An Easy Proof of the Triangle Inequality

Timothy W. Jones

December 8, 2021

Abstract

High school and undergraduate algebra and calculus textbooks don't provide a fast and easy proof of the triangle inequality. Here is a proof that seems relatively easy. It does require a little bit of logic, but that can be a plus.

Introduction

A perusal of typical high school, say College Algebra level textbooks [1], as well as undergraduate Calculus textbooks [2, 4] reveals that these books don't give a proof of the triangle inequality. The calculus texts do give a proof of the inequality in their chapters on vectors. These proofs do imply the simpler \mathbb{R} case. The proofs are involved, requiring the Schwarz inequality. In Thomas's book he actually, one could say, apologizes to the reader for the length and complexity of his \mathbb{R}^{k} proof. Curiously, the law of cosines does imply the triangle inequality, but this is not mentioned in any of these textbooks. Wikipedia doesn't give a simple proof either.

Rudin in his analysis text [3] does give a proof for the complex, hence the real, case; it is relatively brief and simple. College algebra texts covering complex numbers could include such a proof. It's a nice application of the conjugate of a complex number.

The following proof seems to make concrete the intuitions of why the triangle inequality holds in the specific real case: if x and y have opposite signs, their sum is reduced from the sum of their absolute values.

Proof

Theorem 1. For real numbers x and y

$$
\begin{equation*}
|x+y| \leq|x|+|y| . \tag{1}
\end{equation*}
$$

Proof. If and only if x and y are both positive or both negative then

$$
\begin{equation*}
\frac{|x+y|}{|x|}>1 \text { and } \frac{|x+y|}{|y|}>1 . \tag{2}
\end{equation*}
$$

This follows as

$$
\begin{equation*}
|x+y|=|x|+|y| \tag{3}
\end{equation*}
$$

in these cases and in turn this implies

$$
\frac{|x+y|}{|x|}=1+\frac{|y|}{|x|}
$$

and this is true if and only if

$$
\frac{|x+y|}{|x|}<1 .
$$

By symmetry, the RHS of (2) also holds.
So one case is resolved; (3) implies (1).
Take the negation of (2); this is

$$
\begin{equation*}
\frac{|x+y|}{|x|} \leq 1 \text { or } \frac{|x+y|}{|y|} \leq 1 . \tag{4}
\end{equation*}
$$

Say the former, then

$$
|x+y| \leq|x| \text { implies }|x+y| \leq|x|+|y|
$$

and that's (1) as well. Mutatis mutandis, the right hand side of (4) also implies (1).

If one or more of x and y are 0 , the theorem holds. So all cases have been addressed.

References

[1] Blitzer, R. (2010). Algebra and Trigonometry, 4th ed., New York: Prentice-Hall.
[2] Larson, R. and Edwards, B.H. (2010). Calculus, 9th ed., New York: Brooks/Cole.
[3] Rudin, W. (1976). Principles of Mathematical Analysis, 3rd ed., New York: McGraw-Hill.
[4] Thomas, G. B. (1976). Calculus and Analytic Geometry, 4th ed., New York: Addison-Wesley.

