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Abstract – A model with local hidden variables is presented, which describes phenomena such as entanglement swapping and 
teleportation and also reproduces the quantum mechanical expectation values for the measurement of entangled photons. It 
refutes Bell's theorem and at the same time expands our physical understanding of entangled states since it can also explain 
the phenomena mentioned above. 
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1.  Introduction – Entanglement swapping  is a protocol that 
allows particles that have not previously been in contact to be-
come entangled with each other. This entanglement can be 
done, for example, by means of a Bell state measurement [1]. 
Quite a few physicists are convinced that this process is not lo-
cal. Ultimately, this belief is based on the assumption of the 
validity of Bell's theorem [2]. It states that quantum mechanics 
cannot be local, since it cannot be described by local realistic 
models with hidden variables. For a detailed description of the 
literature and arguments around Bell’s theorem see [3]. Re-
cently Bell's theorem has been refuted by a local contextual 
model with hidden variables [4] which correctly predicts the 
quantum mechanical expectation values with polarization en-
tangled particles. In this model it was assumed that upon the 
generation of an entangled photon pair in the source each of its 
two partner particles gets the same value of the parameter l. 
According to this model, measured values depend on the polar-
ization of a particle and the value of the parameter l. With the 
same rules acting upon the generated particles in both wings, 
the measurement results are correlated without nonlocal ef-
fects. Because Bell based his argument for possible models in 
his paper [5] solely on the prediction of expectation values the 
model [4] is still a valid refutation of Bell's theorem. 
However, phenomena such as entanglement swapping and tel-
eportation [6-9] cannot be explained by assuming a common 
value of a hidden parameter for the members of an entangled 
pair, as suggested by Bell [5]. When photons which have not 
previously interacted become entangled by swapping they can-
not have a common parameter with a statistical distribution.  
With a model that not only predicts the quantum mechanical 
correlations with entangled photons, but also explains tele-
portation and entanglement swapping,  the understanding of the 
physical relationships also grows. To circumvent the difficul-
ties mentioned above, we introduce here a model in which the 
indistinguishability of the entangled photons explains the phys-
ical states, as in [4], but in which the photon pairs do not share 
the value of a statistical parameter. Instead of a common statis-
tical parameter for both partners in a pair, a weaker coupling is 

introduced. The value range of the statistical parameter also had 
to be changed for this. Then the question arises how the photons 
on side B get information about the polarizer position on side 
A without communication. This information results on the one 
hand from the mixing ratio of the horizontally and vertically 
polarized photons from the constituent initial states (see model 
assumption MA2), which contribute to a selection, and on the 
other hand from an additional connection between the two sides 
(see model assumption MA3), which, however, occurs to be 
random in the case of entanglement swapping and teleportation 
and therefore leads to four different end states. 
The reader is assumed to be familiar with the Bell states  
Y+, F-, F+ and F- the definition of which can be found in the 
literature [1]. It will be shown for each Bell state what a selec-
tion of photons by a polarizer on one side means for the state 
on the other side. The resulting states are listed in table 1. Ex-
pectation values for correlation measurements on entangled 
photons and the states for entanglement swapping and tele-
portation are then derived from this. 

2. A new model for polarization entangled photons 
with weakly coupled hidden variables 
 2.1 Model overview  
 

 
 
Figure 1: The SEPP (source of entangled photon pairs) emits 
entangled photons propagating towards the adjustable polariz-
ers PA and PB and detectors DA-1 and DA-2 on wing A and 
DB-1 and DB-2 on wing B. A coincidence measuring device 
(not seen in the picture) encounters matching events. The 
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polarization angles are defined in the x–y-plane, which is per-
pendicular to the propagation direction of the photons. The co-
ordinate systems are left-handed with the z-axis in propagation 
direction for each wing, with the x-axis in horizontal and the y-
axis in vertical direction.  
With polarization measurements, photons can choose one of 
two perpendicular polarizer exits. A hidden variable model has 
to describe which of these two possible exits a photon will take. 
Four model assumptions are introduced, an overview of which 
is given below with a description afterwards in italic letters:  

MA1 introduces the statistical parameter 𝜆  which controls 
the polarizer exit that a photon will take. 	

MA2 describes the polarization of a selection of photons 
from an entangled pair. 

MA3 describes how photons from the entangled pairs are 
coupled together. 

MA4 states that photons carry the complete set of the hid-
den variable after a measurement.  

2.2 Model assumptions  

Model assumption MA1: The statistical parameter 𝜆 which 
is equally distributed between -1/2 and +1/2  controls which 
of the two polarizer exits the photon will take.  

With polarizer setting a and photon polarization j, we define  
d = a - j  as the difference between the polarizer setting and 
the polarization of the photon.  

The function A(d,l) indicates which polarizer exit the photon 
will take. A(d,l) can have values +1 and -1.  

For 0 £  d  < p/2, we define 

A(d,l) = +1   for  -1/2 £ 𝜆 £ cos2(𝛿)-1/2, (1) 

meaning the photon takes polarizer exit a and 

A(d,l) = -1  for cos2(𝛿)-1/2 < 𝜆	£ +1/2, (2) 

meaning the photon takes polarizer exit a + p/2. 

MA1 is valid for single photons and for each wing of entan-
gled photons as well.. 

The case p/2 £ d < p,   is covered referring to the other exit of 
the polarizer. Then equation (2) applies and the value range of 
𝜆	 	 for	 positive	 results	 is	 cos2(𝛿)-1/2 < 𝜆	 £ +1/2.  
d < 0 is covered by reversing the polarizer direction by 180°. 
Thus, -p £  d < -p/2 is equivalent to 0 £ d < p/2 and -p/2 £  d 
< 0 is equivalent to  p/2 £  d < p. 

Thus A(d,l) = +1    

1. for 0 £  d  < p/2 and -1/2 £ 𝜆 £ cos2(𝛿)-1/2, 
2. for -p/2 £  d < 0 and cos2(𝛿)-1/2 < 𝜆	£ +1/2, 
3. for p/2 £ d < p  and cos2(𝛿)-1/2 < 𝜆	£ +1/2, 
4. for -p £  d < -p/2, and -1/2 £ 𝜆 £ cos2(𝛿)-1/2 and  

A(d,l) = -1  otherwise. (3)
  

Figure 2 shows the geometric relationships on which the 
model is based. 

 
 

 
 
Figure 2: Distribution of polarized photons onto polarizer ex-
its. The polarizer is set to the angle a/a+p/2 and the photon has 
a polarization j. Thus, the difference is d = a - j. A parameter 
l is evenly distributed over the generated photons in the value 
range -1/2 £ l £ +1/2. Photons with l £ cos2(d)-1/2 take the 
polarizer exit a, while photons with  l > cos2(d)-1/2 take the 
exit a + p/2.  
 
Model assumption MA2: If the fractions of horizontally and 
vertically polarized photons from the entangled state which 
contribute to a stream of photons selected by a polarizer are 
cos2(a)	and	sin2(a)	respectively then  the common polarization 
is a or - a because of the indistinguishability of the photons. 
For a selecting polarizer on the same wing which is set to a the 
common polarization is a. 

A selection comprises all photons which take the same polar-
izer exit. Photons with polarization a and a+p/2 come in equal 
shares, due to symmetry. MA2 accounts for the fact that the 
polarization of photons from the entangled state is undefined 
due to their indistinguishability but changed and re-defined by 
entanglement. Thus, the photons of a selection cannot be dis-
tinguished by their polarization. This argument was brought up 
already in [4] but only for photon pairs with common hidden 
variables.  MA2 is a contextual assumption, as the polarization 
of a selection coincides with the setting of a polarizer. How-
ever, it is a local realistic assumption, as it assigns a real value 
to the physical quantity polarization.  

Model assumption MA3 Photons of a selected photon pair 
have always the same sign of the parameter 𝜆  for the Bell states  
Y- or F+ and the opposite sign for Y+and F-. Each Bell state 
is a mixture of  indistinguishable constituent photon pairs in 
equal shares whose components have the same polarization 0° 
or 90°  for F+ and F- and an offset of  p/2 for Y+ and Y-. The 
constituent photon pairs make up the initial state. 
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MA3 is the means of weakly coupling the photons of an entan-
gled pair. It ensures that the polarization of partner photons are 
either both positive or both negative for Y- and F+ and of op-
posite sign for Y+and F- but not otherwise.  
MA2 and MA3  have  the consequence that the selection by a 
polarizer in position a on one side corresponds to a selection 
with polarization a+p/2 or -a-p/2 on the other side. (for Y+ or 
Y-) This can be seen from the following consideration: A po-
larizer PA set to a selects a fraction of cos2(a) of horizontally 
polarized photons 1 and a fraction of sin2(a) of vertically polar-
ized photons 1 (see figure 2 ). This means a selection of  partner 
photons 2 as well with perpendicular polarization yielding a se-
lected fraction of cos2(a) = sin2(a+ p/2) of vertically polarized 
photons 2 and a selected fraction of  sin2(a) = cos2(a+ p/2) of 
horizontally polarized photons 2. By MA2 the common polari-
zation is  a+p/2 or -a-p/2 due to the indistinguishability of the 
photons 2. For F+ and F- we have the same polarization for the 
photons of the constituent photon pairs and therefore a common 
polarization of a or -a.  

Which of the sign is correct follows from MA3. The same sign 
of the parameter l is obtained if the value range of l is the same 
for both partners of a pair. And this is the case for Y- or F+ 
with the same sign of d = a - j in model assumption MA1. So 
we have for the common polarisation of the partner photon 
a+p/2 for Y- and a  for F+. The opposite sign of the parameter 
l is obtained if the value range of l is different  for both part-
ners of a pair. And this is the case for Y+ and F- with the op-
posite sign of d = a - j in model assumption MA1. So we have 
for the common polarisation of the partner photon -a-p/2 for 
Y+ and -a  for F- .  

One could object that according to MA1 the value ranges of l 
overlap for positive d and negative d  if |d| < p/4 so that the 
photon cannot decide which polarization to take over and the 
system has to collect several photons until a decision is possi-
ble. (see also figure (2)).  This is true for the horizontally polar-
ized constituent photon. The vertically polarized photon in this 
case has a |d| > p/4 where no overlap between the two alterna-
tives occur so that there can be no ambiguity.  
For all four Bell states it follows correspondingly: 

Bell state A B 

Y-: a a + p/2   

F+ a a   

Y+ a -a -p/2   

F- a -a  

 
Table 1: polarization of partner photons 2 at wing B for differ-
ent Bell states for a selection of photons 1 with a polarizer set 
to a at wing A. 
 

Model assumption MA4: Photons having left a polarizer exit 
a have polarization a with l evenly distributed in the range  
-1/2 £ l £ +1/2. 

MA5 emphasizes the fact that photons do carry the complete 
set of hidden variables after leaving a polarizer. 

2.3 Predicting measurement results for single photons Using 
equation (3), a photon with polarization j is found behind the 
exit a of a polarizer with probability 

Pd =       ∫ 𝑑l!"#^%(d)()/%
()/%    = cos2(d) (4) 

where d = a - j with 0 £ d < p/2.      For the case p/2 £ d < 
p, we refer to the other exit of the polarizer and have, with  
J* = d - p/2 

Pd =       ∫ 𝑑l)/%
!"#^%(d∗)()/%  = 1-cos2(J*) = cos2(J), as well.  (5)

  

With d = a - j, we obtain the same Pd for a photon in state 
cos(j)*|H> + sin(j)*|V> by projection onto  
cos(a)*<H| +  sin(a)*<V|, according to QM (i.e., Born’s 
rule). 

2.3 Calculating expectation values with photons in singlet 
state We have seen above  that all selected photons 1 from the 
singlet state which take PA exit a have polarization a while their 
partner photons 2 have polarization a+p/2. The thus selected 
photons 2 are the same as would have been selected by a polar-
izer PB set to a+p/2. Therefore l is evenly distributed in the 
value range -1/2 £ l £ +1/2. So we can conclude that if photon 
1 passes PA at a we have matching events  if partner photon 2 
with polarization a + p/2  exits polarizer PB at b. The probability 
that photons 2 with polarization a + p/2  would pass PB at b can 
be obtained by equations (4) and (5), using d = b -a -p/2  yield-
ing  

Pd = cos2(d) = cos2(b -a -p/2)=sin2(b-a ), (6)                   

where d is the angle between the PB polarizer setting b  and the 
polarization a + p/2  of photons 2 selected by PA. 

The expectation value for a joint measurement with photon 1 de-
tected behind detector PA at 𝛼 and partner photon 2 detected be-
hind detector PB at 𝛽	is	as	obtained	from	[4] 

E(𝛼,𝛽) = SA*B*PA,𝛼 *PB,𝛽|A,𝛼  for A,B=+1,-1  (7) 
where PA,𝛼 is the unconditional probability to detect  
(A = 1) or not detect (A = -1) photon 1 at 𝛼	and	where	PB,𝛽|A,𝛼 
is the conditional probability for photon 2 to have the outcome 
B (+1 for passing or -1 for not passing) at PB set to b if photon 
1 has outcome A (+1 for passing or -1 for not passing) at PA set 
to a. With Pd from equation (6), we get, in particular, that: 

P+1,𝛽|+1,𝛼 = P-1,𝛽|-1,𝛼 = Pd and 
P+1,𝛽|-1,𝛼 = P-1,𝛽|+1,𝛼 = 1 - Pd.                                              (8)
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The	constituent	photons	of	 the	singlet	state	with	polariza-
tion	0°	and	90°	 contribute	 to	 the	probability	P1,𝛼 to	 find	a	
photon	 1	 at	 a, according to equation (4,5), with fractions 
½cos2(a) and ½cos2(a-p/2),  respectively, taking into account 
that the photons of 0° and 90° contribute in equal shares to the 
total stream of photons on either wing. Thus,  

P1,𝛼 = ½(cos2(a) + cos2(a-p/2)) = ½ = P-1,𝛼.  (9) 

With the above definitions, we get, from equations (6)–(9):  

E(𝛼,𝛽) = ½(1* Pd -1*(1- Pd) -1*(1- Pd) +1* Pd) = 
= Pd 	- (1- Pd) = sin2(a -b) - cos2(a -b) = -cos(2(a -b)), (10) 

in accordance with QM. As the expectation value E(a,b) in 
equation (10) exactly matches the predictions of quantum phys-
ics, it also violates Bell's inequality.  

2.4 Extending the model to spin ½ particles - The model also 
applies to spin ½ particles, by simply replacing every angle 
with its half in equations (1) and (2) and Figure 2, as well as in 
all subsequent derivations, yielding 

E(𝛼,𝛽) = -cos(a -b),           (11) 
in accordance with QM.  

Perpendicular polarizer exits correspond to opposite instrument 
exits. The coordinate systems is the same for both sides. 

Figure 4 shows the geometric relationships on which the model 
is based for spin ½ particles. 
 

 
 
Figure 3: Distribution of spin ½ particles onto instrument exits. 
The instrument is set to the angle a/a+180°. The generated par-
ticle has a spin direction j. The difference is d = a - j. The 
parameter l is evenly distributed over the generated particles 
in the value range of -1/2 £ l £ +1/2. Particles with  
l £ cos2(d/2)-1/2 are assigned to the instrument exit a, while 
particles with  l > cos2(d/2)-1/2  take the exit a+180°.  
 
2.5 Applying the model to teleportation Teleportation utilizes 
a protocol where an unknown state b is transferred to another 
wing B of a singlet state by means of a Bell state measurement 
between the unknown b and wing A of the singlet state [9]. 

With MA3 and table 1 we obtain the polarizations at wing A 
and B. AB are always in state Y-. bA is obtained by the Bell 
state measurement. So we get the results of table 2: 
 

Bell state bA A B 

Y- b + p/2 b (+ p) 

F+ b b + p/2   

Y+ -b-p/2 -b 

F- -b -b +p/2 

 

Table 2: polarization of the photons of wings A and B for dif-
ferent Bell states obtained between the unknown b and wing A. 
 

The results at B can be converted to state b  by simply rotating 
or mirroring. This result is in accordance with the quantum me-
chanical calculations [9]. Note that b + p   and b are the same 
polarization. 

2.6 Applying the model to entanglement swapping 
Entanglement swapping  utilizes a protocol where two wings of 
different systems, each in singlet state, become entangled by 
means of a Bell state measurement of the two remaining wings. 
Let AB and CD be the two initial systems in singlet state. Then 
we define the outer pair AD and the inner pair BC. With a Bell 
state measurement between B and C we want to entangle A and 
D. Again there are four resulting Bell states possible. How do 
these results of the inner pair BC relate to the state of the outer 
pair AD?  This is found out by applying table 1 to the pairs of 
channels. AB and CD are always in state Y-. BC is obtained by 
the Bell state measurement. So we get the results of table 3: 
 
 

Bell state BC A B C D 

Y-: a a + p/2   a (+ p) a + p/2   

F+ a a + p/2   a + p/2   a (+ p)  

Y+ a a + p/2   -a (- p) -a - p/2   

F- a a + p/2   -a - p/2   -a   

 
Table 3: polarization of the photons of wings B,C and A,D for 
different Bell states obtained between B and C by applying ta-
ble 1 with an assumed selection of photons with a polarizer set 
to a  at wing A. 
 
Thus we see the Bell state of the outer pair AD is equal to the 
measured Bell state of the inner state BC in accordance with 
QM [1]. Note that a + p   and a  are the same polarization. 

3. Results, discussion and conclusions - A local con-
textual model with weakly coupled hidden variables was pre-
sented. It correctly reproduces the QM predictions of 
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expectation values for polarization measurements with entan-
gled photons and for spin measurements with spin-1/2 particles 
in the singlet state and thus refutes again Bell’s theorem which 
was already refuted by the model in [4]. The principle of the 
model presented here is that when photons are selected on one 
side of the system by a polarizer, their partner photons on the 
other side are also selected. The mixing ratio of horizontally 
and vertically polarized photons from the initial state is either 
the same for both sides or inverse depending on the Bell state. 
Because of their indistinguishability, the selected photons ac-
quire a common polarization that depends on the fractions of 
the components of the mixture. 

New is that we can also explain entanglement swapping and 
teleportation with weakly coupled hidden variables, because 
the Bell state measurement required for this reveals a specific 
relationship between the polarization of the two measured part-
ner photons. The behaviour of entangled particles can be ex-
plained locally. There is no need for “spooky action at a dis-
tance” neither with  the measurement of correlations, nor with 
teleportation and entanglement swapping.  

Even if the coupling between the partners of an entangled pair 
is only weak, since it only exists via the sign of the statistical 
parameter l, the model cannot do without a statistical parame-
ter that controls which of two possible polarizer outputs a pho-
ton takes. If no spooky action at a distance is involved, this can-
not be purely accidental in the case of entangled photons, which 
then also applies to single photons. Thus, the conclusions in [4] 
that quantum particles do not carry simultaneous information 
about mutually exclusive outcomes remain valid because the 
existence of a model with hidden variables indicates the oppo-
site. 
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