.83)

where the term np = np (x, y, z) is considered as a perturbation. In the scalar
approximation the field components are required to satisfy the Helmholtz
equation (4.56)

(
∇
2
⊥ +

d2

dz2
+ k20n

2

)
ψ = 0 , (4.84)

where ∇2⊥ is given by Eq. (4.60), k0 = ω/c, ω is the angular frequency of
optical field and c is light velocity in vacuum. Near the frequency of interest
ω ≃ ω0 solutions of the unperturbed problem, for which np = 0, are given by
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ψ± (x, y, z) = ψ0 (x, y) e
±iβz . (4.85)

The dispersion relation β (ω) in that region is assumed to be linear and
approximately given by

β (ω) =
ωneff
c

= k0neff , (4.86)

where neff is the mode effective refractive index (near ω0). This assumption
implies, as can be seen from Eq. (4.84), that the function ψ0 (x, y) satisfies
the following transverse equation

{
∇
2
⊥ + k20

[
n20 (x, y)− n2eff

]}
ψ0 = 0 . (4.87)

Consider a solution to the perturbed problem having the form

ψ (x, y, z) = ψ0 (x, y)
[
A+ (z) eiβz +A− (z) e−iβz

]
. (4.88)

Substituting into Eq. (4.84) and employing Eq. (4.87) yields

[
d2

dz2
+ k20

(
n2p + n2eff

)]
ψ0
(
A+e

iβz +A−e
−iβz) = 0 . (4.89)

The envelope functions A± (z), which become constants in the unperturbed
case, are assume to be nearly constant on the length scale of a single wave-
length, and therefore

d2

dz2
(
A±e

±iβz) ≃
(
±2iβdA±

dz
− β2A±

)
e±iβz . (4.90)

Employing this approximation in Eq. (4.89) leads to

2iβ

(
dA+
dz

eiβz − dA−
dz

e−iβz
)
ψ0

+
[
k20
(
n2p + n2eff

)
− β2

]
ψ0
(
A+e

iβz +A−e
−iβz) = 0 .

(4.91)

Multiplying by ψ∗0 and integrating over the xy plane yield

2iβ

(
dA+
dz

eiβz − dA−
dz

e−iβz
)

+
[
k20n

2
eff (1 + 2D)− β2

] (
A+e

iβz +A−e
−iβz) = 0 ,

(4.92)

where

D (z) =

1
2n2eff

∫ ∫
dxdy |ψ0|2 n2p

∫ ∫
dxdy |ψ0|2

. (4.93)
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The coupling term D (z) for the case of Bragg grating is assumed to have
the form

D (z) = D (z) e
2πiz
Λ +D∗ (z) e−2πiz

Λ , (4.94)

where the envelope function D (z) is assumed to be nearly constant on the
length scale of the grating period Λ. The optical angular frequency ω is
assumed to be close to the Bragg frequency ωB (i.e. ω0 is taken to be equal
to ωB), which is given by

ωB =
πc

Λneff
= c

2π

λB
, (4.95)

were λB = 2neffΛ is the Bragg wavelength, i.e. |ω − ωB| ≪ ωB. Thus the
factor β can be expressed in terms of the normalized detuning factor δ as

β =
π

Λ
(1− δ) , (4.96)

where

δ = −ω − ωB
ωB

≃ ∆λ

λB
≪ 1 , (4.97)

and where ∆λ = λ− λB is the offset wavelength. To first order in δ

k20n
2
eff − β2 ≃ 2

(π
Λ

)2
δ . (4.98)

With these notations and approximations one obtains
(
dA+
dz

− πiδ

Λ
A+

)
eiβz −

(
dA−
dz

+
πiδ

Λ
A−

)
e−iβz

−πi

Λ
D
(
A+e

iβz +A−e
−iβz) = 0 .

(4.99)

Collecting terms oscillating close to exp (πiz/Λ) yields

dA+
dz

− πiδ

Λ
A+ −

πi

Λ
De

2πiδz
Λ A− = 0 , (4.100)

whereas collecting terms oscillating close to exp (−πiz/Λ) yields

dA−
dz

+
πiδ

Λ
A− +

πi

Λ
D∗e− 2πiδz

Λ A+ = 0 . (4.101)

In order to ensure that small terms are kept only up to first order (recall
that both D and δ are considered to be small) the terms exp (±2πiδz/Λ) are
replaced by unity. In terms of the dimensionless displacement ζ = πz/Λ these
two coupled equations can be expressed as
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dA+
dζ

− iδA+ − iDA− = 0 , (4.102)

dA−
dζ

+ iδA− + iD∗A+ = 0 , (4.103)

or in matrix form as

d

dζ

(
A+
A−

)
=M

(
A+
A−

)
, (4.104)

where

M =

(
iδ iD

−iD∗ −iδ

)
. (4.105)

In what follows D is assumed to be a real constant. For this case the
solution is given by

(
A+ (ζ)
A− (ζ)

)
= exp (Mζ)

(
A+ (0)
A− (0)

)
. (4.106)

For a complex number ζ and for a unit vector n̂ (i.e., n̂ · n̂ = 1), the following
holds

exp (ζσ · n̂) = cosh ζ + σ · n̂ sinh ζ , (4.107)

where σ = (σx, σy, σz) is the vector of Pauli matrices, which are given by

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (4.108)

Thus by expressing Mζ as

Mζ = γζ (σx, σy, σz) ·




0
−D
γ
iδ
γ



 . (4.109)

where

γ =
√
D2 − δ2 , (4.110)

one finds that

exp (Mζ)

=

(
cosh (γζ) + iδ sinh(γζ)

γ
iD sinh(γζ)

γ

− iD sinh(γζ)
γ cosh (γζ)− iδ sinh(γζ)

γ

)

.

(4.111)
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Consider a Bragg grating having length LB. Introducing the grating cou-
pling strength parameter

V = πNBD , (4.112)

where

NB =
LB
Λ

(4.113)

is the number of periods, and the total detuning factor

∆ = πNBδ , (4.114)

where δ = ∆λ/λB, the transfer matrix MB = exp (Mζ) (4.111) can be ex-
presses in terms of the the transmission tB and the reflection rB amplitudes
of the FBG as

MB
=




1
t∗
B

r
B

t
B(

r
B

t
B

)∗
1
t
B



 , (4.115)

where

tB =
1

cosh
√
V 2 −∆2 − i∆ sinh

√
V 2−∆2√

V 2−∆2

, (4.116)

rB =

iV sinh
√
V 2−∆2√

V 2−∆2

cosh
√
V 2 −∆2 − i∆ sinh

√
V 2−∆2√

V 2−∆2

. (4.117)

The reflection RB and transmission TB probabilities are given by (see Fig.
4.2)

RB = |rB|2 =
V 2 sinh2

√
V 2−∆2

V 2−∆2

1 + V 2 sinh2
√
V 2−∆2

V 2−∆2

, (4.118)

TB = |tB|2 =
1

1 + V 2 sinh2
√
V 2−∆2

V 2−∆2

. (4.119)

4.4 Problems

1. An object having height y1 is placed a distance s1 from a lens having
focal length f , and an image having height y2 is formed at a distance
s2 from the lens. Find a relation between s1, s2 and f and calculate the
magnification M = y2/y1.
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Fig. 4.2. Reflection RB = |rB|2 and transmission TB = |tB|2 = 1−RB probabilities
of a Bragg grating as a function of δ for coupling constant V = 3 and NB = LB/Λ =
20000.

2. An optical imaging system is constructed using two thin lenses having
focal lengths f1 and f2, respectively. The two lenses are attached to each
other (with a vanishing gap). The object plane is on the left at a distance
s1 from the lenses, and the image plane is on the right at a distance s2
from the lenses. The total distance between object plane and image plane
is given s1+s2 = s. Calculate the magnificationM of the imaging system.

3. Consider an incident laser spot having a radiusRin and a small divergence
angle θin. Employ paraxial ray optics to estimate the output radius Rout
and output divergence angle θout at the plane zout for the following cases:

a) The spot is focused by illuminating a lens having focal length f and
zout is taken to be the location of the focal plane of the lens.

b) The spot is collimated by locating it at the focal plane of a lens
having focal length f and zout is taken to be the location of the rear
plane of the lens.

c) The spot is expanded by employing two lenses having focal lengths
f1 and f2 respectively placed a distance d one from the other.

4. Ball lens - Find the focal distance of a ball lens having radius R and
index of refraction nb.

5. A GRIN lens having length z, maximum refractive index n0 and pitch p
[see Eqs. (4.49) and (4.55)] is employed for imaging. An object is located
at a distance s2 from one interface of the GRIN lens, and its image is
created at at distance s1 from the opposite interface. Express the mag-
nification M in terms of z, n0, p and s1.

6. Consider the task of coupling a collimated laser beam of wavelength λ
having characteristic mode radius wL into a single mode optical fiber
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Fig. 4.3. Optical cavity between two flat mirrors with two internal lenses.

having characteristic mode radius wF and refractive index n. The task is
performed by focusing the laser beam into the fiber using a lens. What
is the optimized choice for the value of the focal length of the lens f?

7. Consider the cavity seen in Fig. 4.3, which is made of two flat mirrors and
two lenses both having focal distance f . The distance between the left
(right) mirror and the the left (right) lens is z1, and the distance between
the lenses is 2z2. All elements share the same optical axis. Under what
condition the cavity is stable?

8. An optical cavity of length d is formed between two concave mirrors
facing each other (both mirrors are centered with respect to the optical
axis of the cavity, and both are normal to the optical axis). The left
(right) mirror has a radius of curvature R1 (R2). Find the location and
spot size of the waist of a gaussian mode trapped inside the cavity.

9. A gaussian beam illuminates a thin lens having focal length f . Find a
relation between the radius of curvature R1 at the input of the lens, and
the output radius of curvature R2.

10. Find the radius of curvature R corresponding to a complex beam para-
meter q satisfying the relation

q =
Aq +B

Cq +D
, (4.120)

where A, B, C and D are all real.
11. Consider a gaussian beam in free space having wavelength λ. A lens

having focal distance f is positioned at the location of the waist of the
beam, which has a spot size w0. Calculate the spot size wf of the new
waist that is generated by the focusing effect of the lens and the distance
df between it and the lens.

12. A Gaussian beam having angular frequency ω propagates in vacuum
along the z axis. At some point along the axis the spot size is w1 and the
radius of curvature is R1. Express the spot size at the waist w0 (i.e. the
minimum value of w) as a function of w1 and R1.
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13. Calculate the modes’ frequencies of a single mode fiber ring having length
L, with an integrated lump FBG.

14. Photonic band gap - Calculate the effective refractive index nB for
longitudinal propagation along a Bragg grating.

15. The reflection amplitude rB of a FBG is expressed by Eq. Eq. (4.117) in
terms of the grating coupling strength parameter V . Calculate rB in the
limit V →∞ (assume that the ratio ∆/V remains finite).

16. Evaluate the fixed points of the Möbius transformation (4.32) and de-
termine their stability for the case where the ABCD matrix M can be
expressed as

M =

(
1 + αβ β

α 1

)
, (4.121)

where α and β are complex constants.
17. Gaussian pulse - Consider a Gaussian optical pulse having time-

dependent amplitude E (t) given by

E (t) = E0 exp
(
−γt2 + iωpt

)
, (4.122)

where E0 is a complex constant, γ = γ′ + iγ′′, γ′ = Re γ > 0 determines
the width of the pulse, γ′′ = Im γ represents a linear chirp and the real ωp
is the optical angular frequency. Consider two types of transformation.
For the first type, which henceforth is referred to as frequency-like, the
Fourier amplitude E (ω), which is related to E (t) by

E (ω) =
1√
2π

∫ ∞

−∞
dt E (t) e−iωt , (4.123)

is transformed according to

E (ω)→ E′ (ω) = exp

(

−(ω − ωp)
2

4γF

)

E (ω) , (4.124)

where γF is a complex constant. For the second type, which is referred
to as time-like, the time-domain pulse shape is transformed according to

E (t)→ E′ (t) = exp
(
−γTt

2
)
E (t) , (4.125)

where γT is a complex constant.

a) Show that both types can be described in terms of a Möbius trans-
formation mapping the Gaussian pulse variable γ.

b) Consider a Gaussian optical pulse circulating inside an optical sys-
tem. In each cycle the pulse first undergoes a time-like transforma-
tion with parameter γT, and then a frequency-like transformation
with parameter γF. Determine the value of the parameter γ is steady
state (i.e. after a large number of cycles).
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c) Mode locking - Assume that the optical system is a cavity formed
along the optical axis z between two mirrors. The mirror on the
left at z1 = −L is assumed to be stationary, whereas the mirror on
the right at z2 = lm sin (ωmt) is assumed to periodically oscillate
with a positive amplitude lm and a positive angular frequency ωm.
In addition, the cavity contains a section, which provides optical
gain. Assume that the effect of this section on a Gaussian optical
pulse passing through it can be described in terms of a frequency-
like transformation with a fixed positive variable γF [see Eq. (4.124)].
Calculate the pulse parameter γ in steady state in the limit of slowly
moving mirror, for which it is assumed that ω2m ≪ γF.

4.5 Solutions

1. The ABCD matrix is given by [see Eqs. (4.2), (4.3) and (4.10)]

(
A B
C D

)
=

(
1 s2
0 1

)(
1 0
− 1f 1

)(
1 s1
0 1

)

=

(
f−s2
f

s1f−s1s2+s2f
f

− 1f
−s1+f

f

)

.

(4.126)

Imaging occurs when B = 0 (explain why), i.e. when

1

s1
+

1

s2
=

1

f
. (4.127)

When B = 0 the matrix becomes
(
A B
C D

)
=

(
M 0
− 1f 1

M

)
, (4.128)

where

M = −s2
s1

(4.129)

is the magnification.
2. With the help of Eq. (4.10) one finds that

(
1 0
− 1
f1

1

)(
1 0
− 1
f2

1

)
=

(
1 0
− 1
fe

1

)
, (4.130)

where fe, which is given by

fe =
f1f2

f2 + f1
, (4.131)
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is the effective focal length of the two attached lenses. The imaging con-
dition (4.127), which reads

1

s1
+

1

s2
=

1

fe
, (4.132)

together with the relation s1 + s2 = s lead to

s1
s

=
1 +

√
1− 4fe

s

2
, (4.133)

s2
s

=
1−

√
1− 4fe

s

2
, (4.134)

and thus the magnification is given by [see Eq. (4.129)]

M = −s2
s1

= −
1−

√
1− 4fe

s

1 +
√
1− 4fe

s

. (4.135)

3. With the help of Eqs. (4.2), (4.3) and (4.10) one finds that:

a) For the case of focusing Rout and θout are given by

(
Rout
θout

)
=

(
1 f
0 1

)(
1 0
− 1f 1

)(
Rin
θin

)

=

(
fθin

−Rin+fθin
f

)
,

(4.136)

b) For the case of collimating Rout and θout are given by

(
Rout
θout

)
=

(
1 0
− 1f 1

)(
1 f
0 1

)(
Rin
θin

)

=

(
Rin + fθin
−Rin

f

)
,

(4.137)

c) For the case spot expansion the ABCD matrix is given by

(
A B
C D

)
=

(
1 0
− 1
f2

1

)(
1 d
0 1

)(
1 0
− 1
f1

1

)

=

(
−−f1+d

f1
d

−f1+d−f2
f2f1

−d−f2
f2

)

.

(4.138)

Eyal Buks Wave Phenomena - Lecture Notes 157



Chapter 4. Paraxial Approximation

Collimating occurs when C = 0, i.e. when

d = f1 + f2 . (4.139)

For this case Rout and θout are given by

(
Rout
θout

)
=

(
−f2
f1

f1 + f2

0 −f1
f2

)(
Rin
θin

)
=

(
−f2Rin

f1
+ θind

−f1
f2
θin

)

. (4.140)

4. For a ball of radius R and index of refraction nb on has [see Eqs. (4.3)
and (4.9)]

(
A B
C D

)

=

(
1 0

nb−1
(−R) nb

)(
1 2R
0 1

)(
1 0

1−nb
nbR

1
nb

)

=

(
−1 + 2

nb
2R
nb

2(1−nb)
nbR

−1 + 2
nb

)

,

(4.141)

or
(
A B
C D

)
=

(
1 R
0 1

)(
1 0
− 1
fb

1

)(
1 R
0 1

)
, (4.142)

where the focal distance fb is given by

fb =
nbR

2 (nb − 1)
. (4.143)

5. The ABCD matrix is given by [see Eqs. (4.2), (4.3), (4.6) and (4.50)]

(
A B
C D

)
=

(
1 s1
0 1

)(
1 0
0 n0

)

×
(

cos θg
1
g sin θg

−g sin θg cos θg

)

×
(
1 0
0 1
n0

)(
1 s2
0 1

)

= cos θg

(
1− n0gs1 tan θg

n0g(s1+s2)+(1−n20g2s1s2) tan θg
gn0

−n0g tan θg −n0gs2 tan θg + 1

)

.

(4.144)

where θg = gz and where [see Eq. (4.55)]
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g =
2π

p
. (4.145)

The displacement s2 is determined from the imaging condition

0 = B =
n0g (s1 + s2) +

(
1− n20g

2s1s2
)
tan θg

gn0
, (4.146)

or

0 =
2

1 + T 2
+

1

q1
+

1

q2
, (4.147)

where

qn = n0gTsn − 1 , (4.148)

T = tan
θg
2

, (4.149)

2

1 + T 2
= 1 + cos θg , (4.150)

and where n ∈ {1, 2}. When this condition is satisfied one has

(
A B
C D

)
=

(−1− 2q1
1+T2 0

−n0g sin θg −1− 2q2
1+T2

)
, (4.151)

or

(
A B
C D

)
=

(
1
M 0
− 1

fg
n0

M

)

, (4.152)

where the magnification M is given by

M = −q2
q1

. (4.153)

6. Coupling into the fiber is optimized by choosing a lens which focuses
the laser beam into a spot having characteristic mode radius as close as
possible to wF. The ABCD matrix associated with the inverse transfor-
mation from the fiber edge, which is taken to be the input plane, to the
plane beyond the lens, which is taken to be the output plane, is given by

(
A B
C D

)
=

(
1 0
− 1f 1

)(
1 f
0 1

)(
1 0
0 n

)

=

(
1 fn
− 1f 0

)
.

(4.154)
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Note that it is assumed that the lens is positioned at a distance f from
the fiber end, in order to obtain collimation. The input complex beam
parameter qin is given by [see Eq. (4.65)]

qin = −i
πw2Fn

λ
, (4.155)

and the output complex beam parameter qout is given by

qout = −i
πw2L
λ

. (4.156)

Using Eq. (4.66) one finds that

qout =
Aqi +B

Cqi +D
, (4.157)

thus

i
πw2L
λ

= f

(
ifλ

πw2F
+ 1

)
. (4.158)

The assumption that wF ≪
√
fλ implies that the real part of the above

equation is much smaller than the imaginary part. By neglecting the real
part one finds that

f =
πwLwF

λ
, (4.159)

or in terms of the diameters 2wL and 2wF

f =
π (2wL) (2wF)

4λ
. (4.160)

7. The ABCD matrix corresponding to a single trip from the left mirror to
the right one is given by [see Eqs. (4.3) and (4.10)]

M =

(
1 z1
0 1

)(
1 0
− 1f 1

)(
1 2z2
0 1

)(
1 0
− 1f 1

)(
1 z1
0 1

)
. (4.161)

The stability condition reads [see Eq. (4.25) and note that detM = 1]
∣∣∣∣
Tr (M)

2

∣∣∣∣ =
∣∣∣∣1 +

2z1z2
f

(
1

f
− z1 + z2

z1z2

)∣∣∣∣ ≤ 1 , (4.162)

and thus

f ≥ z1z2
z1 + z2

, (4.163)

or

1

f
≤ 1

z1
+

1

z2
. (4.164)
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8. Let z1 (z2 = z1 + d) be the location of the left (right) mirror along
the optical axis, and let z = 0 be the location of the waist. A gaussian
mode trapped inside the cavity has a fixed position-dependent radius of
curvature R (z). In general, in the paraxial approximation back reflection
by a concave mirror having radius of curvature R is described by an
ABCD matrix given by (recall that the focal length f of a spherical
mirror having radius R is f = R/2)

(
A B
C D

)
=

(
1 0
− 2R 1

)
, (4.165)

and thus the complex beam parameter q of a back-reflected gaussian
beam qout is related to the parameter q of an incident beam qin by [see
Eq. (4.66)]

1

qout
=

1

qin
− 2

R
. (4.166)

Recall that real (1/q) = 1/R (z) [see Eq. (4.65)], and thus for a cavity
mode having a fixed position-dependent radius of curvature R (z) the
following must hold

R (z1) = −R1 , (4.167)

R (z2) = R2 , (4.168)

where [see Eq. (4.78)]

R (z) = z

(

1 +
|q0|2
z2

)

, (4.169)

and

q0 = q (z = 0) =
n0k0w

2
0

2i
, (4.170)

where w0 is the spot size at the the location of the waist, i.e. at z = 0.
Equations (4.167) and (4.168) together with the requirement that z2 −
z1 = d can be expressed as

d− |q0|2 d
z20 − d2

4

= 2R0 , (4.171)

−z0 −
|q0|2 z0
z20 − d2

4

= Rm , (4.172)

where

R0 =
R1 +R2

2
, (4.173)

Rm =
R1 −R2

2
, (4.174)

z0 =
z1 + z2

2
, (4.175)
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and thus

z0 =
d

2

Rm
R0 − d

, (4.176)

and

|q0|2 =
(
d

2

)2(
1 +

Rm
z0

)(

1− R2m

(R0 − d)
2

)

, (4.177)

or in terms of R1 and R2

|q0|2 = d
(R1 − d) (R2 − d) (R1 +R2 − d)

(R1 +R2 − 2d)2
, (4.178)

z1 = − d (R2 − d)

R1 +R2 − 2d
, (4.179)

z2 =
d (R1 − d)

R1 +R2 − 2d
, (4.180)

and thus [see Eq. (4.170)]

w0 =

[
4d (R1 − d) (R2 − d) (R1 +R2 − d)

n20k
2
0 (R1 +R2 − 2d)2

]1/4
. (4.181)

9. The complex beam parameter at the output q2 is related to the input
parameter q1 by [see Eqs. (4.10) and (4.66)]

q2 =
q1

− q1
f + 1

, (4.182)

hence [see Eq. (4.65)]

1

R2
= − 1

f
+

1

R1
. (4.183)

10. The solutions of Eq. (4.120) are given by

1

q
=

D −A±
√
D2 − 2DA+A2 + 4CB

2B
. (4.184)

Note that only the solution with the plus sign yields a real waist width
w [see Eq. (4.65)]. With the help of Eq. (4.65) one finds that

R =
2B

D −A
. (4.185)

11. The ABCD matrix corresponding to the transformation from the location
of the lens to the new waist is given by [see Eqs. (4.3) and (4.10)]
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(
A B
C D

)
=

(
1 df
0 1

)(
1 0
− 1f 1

)
=

(
1− df

f df
− 1f 1

)

. (4.186)

The following holds [see Eq. (4.66)]

q (df) =
Aq0 +B

Cq0 +D
, (4.187)

where [see Eqs. (4.65), (4.78) and (4.79) and recall that k0 = 2π/λ]

1

q0
=

iλ

πw20
, (4.188)

1

q (df)
=

iλ

πw2f
, (4.189)

and thus Eq. (4.187) becomes

1
2ic
ωw2

f

=
− 1f

(
1− df

f

)
+ df

(
λ

πw2
0

)2
− iλ

πw2
0

1
f2 +

(
λ

πw20

)2 . (4.190)

The real part of Eq. (4.190) yields

df =
f

1 + η2
, (4.191)

and the imaginary part yields

w2f =
w20

1 + η−2
, (4.192)

where

η =
fλ

πw20
. (4.193)

12. The following holds [see Eqs. (4.78) and (4.79)]

R1 = z1

(

1 +
|q0|2
z21

)

, (4.194)

and

w21 = w20

(

1 +
z21

|q0|2

)

, (4.195)

where R = R1 and w = w1 at z = z1, the waste is at z = 0, q0 is given
by
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1

q0
=

2i

k0w20
, (4.196)

and k0 = ω/c. The solution for w0 is given by

w0 =
w1√

1 +
(
k0w2

1

2R1

)2 . (4.197)

13. The allowed values of the wave propagation coefficient k are found by
solving

det
(
M

B
− eikL × 1

)
= 0 , (4.198)

where the transfer matrix M
B
is given by Eq. (4.115), L is the length of

the ring, and 1 is the 2× 2 identity matrix. The following hold

detM =
1− |rB |2

|tB |2
= 1 , (4.199)

and therefore the eigenvalues λ± of MB are given by

λ± = τ ±
√

τ2 − 1 , (4.200)

where

τ =
TrMB

2
=

1

2

(
1

t
B

+
1

t∗
B

)
= Re

1

t
B

, (4.201)

hence λ+λ− = 1, and |λ±| = 1 provided that

|τ | ≤ 1 . (4.202)

In the region where |τ | ≤ 1, the eigenvalues can be expressed as λ± =
e±iθ, where the real angle θ is given by

θ = cos−1 τ . (4.203)

For the case of a fiber Bragg grating (FBG) [see Eqs. (4.116) and (4.201)]

τ = Re

(

cosh
√

V 2 −∆2 − i∆ sinh
√
V 2 −∆2√

V 2 −∆2

)

. (4.204)

In the region where V 2 − ∆2 ≤ 0 [recall that cosh (ix) = cosx and
sinh (ix) = i sinx]

τ = cos
√

∆2 − V 2 , (4.205)

hence [see Eq. (4.203)]

θ =
√

∆2 − V 2 . (4.206)
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14. The set of two coupled first order differential equations for the amplitudes
A± (4.104), which is given by (it is assumed that D is real)

d

dζ

(
A+
A−

)
=

(
iδ iD
−iD −iδ

)(
A+
A−

)
, (4.207)

can be used for deriving a set of two decoupled second order differential
equations. This can be done by substituting the transformation

(
A+
A−

)
=

( √
2
2 −

√
2
2√

2
2

√
2
2

)(
B+
B−

)
(4.208)

into Eq. (4.207), which yields

d

dζ

(
B+
B−

)
=M′

(
B+
B−

)
, (4.209)

where

M′ =

( √
2
2 −

√
2
2√

2
2

√
2
2

)−1(
iδ iD
−iD −iδ

)( √
2
2 −

√
2
2√

2
2

√
2
2

)

=

(
0 −i (δ −D)

−i (δ +D) 0

)
.

(4.210)

Alternatively, Eq. (4.209) can be rewritten as [see Eq. (4.95), recall that
ζ = πz/Λ and note that k0 = ω/c ≃ ωB/c near the Bragg frequency ωB]

d

dz

(
B+
B−

)
= −ik0neff

(
0 δ −D

δ +D 0

)(
B+
B−

)
. (4.211)

By applying the derivative d/dz to Eq. (4.211) one obtains

(
d2

dz2
+ k20n

2
B

)
B± = 0 , (4.212)

where the effective longitudinal refractive index nB is given by [see Eq.
(4.97) and compare with Eq. (3.3)]

n2B = n2eff

[(
ω − ωB

ωB

)2
−D2

]

. (4.213)

The region where nB becomes imaginary, i.e. when ((ω − ωB) /ωB)
2
<

D2, is commonly referred to as a photonic band gap.
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15. The FBG reflection amplitude rB is given by Eq. (4.117), which can be
expressed as

rB = R



V,

√

1−
(
∆

V

)2


 , (4.214)

where the function R (V,S) is given by

R (V, S) =
i

S coth (V S)− i
√
1− S2

, (4.215)

V is the grating coupling strength parameter [see Eq. (4.112)] and∆ is the
total detuning factor [see Eq. (4.114)]. The reflectivity of an FBG having
a relatively large number of periods can be approximated by taking the
limit V →∞ while assuming that the ratio ∆/V remains finite. For the

case where |S| =
√
1− (∆/V )2 ≤ 1, i.e. within the photonic band gap

of the FBG, one has

lim
V→∞

R (V, S) = f (S) , (4.216)

where the function f (S) can be expressed using several different forms

f (S) =
1

−
√
1− S2 − iS

= −
√

1− S2 + iS

=
1 +

(√
1−S2+1√
1−S2−1

)1/2

1−
(√

1−S2+1√
1−S2−1

)1/2

= − exp
(
i sin−1 (−S)

)

= − exp
(
−i cos−1

(√
1− S2

))
.

(4.217)

In this limit of large number of periods the FBG reflection amplitude rB
becomes [see Eqs. (4.112) and (4.114)]

rB = − exp

(
−i cos−1

δ

D

)
, (4.218)

where δ = − (ω − ωB) /ωB is the normalized FBG frequency detun-
ing [see Eq. (4.97)] and where D is the FBG dimensionless modulation
strength [see Eq. (4.94)]. Note that, alternatively, in terms of the FBG
effective impedance ΓFBG, which is given by
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ΓFBG = −
√

δ −D
δ +D , (4.219)

the FBG reflection amplitude rB within the photonic band gap can be
expressed as

rB =
ΓFBG − 1

ΓFBG + 1
. (4.220)

16. The fixed points of a general Möbius transformation (4.32), i.e. the solu-
tions of

z =
Az +B

Cz +D
, (4.221)

which are given by

z± =
TM ±

√
T 2M −DM −D

C
, (4.222)

where

TM =
A+D

2
, (4.223)

DM = AD −BC , (4.224)

can be expressed in terms of the eigenvalues λ± of the matrix

M =

(
A B
C D

)
, (4.225)

which are given by

λ± = TM ±
√

T 2M −DM , (4.226)

as

z± =
λ± −D

C
. (4.227)

Moreover, the following holds

fA,B,C,D (z± + z1) = z± +
DMz1

λ2±
+O

(
z21
)
. (4.228)

For the case where M is given by Eq. (4.121) DM = 1 and the eigenvalues
λ± are given by

λ± = Λ±

(
1 +

αβ

2

)
, (4.229)
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where

Λ± (x) = x±
√

x2 − 1 . (4.230)

Note that the following holds

Λ±

(
1 +

αβ

2

)
= 1±

√
αβ +O (αβ) . (4.231)

The fixed point z± is stable provide that |λ±| > 1 [see Eq. (4.228)].
17. With the help of the identity (5.46) one finds that the Fourier transform

E (ω) of E (t) is given by

E (ω) =
1√
2π

∫ ∞

−∞
dt E (t) e−iωt =

E0√
2γ

e−
(ω−ωp)2

4γ . (4.232)

a) Consider a Möbius transformation mapping the Gaussian pulse vari-
able γ from an initial value γin to a final value γout according to

γ−1out =
Aγ−1in +B

Cγ−1in +D
, (4.233)

where the parameters A, B, C and D are all constants. For the
frequency-like transformation (for which γ−1out = γ−1in + γ−1F ) the pa-
rameters A, B, C and D are given by [see Eqs. (4.124) and (4.232)]

MF =

(
A B
C D

)
=

(
1 γ−1F
0 1

)
, (4.234)

and for the time-like transformation (for which γout = γin + γT) the
parameters A, B, C and D are given by [see Eq. (4.125)]

MT =

(
A B
C D

)
=

(
1 0
γT 1

)
. (4.235)

b) The matrix corresponding to a concatenating of a frequency-like MF

(4.124) and a time-like MT (4.125) transformations is given by [see
Eq. (4.33)]

M0 = MFMT =

(
1 + γTγ

−1
F γ−1F

γT 1

)
. (4.236)

Note that detM0 = 1 since detMF = detMT = 1. The fixed points
are given by [see Eq. (4.227)]

γ−1± =
λ± − 1

γT
, (4.237)

where the eigenvalues λ± are given by [see Eq. (4.229)]
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λ± = 1 +
γTγ

−1
F

2
±

√(
1 +

γTγ
−1
F

2

)2
− 1

= 1±
√

γTγ
−1
F +O

(
γTγ

−1
F

)
.

(4.238)
The fixed point γ± is stable provide that |λ±| > 1 [see Eq. (4.228)].

c) The effect of the oscillating mirror on the pulse is described by the
transformation [see Eq. (4.122)]

E (t)→ E′ (t) = tm (t)E (t) , (4.239)

where the phase factor tm (t) is given by

tm (t) = exp

(
−2iωplm sin (ωm (t− t0))

c

)

= exp
(
iϑFm + iΩTmt− γTmt

2
)
+O

(
(ωmt)

3
)

,

(4.240)
t0 is the time at which the peak of the pulse hits the mirror, the
phase shift ϑFm is given by

ϑFm =
2ωplm sin (ωmt0)

c
, (4.241)

the Doppler frequency shift ΩTm is given by

ΩTm = −2ωmωplm cos (ωmt0)

c
, (4.242)

and the term −γTmt
2 gives rise to a linear frequency chirp to the

pulse, where the purely imaginary coefficient γTm is given by

γTm =
iω2mωplm sin (ωmt0)

c
. (4.243)

Fixed points occur when ΩTm vanishes, i.e. |sin (ωmt0)| = 1, and thus
to lowest nonvanishing order in ωm the stable fixed value of the pulse
parameter γ is given by [see Eq. (4.237)]

γ =

√
iω2mγFωplm

c
. (4.244)

This value corresponds to pulses hitting the mirror when the mirror
velocity in the inwards direction peaks.
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Consider the case where sources located in the left half space z < 0 generate
a monochromatic electromagnetic field at angular frequency ω. The right half
space z > 0 is assumed to be a vacuum free of any matter and sources. The
theory of scalar diffraction allows evaluating the electromagnetic field in the
right half space z > 0 in terms of the field in the plane z = 0.

5.1 Angular Spectrum

In the right half space z > 0 all components of the electric and magnetic
fields satisfy the Helmholtz equation (2.151), which is given by

(
∇
2 + k2

)
u = 0 , (5.1)

where

k =
ω

c
. (5.2)

For any value of z the function u (x, y, z) can be Fourier expanded in
the lateral xy plane. The two-dimensional Fourier transformed function
u (kx, ky, z) is given by

u (kx, ky, z) = F (u (x, y, z)) , (5.3)

where

F (u (x, y, z)) =
1

2π

∞∫

−∞

∞∫

−∞

dxdy u (x, y, z) e−i(kxx+kyy) . (5.4)

Claim. The inverse Fourier transform is given by

F−1 (u (kx, ky, z)) =
1

2π

∞∫

−∞

∞∫

−∞

dkxdky u (kx, ky, z) e
i(kxx+kyy) . (5.5)
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Proof. With the help of the identity

∞∫

−∞

dκ eiκs = 2πδ (s) , (5.6)

one obtains [see Eqs. (5.4) and (5.5)]

F−1 (F (u (x′, y′, z)))

=
1

4π2

∞∫

−∞

dx

∞∫

−∞

dy u (x, y, z)

∞∫

−∞

dkx eikx(x
′−x)

∞∫

−∞

dky eiky(y
′−y)

= u (x′, y′, z) .

(5.7)

The two-dimensional Fourier transformed function in the plane z = 0 is
denoted by

U (kx, ky) = u (kx, ky, z = 0) , (5.8)

where [see Eq. (5.4)]

U (kx, ky) =
1

2π

∞∫

−∞

∞∫

−∞

dxdy u (x, y, 0) e−i(kxx+kyy) . (5.9)

Claim. The following holds

u (kx, ky, z) = U (kx, ky) e
ikzz , (5.10)

where

kz =
√

k2 − k2x − k2y . (5.11)

Proof. By substituting u (x, y, z) = F−1 (u (kx, ky, z)) [see Eq. (5.5)] into the
Helmholtz equation (5.1) one obtains

1

2π

∞∫

−∞

∞∫

−∞

dkxdky ei(kxx+kyy)
(
k2z +

∂2

∂z2

)
u (kx, ky, z) = 0 , (5.12)

and thus
(
k2z +

∂2

∂z2

)
u (kx, ky, z) = 0 . (5.13)

The solution of (5.13) leads to Eq. (5.10).
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Note that when k2x + k2y < k2 the term eikzz represents a plane wave,
whereas when k2x+k2y > k2 it represents an evanescent wave. Thus Eq. (5.10)
implies that Fourier components in the plane z = 0 having high spacial
frequency, for which k2x + k2y > k2, do no reach the far field (i.e. values of
z much larger than a single wavelength) since they exponentially decay as a
function of z.

The expression given by Eq. (5.3) allows expressing U (kx, ky) in terms
of u in the plane z = 0. As is shown below, U (kx, ky) can alternatively be
expressed in terms of the normal derivative ∂u/∂z in the plane z = 0.

Claim. The following holds

U (kx, ky) =
1

2πikz

∞∫

−∞

∞∫

−∞

dxdy
∂u

∂z

∣∣∣∣
z=0

e−i(kxx+kyy) . (5.14)

Proof. The following holds [see Eqs. (5.5) and (5.10)]

u (x, y, z) =
1

2π

∞∫

−∞

∞∫

−∞

dkxdky U (kx, ky) e
ik·r , (5.15)

where r = (x, y, z), k = (kx, ky, kz), and kz is given by Eq. (5.11). Taking the
derivative with respect to z and setting z = 0 lead to

∂u

∂z

∣∣∣∣
z=0

=
1

2π

∞∫

−∞

∞∫

−∞

dkxdky ikzU (kx, ky) e
i(kxx+kyy) . (5.16)

The expression given by Eq. (5.14) is obtained by applying the two-dimensional

Fourier transform (5.4), i.e. by multiplying by e−i(k
′
xx+k

′
yy), integrating over

x and y and employing the identity (5.6).

The above results can be employed in order to express u in terms of either
its value in the plane z = 0 or in terms of its normal derivative in the plane
z = 0 [see Eqs. (5.18) and (5.19) below, respectively]

Claim. The following holds

u (r′) = u1 (r
′) = u2 (r

′) , (5.17)

where

u1 (r
′) = 2

∞∫

−∞

dx′′
∞∫

−∞

dy′′ u (r′′)
∂g (r′ − r′′)

∂z′′
, (5.18)

Eyal Buks Wave Phenomena - Lecture Notes 173



Chapter 5. Scalar Diffraction Theory

u2 (r
′) = −2

∞∫

−∞

dx′′
∞∫

−∞

dy′′
∂u (r′′)

∂z′′
g (r′ − r′′) , (5.19)

where r′ = (x′, y′, z′), r′′ = (x′′, y′′, z′′), in both Eqs. (5.18) and (5.19) the
integrals are evaluated in the plane z′′ = 0, the function g is given by

g (r) =
i

8π2

∞∫

−∞

dkx

∞∫

−∞

dky
eik·r

kz
, (5.20)

and kz is given by Eq. (5.11).

Proof. With the help of Eqs. (5.9) and (5.15) one finds that

u (r′) =
1

4π2

∞∫

−∞

dx′′
∞∫

−∞

dy′′
∞∫

−∞

dkx

∞∫

−∞

dky u (x′′, y′′, 0) eik·r
′−i(kxx′′+kyy′′)

=
1

4π2

∞∫

−∞

dx′′
∞∫

−∞

dy′′ u (r′′)

∞∫

−∞

dkx

∞∫

−∞

dkye
ik·(r′−r′′)

= 2

∞∫

−∞

dx′′
∞∫

−∞

dy′′ u (r′′)× ∂g (r′ − r′′)

∂z′′
.

(5.21)

Similarly, Eqs. (5.14) and (5.15) yield

u (r′) =
1

4π2

∞∫

−∞

dx′′
∞∫

−∞

dy′′
∂u

∂z′′

∣∣∣∣
z′′=0

∞∫

−∞

dkx

∞∫

−∞

dky
eik·r

′−i(kxx′′+kyy′′)

ikz

= −2
∞∫

−∞

dx′′
∞∫

−∞

dy′′
∂u

∂z′′

∣∣∣∣
z′′=0

g (r′ − r′′) .

(5.22)

The expression for u1 (r
′) (5.18) and u2 (r

′) (5.19) can be further simpli-
fied with the help of the so-called Weyl’s plane waves expansion of a scalar
spherical wave [see Eq. (5.34) below]

Claim. For z ≥ 0 the function g (r) [see Eq. (5.20)] can be expressed as

g (r) = uS (r) , (5.23)

where the scalar spherical wave uS (r) is defined by

uS (r) = −
eikr

4πr
, (5.24)

k is given by Eq. (5.2) and r =
√

x2 + y2 + z2.
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Proof. The two-dimensional Fourier transform of uS (r) in the plane z = 0,
which is denoted by US (kx, ky), is given by [see Eq. (5.9)]

US (kx, ky) =
1

2π

∞∫

−∞

∞∫

−∞

dxdy uS (x, y, 0) e
−i(kxx+kyy)

= − 1

8π2

∞∫

−∞

∞∫

−∞

dxdy
eik
√
x2+y2

√
x2 + y2

e−i(kxx+kyy) .

(5.25)

The coordinate transformation

x = ρ cos θ , (5.26)

y = ρ sin θ , (5.27)

kx = κ cosϕ , (5.28)

ky = κ sinϕ , (5.29)

together with the identity

1

2π

π∫

−π

dθe−iA cos θ = J0 (A) , (5.30)

where J0 is the Bessel function of the first kind, yield

US (kx, ky) = −
1

8π2

π∫

−π

dθ

∞∫

0

dρ ρ
eikρ

ρ
e−iκρ cos(ϕ−θ)

= − 1

4π

∞∫

0

dρ eikρJ0 (κρ) .

(5.31)

The identity

∞∫

0

dρ eikρJ0 (κρ) =
1

i
√
k2 − κ2

, (5.32)

leads to

US (kx, ky) = −
1

4πikz
, (5.33)

where kz is given by Eq. (5.11). The above result together with Eqs. (5.5)
and (5.10) lead to the Weyl’s expansion
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eikr

r
=

1

2πi

∞∫

−∞

∞∫

−∞

dkxdky
eik·r

kz
, (5.34)

and hence Eq. (5.23) holds [see Eq. (5.20)].

5.2 Rayleigh-Sommerfeld, Kirchhoff, Fresnel and

Fraunhofer Diffraction Integrals

Combining Eqs. (5.18) and (5.23) leads to the so-called Rayleigh-Sommerfeld
first diffraction integral

u1 (r
′) = − 1

2π

∞∫

−∞

dx′′
∞∫

−∞

dy′′ u (r′′)
∂

∂z′′

(
eikr

r

)
, (5.35)

whereas the so-called second Rayleigh-Sommerfeld diffraction integral is ob-
tained by combining Eqs. (5.19) and (5.23)

u2 (r
′) =

1

2π

∞∫

−∞

dx′′
∞∫

−∞

dy′′
∂u (r′′)

∂z′′
eikr

r
, (5.36)

where

r = |r′ − r′′| . (5.37)

The Kirchhoff diffraction integral uK (r′) is defined by [see Eqs. (5.18) and
(5.19) and compare with Eq. (5.85) below]

uK (r′) =
u1 (r′) + u2 (r′)

2

=

∞∫

−∞

dx′′
∞∫

−∞

dy′′
(
u (r′′)

∂g (r′ − r′′)

∂z′′
− ∂u (r′′)

∂z′′
g (r′ − r′′)

)
.

(5.38)

5.2.1 The Limit of Geometrical Optics

Consider in general an integral I, which is given by

I =

∫ ∞

−∞
dx h (x) eikf(x) , (5.39)

where the functions h (x) and f (x) and the coefficient k are all real. Let
Id (x0, δ) be the contribution to I from the interval [x0 − δ, x0 + δ], i.e.
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Id (x0, δ) =

∫ x0+δ

x0−δ
dx h (x) eikf(x) . (5.40)

For sufficiently small δ the following approximations are expected to hold
inside the interval [x0 − δ, x0 + δ]

h (x) ≃ h (x0) , (5.41)

f (x) ≃ f (x0) + (x− x0) f
′ (x0) , (5.42)

and thus

Id (x0, δ) ≃ 2h (x0) e
ikf(x0)

sin (δkf ′ (x0))

kf ′ (x0)
. (5.43)

The above result (5.43) indicates that in the limit of geometrical optics, i.e.
when k is large, the main contribution to the integral I comes from regions
near points at which the phase factor kf (x) in Eq. (5.39) is locally stationary,
i.e. points xs such that f ′ (xs) = 0.

Exercise 5.2.1. Calculate I in the limit k →∞ for the case where f (x) has
a single stationary point.

Solution 5.2.1. By employing the Taylor expansion near the stationary
point xs

f (x) = f (xs) +
(x− xs)

2

2
f ′′ (xs) + · · · , (5.44)

where prime denotes a derivative with respect to x, and the variable trans-
formation s = x− xs, one obtains in the limit k →∞

I ≃ eikf(xs)h (xs)

∫ ∞

−∞
ds eik

s2

2 f
′′(xs) . (5.45)

With the help of the identity

∞∫

−∞

dx exp
(
−ax2 + bx+ c

)
=

√
π

a
e
1
4
4ca+b2

a , (5.46)

this becomes

I ≃ h (xs)

√
2πi

kf ′′ (xs)
eikf(xs) . (5.47)

The above result (5.47) is know as the stationary phase approximation. The
characteristic width ∆x of the interval around the stationary point xs that
is responsible for the dominant contribution to the value of the integral I is
given by

∆x =
1

√
kf ′′ (xs)

. (5.48)
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Exercise 5.2.2. Calculate the Rayleigh-Sommerfeld first diffraction integral
(5.35) in the limit k →∞.

Solution 5.2.2. With the help of Eqs. (5.35) and (5.53) one obtains

u1 (r
′) =

1

2π

∞∫

−∞

dx′′
∞∫

−∞

dy′′ u (r′′)

(
eikr (ikr − 1) z′

r3

)
, (5.49)

where

r = z′

√

1 +
(x′ − x′′)2 + (y′ − y′′)2

z′2
, (5.50)

thus in the limit k →∞ [see Eq. (5.47)]

u1 (r
′) = u (x′, y′, 0) eikz

′
. (5.51)

The above represents the limit of geometrical optics.

5.3 The Fresnel and Fraunhofer Diffraction Integrals

The Rayleigh-Sommerfeld and Kirchhoff diffraction integrals [see Eqs. (5.35),
(5.36) and (5.38)] can be further simplified by applying approximations. The
factor multiplying u (r′′) in Rayleigh-Sommerfeld first diffraction integral
(5.35) is given by

∂

∂z′′

(
eikr

r

)
=

eikr (ikr − 1)

r2
∂r

∂z′′
, (5.52)

thus for z′′ = 0 [see Eq. (5.37)]

∂

∂z′′

(
eikr

r

)
= −eikr (ikr − 1) z′

r3
, (5.53)

where

r = z′

√

1 +
(x′ − x′′)2 + (y′ − y′′)2

z′2
. (5.54)

The so-called Fresnel diffraction integral [see Eq. (5.56) below] is obtained
by assuming (a) the far field limit, i.e. kr ≫ 1, and the paraxial case, for which
it is assumed that r ≃ z′, i.e.

(x′ − x′′)2 + (y′ − y′′)2

z′2
≪ 1 . (5.55)
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These assumptions together with Eqs. (5.35) and (5.53) lead to the Fresnel
diffraction integral

u1 (r
′) =

ikeikz
′

2πz′

∞∫

−∞

dx′′
∞∫

−∞

dy′′ u (r′′) eik
(x′−x′′)2+(y′−y′′)2

2z′ . (5.56)

Exercise 5.3.1. Consider the case where the scalar u (r′′) in the plane z′′ =
0+ is taken to be given by

u
(
x′′, y′′, z′′ = 0+

)
= uinc (x

′′, y′′) t (x′′, y′′) , (5.57)

where for normal incident uinc (x
′′, y′′) is assumed to be a positive constant

denoted by u0 and the aperture transmission t (x′′, y′′) is given by

t (x′′, y′′) =

{
1 x′′ < 0
0 x′′ ≥ 0

. (5.58)

Employ the Fresnel diffraction integral (5.56) in order to roughly estimate
what region in the half space z′ > 0 remains dark (i.e. the region where
|u1 (r′)| ≪ u0).

Solution 5.3.1. In general, the Fresnel diffraction integral (5.56) together
with Eq. (5.48) imply that the value of u1 (r

′) is determined by a region in
the plane z′′ = 0 centered at (x′′, y′′) = (x′, y′) and having characteristic
widths in the x and y directions roughly given by ∆x′′ = ∆y′′ =

√
z′/k.

For the current case under consideration u (x′′, y′′, z′′ = 0+) vanishes when
x′′ ≥ 0, and consequently it is expected that |u1 (r′)| ≪ u0 provided that
x′′ � ∆x′′ =

√
z′/k.

Fraunhofer diffraction integral [see Eq. (5.60) below] is derived from the
additional assumption that

k
(
x′′2 + y′′2

)

2z′
≪ 1 . (5.59)

In this limit Eq. (5.56) leads to the Fraunhofer diffraction integral

u1 (r
′) =

ikΦ

2πz′

∞∫

−∞

dx′′
∞∫

−∞

dy′′ u (r′′) e−i(κxx
′′+κyy

′′) , (5.60)

where

Φ = e
ik
(
z′+x′2+y′2

2z′

)

, (5.61)

and where

κx =
kx′

z′
, κy =

ky′

z′
. (5.62)

As can be seen from the comparison between Eqs. (5.4) and (5.60), the Fraun-
hofer diffraction integral is proportional to the two-dimensional Fourier trans-
form of u (r′′).
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5.4 Imaging

Consider a lens having transmission tL (x, y), which is taken to be given by

tL (x, y) = e−
ik(x2+y2)

2f PL (x, y) , (5.63)

where f is the focal length of the lens. The so-called pupil function PL (x, y),
which for the present case is taken to be given by

PL (x, y) =

{
1 |x| ≤ AL and |y| ≤ AL
0 otherwise

, (5.64)

accounts for the finite size of the lens. The lens is placed in the plane z = 0.
An aperture having transmission tA (x, y), which is taken to be given by

tA (x′′, y′′) = δ (x′′ − x0) δ (y
′′ − y0) , (5.65)

is placed in the object plane z = −s1. The image plane is taken to be z = s2
on the other side of the lens. The aperture is illuminated by a plane wave
having a constant amplitude in the plane z = −s−1 , which is denoted by u0.

Exercise 5.4.1. Calculate the scalar u1 (x
′′′, y′′′, s2) in the object plane us-

ing the Fresnel diffraction integral.

Solution 5.4.1. Using the Fresnel diffraction integral (5.56) one obtains
for a general pupil function PL (x, y) and a general aperture transmission
tA (x′′, y′′)

u1 (x
′′′, y′′′, s2) = −

k2eik(s1+s2)u0
4π2s1s2

×
∞∫

−∞

dx′
∞∫

−∞

dy′
∞∫

−∞

dx′′
∞∫

−∞

dy′′ PL (x
′, y′) tA (x′′, y′′) e

ikΦ
2 ,

(5.66)

where

Φ =
(x′ − x′′)2 + (y′ − y′′)2

s1
+

(x′′′ − x′)2 + (y′′′ − y′)2

s2
− x′2 + y′2

f

=
(
x′2 + y′2

)( 1

s1
+

1

s2
− 1

f

)

+
x′′2 + y′′2

s1
+

x′′′2 + y′′′2

s2
− 2x′

(
x′′

s1
+

x′′′

s2

)
− 2y′

(
y′′

s1
+

y′′′

s2

)
.

(5.67)

When PL (x, y) is given by Eq. (5.64) and tA (x′′, y′′) by Eq. (5.65) this be-
comes
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u1 (x
′′′, y′′′, s2) = −

k2eik(s1+s2)u0
4π2s1s2

AL∫

−AL

dx′
AL∫

−AL

dy′ e
ikΦ
2 , (5.68)

where

Φ =
(
x′2 + y′2

)( 1

s1
+

1

s2
− 1

f

)

+
x20 + y20

s1
+

x′′′2 + y′′′2

s2
− 2x′ (x′′′ −Mx0)

s2
− 2y′ (y′′′ −My0)

s2
,

(5.69)

and where M , which is given by

M = −s2
s1

, (5.70)

is the magnification [compare with Eq. (4.129)].

When the imaging condition, which is given by [compare with Eq. (4.127)]

1

s1
+

1

s2
=

1

f
, (5.71)

is satisfied the scalar u1 (x
′′′, y′′′, s2) in the object plane is found to be given

by

u1 (x
′′′, y′′′, s2)

= −k2eik(s1+s2)e
ik

(
x20+y

2
0

2s1
+x′′′2+y′′′2

2s2

)

u0
4π2s1s2

×
AL∫

−AL

dx′ e−i
k(x′′′−Mx0)x′

s2

AL∫

−AL

dy′ e−i
k(y′′′−My0)y′

s2

= −k2A2Le
ik(s1+s2)e

ik

(
x20+y

2
0

2s1
+x′′′2+y′′′2

2s2

)

u0
π2s1s2

× sinc
k (x′′′ −Mx0)AL

s2
sinc

k (y′′′ −My0)AL
s2

,

(5.72)

where

sinc q =
sin q

q
. (5.73)

As can be seen from Eq. (5.6), the following holds
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2πδ (K) = lim
A→∞

A∫

−A

dX ′ eiKX
′
= 2 lim

A→∞
A sinc (KA) , (5.74)

thus in the limit where

kx′′′AL
s2

≫ 1 , (5.75)

ky′′′AL
s2

≫ 1 , (5.76)

u1 (x
′′′, y′′′, s2) becomes

u1 (x
′′′, y′′′, s2)

= −k2eik(s1+s2)e
ik

(
x20+y

2
0

2s1
+x′′′2+y′′′2

2s2

)

u0
s1s2

×δ

(
k (x′′′ −Mx0)AL

s2

)
δ

(
k (y′′′ −My0)AL

s2

)
,

(5.77)

or

u1 (x
′′′, y′′′, s2) =

Meik(s1+s2)e
ik

(
x20+y

2
0

2s1
+x′′′2+y′′′2

2s2

)

u0
A2L

×δ (x′′′ −Mx0) δ (y
′′′ −My0) .

(5.78)

Exercise 5.4.2. Calculate u1 (x′′′, y′′′, s2) for the case of a general aperture
transmission tA (x′′, y′′) that is attached directly to the lens, i.e. s1 → 0, and
for the case where the image is generated in the focal plane of the lens, i.e.
s2 = f .

Solution 5.4.2. With the help of Eq. (5.66) one obtains

u1 (x
′′′, y′′′, s2) = −

k2eik(s1+s2)eik
x′′′2+y′′′2

2f u0
4π2s2

AL∫

−AL

dx′
AL∫

−AL

dy′e
−ik

(
x′′′x′+y′′′y′

f

)

× lim
s1→0

1

s1

∞∫

−∞

dx′′
∞∫

−∞

dy′′ tA (x′′, y′′) eik
(x′−x′′)2+(y′−y′′)2

2s1 ,

(5.79)

thus [see Eq. (5.47)]

u1 (x
′′′, y′′′, s2) = −

ikeik(s1+s2)eik
x′′′2+y′′′2

2f u0
s2

tA

(
kx′′′

f
,
ky′′′

f
;AL

)
. (5.80)
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where

tA (kx, ky;AL) =
1

2π

AL∫

−AL

dx′
AL∫

−AL

dy′ tA (x′, y′) e−i(kxx
′+kyy

′) . (5.81)

Note that in the limit where AL →∞ the term tA (kx, ky;AL) (5.81) becomes
the two-dimensional Fourier transform of the aperture transmission tA (x′, y′)
[see Eq. (5.4)].

5.5 Problems

1. Green’s theorem - Show that
∫

V

(
u∇2g − g∇2u

)
dv =

∫

S

(
u
∂g

∂n
− g

∂u

∂n

)
ds , (5.82)

where S is the boundary of the volume V , both u (r) and g (r) are smooth
functions from R3 to C and ∂/∂n denotes a partial derivative in the
outward normal direction on the boundary S, i.e.

∂ψ

∂n
= n̂ ·∇u , (5.83)

where n̂ is a unit vector normal to the boundary S.
2. Show that

(
∇
2 + k2

)
g (r) = δ (r) , (5.84)

where g (r) is given by Eq. (5.20).
3. Kirchhoff diffraction integral - Let u (r) be a solution of the Helmholtz

equation (5.1) in a volume V , which is bounded by the surface S. Show
that

u (r) =
1

4π

∫

S

(
∂u

∂n

eikr

r
− u

∂

∂n

(
eikr

r

))
ds , (5.85)

where ∂/∂n denotes a partial derivative in the outward normal direction,
r = |r− r′| and r′ denotes points on the surface S.

4. Consider a circular aperture of radius a normally illuminated by an inci-
dent monochromatic plane wave. Calculate the Fresnel (5.56) and Fraun-
hofer (5.60) diffraction integrals.

5. Calculate the Fresnel (5.56) and Fraunhofer (5.60) diffraction integrals
for the case of normal incident and a rectangular aperture of sides 2a and
2b in the x and y directions, respectively.
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Fig. 5.1. Honeycomb array of holes.

6. Talbot images - Calculate the Fresnel diffraction integral (5.56) for the
case where the input field is taken to be given by u (x′′, y′′, z′′ = 0+) =
u0t (x′′, y′′), where u0 is a constant and the aperture transmission t (x′′, y′′)
is given by

t (x′′, y′′) =
1 + η cos 2πx

′′

a

2
, (5.86)

where both η and a are positive constants.
7. Consider the aperture seen in Fig. 5.1, which contains a honeycomb array

of transparent circular holes of radius R. Outside the holes the aperture
is opaque. The edge length of the hexagons is L (see Fig. 5.1). The aper-
ture is positioned in the plane z = 0, and is normally illuminated by
an incident monochromatic plane wave of wavelength λ and amplitude
u0. Assume that the total size of the aperture is much larger than L,
and that L is much larger than the radius of the holes R. Employ the
Fraunhofer diffraction integral to calculate the intensity I (x′, y′, z0) on
a screen positioned in the z = z0 > 0 plane.

8. Fresnel zone plate - Consider an aperture having a transmission func-
tion t (x′′, y′′) given by

t (x′′, y′′) = TF
(√

x′′2 + y′′2
)

, (5.87)

where the function TF is given by
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TF (r) =
1

2

[
1 + sgn

(
cos

(
γr2

))]
, (5.88)

the function sgn is the sign function, i.e.

sgn (θ) =

{
1 θ ≥ 0
−1 θ < 0

, (5.89)

and γ is a positive constant. The aperture is positioned in the plane
z = 0, and is normally illuminated by an incident monochromatic plane
wave of wavelength λ. Show that the aperture acts as a multi-focal lens.

a) Find the focal distance fm of the m’th focal point.
b) Let Pm is the optical power that is delivered to the m’th focal point

and let Pin be the optical power of the input plane wave. Calculate
the relative power Im = Pm/Pin that is delivered to the m’th focal
point.

9. Consider an isosceles triangle aperture normally illuminated by an in-
cident monochromatic plane wave. Calculate the Fraunhofer diffraction
integral (5.60). Assume that in the aperture plane the vertices of the tri-
angle are located at the points ā = L

(
1/2,

√
3/2

)
, b̄ = L

(
−1/2,

√
3/2

)

and (0, 0).
10. Calculate the diffraction efficiency into the first diffraction order for a

grating having transmission t (x′′, y′′)

a) given by

t (x′′, y′′) =

∣∣∣∣cos
πx′′

L

∣∣∣∣ , (5.90)

where L is a constant.
b) given by

t (x′′, y′′) = eiφ(x
′′) , (5.91)

where φ (x′′) is periodic φ (x′′ + L) = φ (x′′) and φ (x′′) = φ0x
′′/L

for L/2 ≤ x′′ < L/2, where both φ0 and L are constants.

11. Calculate the Fraunhofer diffraction integral (5.60) for the case of normal
incident and the rectangular aperture seen in Fig. 5.2, having inner a1
and outer a2 sides.

5.6 Solutions

1. The following holds [see Eq. (2.149)]

∇ · (g∇u) = g∇2u+∇u ·∇g , (5.92)

∇ · (u∇g) = u∇2g+∇u ·∇g , (5.93)
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Fig. 5.2. Rectangular frame aperture.

hence

u∇2g − g∇2u =∇ · (u∇g − g∇u) . (5.94)

The above result together with the divergence theorem (2.68) lead to
(5.82).

2. With the help of Eqs. (5.20) and (5.23) one finds that

g (r) = −eikr

4πr
, (5.95)

where r = |r|. The following holds

∇
2g =

1

r2
∂

∂r

(
r2

∂g

∂r

)
=

k2eikr

4πr
, (5.96)

and thus for r �= 0

(
∇
2 + k2

)
g (r) = 0 . (5.97)

Consider a sphere of radius r0 centered at the origin. The integral of∇2g
over the volume V of the sphere can be expressed using the divergence
theorem (2.68) in terms of an an integral over the surface of the sphere
S

∫

V

∇
2g dv =

∫

S

∇g · ds =
∫

S

eikr
1− ikr

4πr2
r̂ · ds . (5.98)

The volume integral over k2g is given by
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∫

V

k2g dv = −k2
∫ r0

0

dr r2
eikr

r
. (5.99)

Thus, in the limit r0 → 0

lim
r0→0

∫

V

(
∇
2 + k2

)
g dv = 1 , (5.100)

and hence Eq. (5.84) holds.
3. By employing the Green’s theorem (5.82) with the functions u (r) and

g (r− r′), which is given by Eq. (5.20), and by making use of Eqs. (5.1)
and (5.84) one obtains

∫

S

(
u
∂g

∂n
− g

∂u

∂n

)
ds =

∫

V

(
u∇2g − g∇2u

)
dv

=

∫

V

(
u
(
∇
2 + k2

)
g − g

(
∇
2 + k2

)
u
)
dv

= u (r) .

(5.101)

The above result and the relation (5.23) lead to Eq. (5.85).
4. The scalar u (r′′) in the plane z′′ = 0+ is taken to be given by

u
(
x′′, y′′, z′′ = 0+

)
= uinc (x

′′, y′′) t (x′′, y′′) , (5.102)

where for normal incident uinc (x′′, y′′) is a constant denoted by u0 and
the aperture transmission is given by

t (x′′, y′′) =

{
1 ρ′′ ≤ a
0 ρ′′ > a

, (5.103)

and

ρ′′ =
√

x′′2 + y′′2 . (5.104)

In cylindrical coordinates

x′′ = ρ′′ cos θ′′ , (5.105)

y′′ = ρ′′ sin θ′′ , (5.106)

x′ = ρ′ cos θ′ , (5.107)

y′ = ρ′ sin θ′ , (5.108)

the Fresnel diffraction integral (5.56) becomes [see Eq. (5.30)]
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u1 (r
′) =

ikeikz
′
u0

2πz′

a∫

0

dρ′′ ρ′′
π∫

−π

dθ′′ eik
(ρ′ cos θ′−ρ′′ cos θ′′)2+(ρ′ sin θ′−ρ′′ sin θ′′)2

2z′

=
ikeikz

′
e
ikρ′2
2z′ u0

2πz′

a∫

0

dρ′′ ρ′′e
ikρ′′2
2z′

π∫

−π

dθ′′ e
−2ikρ′ρ′′ cos(θ′′−θ′)

2z′

=
ikeikz

′
e
ikρ′2
2z′ u0

z′

a∫

0

dρ′′ ρ′′e
ikρ′′2
2z′ J0

(
kρ′ρ′′

z′

)

=
ika2u0

z′
eikz

′
e
ikρ′2
2z′

1∫

0

ds se
ika2s2

2z′ J0

(
kaρ′s

z′

)
.

(5.109)

In the Fraunhofer (5.60) diffraction integral the terms eika
2s2/2z′ is dis-

regarded, and consequently u1 (r′) becomes

u1 (r
′) =

ika2u0
z′

eikz
′
e
ikρ′2
2z′

1∫

0

ds sJ0

(
kaρ′s

z′

)

=
iau0
ρ′

eikz
′
e
ikρ′2
2z′ J1

(
kaρ′

z′

)
.

(5.110)

5. The Fresnel diffraction integral (5.56) is given for the present case by

u1 (r
′) =

ikeikz
′
u0

2πz′

a∫

−a

dx′′ e
ik(x′−x′′)2

2z′

b∫

−b

dy′′ e
ik(y′−y′′)2

2z′

=
ieikz

′
u0

2π

α+∫

α−

dX e
iπX2

2

β+∫

β−

dX e
iπY 2

2

=
ieikz

′
u0

2π
[F ∗ (α+)− F ∗ (α−)]

[
F ∗

(
β+
)
− F ∗

(
β−
)]

,

(5.111)

where the Fresnel function F (q) is given by

F (q) =

∫ q

0

ds e−
iπs2

2 , (5.112)

and where
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α± =

√
k

πz′
(±a− x′) , (5.113)

β± =

√
k

πz′
(±b− x′) . (5.114)

The Fraunhofer diffraction integral (5.60) is given for the present case by

u1 (r
′) =

iku0
2πz′

e
ik
(
z′+x′2+y′2

2z′

) a∫

−a

dx′′e−i
kx′
z′ x

′′
b∫

−b

dy′′ e−i
ky′
z′ y

′′

=
2iku0
πz′

e
ik
(
z′+x′2+y′2

2z′

)

ab sinc

(
kax′

z′

)
sinc

(
kby′

z′

)
.

(5.115)

6. With the help of Eqs. (5.56) and (5.46) one obtains

u1 (r
′) =

iku0e
ikz′

2πz′

∞∫

−∞

dx′′
1 + η e

i 2πx
′′

a +e−i
2πx′′
a

2

2
eik
(x′−x′′)2

2z′

×
∞∫

−∞

dy′′ eik
(y′−y′′)2

2z′

= −u0e
ikz′

2

(
1 + ηe−i

2π2z′
ka2 cos

2πx′

a

)
.

(5.116)

Consider the case where the distance z′ between the aperture and the
screen is chosen such that the condition

e−i
2π2z′
ka2 = 1 (5.117)

is satisfied. For this case one finds with the help of Eq. (5.116) that

|u1 (r′)|2 = |u0t (x′′, y′′)|2, i.e. an image of the grating is generated on
the screen for such values of z′.

7. It is convenient to introduce the so-called primitive vectors a1 and a2,
which are taken to be given by

a1 = L
√
3ŷ , (5.118)

a2 = L

(
3

2
x̂+

√
3

2
ŷ

)

, (5.119)

and the so-called basis vectors c1 and c2, which are given by

c1 = 0 , (5.120)

c2 = Lx̂ , (5.121)
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Fig. 5.3. The primitive vectors a1 and a2.

in order to specify the locations of the centers of the holes in the array,
which are given by

ρn1,n2,m = n1a1 + n2a2 + cm , (5.122)

where both n1 and n2 are integers, and where m = 1 (m = 2) for the
red-colored (blue-colored) holes seen in Fig. 5.3.In the limit R/L→ 0 the
holes are treated as point sources. The amplitude in the plane z = 0+ is
thus given by

u
(
x′′, y′′, z = 0+

)
= u0πR

2
∑

n1,n2

∑

m=1,2

δ
(
ρ′′ − ρn1,n2,m

)
, (5.123)

where ρ′′ = (x′′, y′′). In the Fraunhofer approximation (5.60) the inten-
sity on a screen is given by

I (x′, y′, z0) =

(
πR2

λz′

)2
|u0|2

∣∣∣∣A
(

x′

λz0
,
y′

λz0

)∣∣∣∣
2

, (5.124)

where

A (Kx,Ky) =
∑

n1,n2

∑

m=1,2

e−2πiK·ρn1,n2,m (5.125)

and where K = Kxx̂ + Kyŷ. Consider the so-called reciprocal lattice
vectors b1 and b2, which are given by

b1 =
a2 × ẑ

a1 · (a2 × ẑ)
=
−13 x̂+ 1√

3
ŷ

L
, (5.126)

b2 =
ẑ× a1

a1 · (a2 × ẑ)
=

2x̂

3L
, (5.127)
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and which satisfy the following relation

an · bm = δn,m , (5.128)

where n,m ∈ {1, 2}. By expanding an arbitrary vector K using the recip-
rocal lattice vectors b1 and b2 as

K = K1b1 +K2b2 , (5.129)

one obtains [see Eqs. (5.122), (5.125) and (5.128)]

A (Kx,Ky) =
∑

n1,n2

∑

m=1,2

e−2πi(K1b1+K2b2)·(n1a1+n2a2+cm)

= T (K)
∑

n1

e−2πiK1n1
∑

n2

e−2πiK2n2 .

(5.130)

where [see Eqs. (5.120) and (5.121)]

T (K) =
∑

m=1,2

e−2πiK·cm = 1 + e−2πiLK·x̂ ,

or [see Eqs. (5.126) and (5.127)]

T (K) = 1 + e
2πi
3 (K1−2K2) , (5.131)

and thus

|T (K)|2 = 4cos2
(
π (K1 − 2K2)

3

)
. (5.132)

For an array of N ×N periods one finds with the help of the identity

N
2∑

n=−N
2

e−iθn =
sin

(
N+1
2 θ

)

sin
(
θ
2

) , (5.133)

that

A (Kx,Ky) = T (K)S (K1)S (K2) , (5.134)

where

S (K) =
sin ((N + 1)πK)

sin (πK)
. (5.135)

For N ≫ 1 the function S2 (K) has sharp peaks near integer values of K.
Thus the intensity on the screen is expected to be high near the points
ρ′ ≡ (x′, y′) = ρK1,K2

, where
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Fig. 5.4. Intensity on the screen for an aperture made of a honeycomb array of
holes.

ρK1,K2
= λz0 (K1b1 +K2b2) , (5.136)

and both K1 and K2 are integers. With the help of Eq. (5.132) one finds

that for integer values of both K1 and K2 the term |T (K)|2 is given by

|T (K)|2 =
{
4 if mod (K1 − 2K2, 3) = 0
1 else

. (5.137)

The intensity on the screen is depicted by Fig. 5.4. The larger spots indi-
cate the points ρK1,K2

for which mod (K1 − 2K2, 3) = 0 and |T (K)|2 =
4, whereas |T (K)|2 = 1 for the other points.

8. Consider the function

g (s) =
1

2
[1 + sgn (cos (s))] . (5.138)

The following holds g (s+ 2π) = g (s), i.e. g (s) is periodic, and thus it
can be Fourier expanded as
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g (s) =
∞∑

m=−∞

(
1

2π

∫ π

−π
ds′ g (s′) e−ims

′
)
eims

=
∞∑

m=−∞

(
1

2π

∫ π
2

−π
2

ds′ e−ims
′

)

eims

=
∞∑

m=−∞

1

πm
sin

πm

2
eims .

(5.139)

With the help of the above result (5.139) one finds that the amplitude
transmission function (5.87) can be expanded as

t (x′′, y′′) =
∞∑

m=−∞

1

πm
sin

πm

2
eimγr

′′2

=
∞∑

m=−∞
I1/2m e−i

πr′′2
λfm ,

(5.140)

where fm, which is given by

fm = − π

mλγ
, (5.141)

represents the m’th focal length [see Eq. (5.63) and recall that k = 2π/λ],
the variable Im, which is given by

Im =
sin2 πm2
π2m2

=






1
4 m = 0
1

(πm)2
m odd

0 m even

, (5.142)

represents relative power that is delivered to the m’th focal point, and
where

r′′2 = x′′2 + y′′2 . (5.143)

Note that for negative values of m the aperture acts as a diverging lens.
9. The Fraunhofer diffraction integral (5.60) for this case is

u1 (r
′) =

ikΦ

2πz′

y′′√
3∫

− y′′√
3

dx′′

√
3
2 L∫

0

dy′′ e−i(κxx
′′+κyy

′′) , (5.144)

where

Φ = e
ik
(
z′+x′2+y′2

2z′

)

, (5.145)
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k = ω/c and where

κx =
kx′

z′
, κy =

ky′

z′
, (5.146)

thus

u1 (r
′) =

ikΦ

2πz′

√
3
2 L∫

0

dy′′ e−iκyy
′′

y′′√
3∫

− y′′√
3

dx′′ e−iκxx
′′

=
i
√
3kΦ

4πκxz′






e
−i
(
−κx

2 +
√
3κy
2

)
L
− 1

−κx
2 +

√
3κy
2

− e
−i
(
κx
2 +

√
3κy
2

)
L
− 1

κx
2 +

√
3κy
2




 ,

(5.147)

or

u1 (r
′) =

i
√
3kLΦ

4πκxz′

(
e−iκ̄·b̄ − 1

κ̄ · b̄ − e−iκ̄·ā − 1

κ̄ · ā

)

, (5.148)

or

u1 (r
′) =

√
3kL2Φ

4πz′

− iκ̄·b̄
2 sinc κ̄·b̄2 − e−

iκ̄·ā
2 sinc κ̄·ā2

κxL
, (5.149)

where

κ̄ = (κx, κy) , (5.150)

and where

sinc q =
sin q

q
. (5.151)

The normalized intensity |u1|2 is plotted in Fig. 5.5.
10. In general, the Fourier expansion of a periodic function f (s+ 2π) = f (s)

is given by

f (s) =
a0
2

+
∞∑

n=1

an cos (ns) +
∞∑

n=1

bn sin (ns) , (5.152)

where

a0 =
1

π

∫ π

−π
ds f (s) , (5.153)

an =
1

π

∫ π

−π
ds f (s) cos (ns) , (5.154)

bn =
1

π

∫ π

−π
ds f (s) sin (ns) . (5.155)
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Fig. 5.5. Fraunhofer diffraction of an isosceles triangle aperture. The color
coded plot exhibits the normalized intensity (5.148) in a logaritmic scale

log
((
4πz′/

√
3kL2

)2 |u1 (κx, κy)|2
)
.

a) The Fourier expansion of the function
∣∣cos s2

∣∣ is given by

∣∣∣cos
s

2

∣∣∣ =
a0
2

+
∞∑

n=1

an cos (ns) , (5.156)

where

an =
1

π

∫ π

−π
ds

∣∣∣cos
s

2

∣∣∣ cos (ns)

=
4

π

cos (πn)

1− 4n2
,

(5.157)
and thus the efficiency of the first order is

|a1|2 =
(

4

3π

)2
. (5.158)

b) For this case Eq. (5.152) yields the expansion

e
iφ0s
2π =

2 sin φ0
2

φ0
2

+
∑

n

2 sin
(
φ0
2 + nπ

)

φ0
2 + nπ

eins , (5.159)

and thus the efficiency of the first order is sin2 (φ0/2− π) / (φ0/2− π)2.
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11. With the help of Eq. (5.115) one finds that the Fraunhofer diffraction
integral (5.60) is given by

u1 (r
′) =

iku0
2πz′

e
ik
(
z′+x′2+y′2

2z′

)

×
[
a22 sinc

ka2x′

2z′
sinc

ka2y′

2z′
− a21 sinc

ka1x′

2z′
sinc

ka1y′

2z′

]
.

(5.160)
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