
INDIRECT EVIDENCE THAT WE LIVE IN A COMPUTER SIMULATION

Chris Allen Broka
(chris.broka@gmail.com)

Abstract

We examine the possibility that we exist as part of a giant computer simulation. It is quantum field theory that is being simulated.
We provide a simple model describing how this might work. If such is the case, a number of agreeable consequences follow. For
one thing, it is possible to dispense with renormalization. For another, Haag's theorem is circumvented.
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Perhaps  owing to  the  work of  Bostrom (1)  an  increasing number  of  physicists have considered seriously the
possibility that we live in a computer simulation (2). The simulation hypothesis takes a number of forms. The
one we are most interested in goes by the name the 'Virtual World Simulation Hypothesis.' According to this
notion we and our reality are being simulated by a "computer" (or some equivalent form of information-process-
ing system) in much the same way that 'Sims' are simulated in the eponymous game. Of course, our simulation
is  far  more  complicated  than  that  of  the  'Sims'  —  so  much  so  that  we  cannot  even  tell  that  we  are  'Sims.'
Bostrom's idea raises a number of provocative questions. For one thing, we must wonder whether a 'Sim' could
be sentient. Lacking any profound insight into the metaphysics of consciousness, we should probably just admit
that we do not know. At least, there is no very obvious reason why it could not be. For another thing, we must
wonder about the "computer" and the world it is imagined to exist in. Are these things real or just useful fic-
tions? 
     We assume that our computer simulates a quantum field theory (QFT) and does this in a simple and effi-
cient way. The best thing would be for it to simulate our reality over a lattice of spacetime points. This is not
unlike what our small computers do when they try to numerically solve a hyperbolic PDE. It would work with a

lattice of coordinate addresses given by X ΑΒΓ∆  = {x, y, z, t} = {Α Ε , Β Ε , Γ Ε , ∆ Ε } where Α,  Β, Γ, ∆ are integers

and Ε denotes the spacing of the lattice. Α,  Β, and Γ range from 0 to L/Ε where L3  is the volume of the universe
being simulated. ∆ could be unlimited or the simulation might shut down after a finite number of time-steps. (It
is  a  bit  like  lattice  gauge theory,  only for  real.)  It  will  assign  the  values  of  the  quantum fields  to  the  lattice
points.  We will  also define  space-like hypersurfaces, S(t),  which  consist  of  the  lattice  points  having ∆  =  t/Ε  .
Differentiation over our lattice is defined easily:
     

1)     ¶x f AX ΑΒΓ∆] = I f AX HΑ+1L ΒΓ∆E - f AX HΑ-1L ΒΓ∆EM / 2 Ε ,

2)     ¶x,x f AX ΑΒΓ∆] = I f AX HΑ+1L ΒΓ∆E + f AX HΑ-1L ΒΓ∆E - 2 f AX ΑΒΓ∆EM / Ε2, and so forth.

     A brief digression is in order since plane-wave solutions ( e.g. ãä k x) figure prominently in QFT and would,
presumably, do so in its digitized version. Suppose our QFT was real scalar field theory. Our computer would
want to solve the Klein-Gordon equation which it can do in plane-wave solutions. Suppose we are dealing with
a  wave propagating in  the  x direction.  Suppose, further,  that  the  computer imposes periodic boundary condi-

tions at the "walls" of its lattice. Writing j Hxi, tiL = eiH-E t i + k xiL, we notice an interesting thing. As k approaches

and exceeds Π/Ε the solutions, as far as the computer can see, wrap back on and duplicate themselves. There is,
in effect, a maximum momentum available to the wave. The computer obtains a dispersion relation  that reads:

3)     CosHΕ EL = CosHΕ kL - Ε2 m2/2 .

When k (m ¹ 0) exceeds ArcCos( Î2 m2

2
 - 1)/Ε  (» Π/Ε ) the energy becomes complex which is, obviously, unaccept-

able. This limits k even a little more. The plane-wave solutions available to the computer are both discreet and
finite  in  number.  If  k  is  angled  relative  to  the  axes  of  the  lattice  the  wave will  propagate a  little  differently.
Savage (3) has suggested that this anisotropic propagation could furnish an experimental test of the simulation

hypothesis. By looking at observable consequences that are not observed he puts a rough limit of 3X10-26m on
how big Ε can be.
     The fact that the hypersurfaces S(t) obey periodic boundary conditions and, therefore, contain only finitely
many points follows from our assumption that the computer, though doubtless enormous, is, ultimately, finite;
it  can only calculate at  finitely many lattice  points.  We must  admit  that  there  is  nothing  particularly Lorentz
invariant  about any of this.  The fact that  we do not notice any momentum cutoffs or anisotropies is  a conse-
quence of the extreme smallness of Ε . The fact that our world appears to be Lorentz invariant follows from the
relativistic invariance of the equations the computer solves. 
     So  what  does the  computer do and  how does it  do it?  It  is  programmed with  the  'Theory of  Everything'
which  we  assume  to  be  an  interacting  QFT  (or  something  very  like  it).  We  ask  only  that  the  theory,  in  its
continuum limit, conserve 4-momentum and be relativistically invariant. We imagine that the computer works
in the Dirac Interaction Picture. We assume the theory has a Hamiltonian that can be separated into a free-field
(linear) part, H0, and a part, HI , that describes the interactions. Suppose it begins its work at t = 0. It has to be

supplied with knowledge of the quantum fields on S(0) and S(Ε). To make things easy let us suppose these are

given as 1

L3
 Úk (uk  ak  + uk

* ak
Ö) (as would be the case if the QFT were real scalar field theory) or something

similar  otherwise.  Let  uk  and  uk
*  be  the  above-mentioned plane-wave solutions.  The  computer  now has  the

information it needs to calculate the quantum fields at later times. 

     ak  and  ak
Ö  represent  annihilation  and  creation operators. The  former are  associated with  the  positive-fre-

quency waves and the latter with their conjugates. The ak s always annihilate |0> and [ak, ak'
Ö ] ({ak, ak'

Ö }) = ∆kk'.

These operators require something to operate on. The computer, in addition to simulating the quantum fields,
also simulates a state vector in the Fock space defined by the operators. This vector encompasses all the parti-
cles in the universe. The computer is provided with | Y (0) > and, at each time-step, it evolves this state vector
according to ä ¶t È YHtL > = HI  | Y(t) >. Since the number of basis vectors in this Fock space looks denumera-

bly infinite we might worry that an infinitely large computer would be necessary. This is not the case, however.

Since  the  simulated  universe is  spatially finite  it  can  contain  only a  finite  number  of  particles.  Say there  are

1060  of them. The computer would have no use for a basis vector describing 1070  particles. Also, the momen-
tum cuts off at Π/Ε . The computer could get by with only a finite number of basis vectors. 
     We  could  even  imagine  the  computer  being  more  ambitious  and  trying  to  simulate  a  curved  spacetime.
Perhaps  it  attaches  new  functions  —  a  metric  tensor  gΜΝ  —  to  the  lattice  points  and  evolves  them  using  a

digitized  version  of  Einstein's  equation.  Equations  like  1)  and  2)  would  have  to  be  adjusted  to  ensure  their
covariance. We will not explore this possibility further here.
     QFTs are, generally, plagued by divergences. We assume the computer disposes of the zero point energy by
something like normal ordering. Interacting QFTs also tend to suffer from UV divergences taken to indicate a
problem with the theory at very small distances. But, for our computer, there are no distances smaller than Ε nor
momenta greater than Π/Ε — there exists a kind of automatic high-momentum cutoff. This would render finite
the  results  of  calculations that  yield infinities  in  the  continuum limit.  The bare masses, charges, and so forth
employed  by  the  computer  would  differ  from  the  physical  quantities  we  observe  but  still  be  finite.  A  more
devastating threat to interacting QFTs comes from Haag's theorem (4) which states that, given a set of opera-

tors satisfying [ak, ak'
Ö ] = ∆kk', which also possess a vacuum state from which we can construct a Fock space, we

can assemble infinitely many other such sets of operators, satisfying these commutation relations, for which no
vacuum state constructible from our original operators can exist.  These sets of operators will  not  be unitarily
equivalent to our original choice and the physics deriving from them must, therefore, yield ambiguous results.
Haag's argument centers on the infinitely many degrees of freedom assumed in QFTs. After assuring us of the
mathematical soundness  of  theories where the  degrees of freedom are finite,  he  goes on to state:  "If  we pass
now  to  the  limit  N ® ¥  one  new  feature  appears.  A  possible  basis  vector  results  from  any  distribution  of
integer numbers Νk  over the infinitely many oscillators. The 'number' of these possibilities is no longer count-

able. It is given by À0
À0 = À1."  He concludes: "The point is, however, that for infinite N, (14) is no longer a

consequence of (12). In other words, there will be different irreducible representations of (12)." (By (12) Haag
means  our  commutation  relations.  By  (14)  he  means

ak|Ψ0 > = 0, defining the existence of a unique vacuum state.) But, in this theory, the number of "oscillators" is

finite; Haag's argument cannot go forward. It has been appreciated since the work of Reed and Simon (5) that
Haag's theorem fails if we live in a large, periodic, box. But we do not live in a box. Or do we? If the computer
is simulating us as suggested we live in a box (3-torus) resulting from the finite nature of the lattice employed
for our simulation. It is  a mathematical box (not a physical one). But the consequences are the same. Similar
observations have been made by Sheikholeslami-Sabzevari and  Rahmati  (6)  in  connection with  lattice  gauge
theory. But they do not seem to take the simulation hypothesis seriously.
     QFT  is  somewhat  reminiscent  of  the  bumblebee that  cannot  fly  but  does  so  anyway. In  spite  of  Haag's
theorem, and the rather ugly and arbitrary-looking process of renormalization, it provides a very good descrip-
tion of Nature. We speculate that this may be due to the fact that the bee is not flying in the kind of "air" we
think  it  is.  If we actually are being simulated on a giant  computer an interesting question arises — does this
computer exist as a real thing in a higher-order reality we have no knowledge of or is this just simply the way
our universe works? As a philosophical matter we would say that,  if  there are conscious observers present in
the higher-order reality, then it  is  the first  way. If not,  the "computer" is just  a useful example — a heuristic
device for understanding an unfamiliar concept (7).
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     QFTs are, generally, plagued by divergences. We assume the computer disposes of the zero point energy by
something like normal ordering. Interacting QFTs also tend to suffer from UV divergences taken to indicate a
problem with the theory at very small distances. But, for our computer, there are no distances smaller than Ε nor
momenta greater than Π/Ε — there exists a kind of automatic high-momentum cutoff. This would render finite
the  results  of  calculations that  yield infinities  in  the  continuum limit.  The bare masses, charges, and so forth
employed  by  the  computer  would  differ  from  the  physical  quantities  we  observe  but  still  be  finite.  A  more
devastating threat to interacting QFTs comes from Haag's theorem (4) which states that, given a set of opera-

tors satisfying [ak, ak'
Ö ] = ∆kk', which also possess a vacuum state from which we can construct a Fock space, we

can assemble infinitely many other such sets of operators, satisfying these commutation relations, for which no
vacuum state constructible from our original operators can exist.  These sets of operators will  not  be unitarily
equivalent to our original choice and the physics deriving from them must, therefore, yield ambiguous results.
Haag's argument centers on the infinitely many degrees of freedom assumed in QFTs. After assuring us of the
mathematical soundness  of  theories where the  degrees of freedom are finite,  he  goes on to state:  "If  we pass
now  to  the  limit  N ® ¥  one  new  feature  appears.  A  possible  basis  vector  results  from  any  distribution  of
integer numbers Νk  over the infinitely many oscillators. The 'number' of these possibilities is no longer count-

able. It is given by À0
À0 = À1."  He concludes: "The point is, however, that for infinite N, (14) is no longer a

consequence of (12). In other words, there will be different irreducible representations of (12)." (By (12) Haag
means  our  commutation  relations.  By  (14)  he  means

ak|Ψ0 > = 0, defining the existence of a unique vacuum state.) But, in this theory, the number of "oscillators" is

finite; Haag's argument cannot go forward. It has been appreciated since the work of Reed and Simon (5) that
Haag's theorem fails if we live in a large, periodic, box. But we do not live in a box. Or do we? If the computer
is simulating us as suggested we live in a box (3-torus) resulting from the finite nature of the lattice employed
for our simulation. It is  a mathematical box (not a physical one). But the consequences are the same. Similar
observations have been made by Sheikholeslami-Sabzevari and  Rahmati  (6)  in  connection with  lattice  gauge
theory. But they do not seem to take the simulation hypothesis seriously.
     QFT  is  somewhat  reminiscent  of  the  bumblebee that  cannot  fly  but  does  so  anyway. In  spite  of  Haag's
theorem, and the rather ugly and arbitrary-looking process of renormalization, it provides a very good descrip-
tion of Nature. We speculate that this may be due to the fact that the bee is not flying in the kind of "air" we
think  it  is.  If we actually are being simulated on a giant  computer an interesting question arises — does this
computer exist as a real thing in a higher-order reality we have no knowledge of or is this just simply the way
our universe works? As a philosophical matter we would say that,  if  there are conscious observers present in
the higher-order reality, then it  is  the first  way. If not,  the "computer" is just  a useful example — a heuristic
device for understanding an unfamiliar concept (7).
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