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Abstract

We look at Lorentz transformations from the perspective of functional
analysis and show that the theory of functional analysis so far has ne-
glected a critical point by not taking into consideration inputs of functions
when measuring distances in function spaces.
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1 Motivation
Building on clear physical foundations, in [1] we arrived at a transforma-
tion of the form

𝜙′ = 𝑐2

√1 + 𝜙
2𝑐2

,

for scalar function 𝜙 ∶ ℝ4 → ℝ. But something must be missing here, as
a scalar function remains invariant under any coordinate transformation.
As we mentioned in [1] there are two possible solutions for this problem:

• 𝜙 is not really a scalar. It is but a component of some vector.
• 𝜙 is a scalar function, but its functional nature points us to consider

it in a function space in which it is a ‘vector’, hence it is no longer
required there to remain invariant.

The first solution does not bring any new mathematics and solves the
problem in complete analogy to special relativity: it turns out (see[1])
that if we look at 𝜙 as a function on ℝ and not one on ℝ3, we can solve
the problem using familiar vector analysis. But what if we insist to see
𝜙 as a function on ℝ4? By comparing the second solution with special
relativity and using a ‘historical thought experiment’ we can see that the
second solution is yet to be applied to special relativity itself! Imagine you
are somewhere in a history in which you only have one spatial dimension,
you do not consider time to be a proper dimension, and have found a
transformation

𝑥′ = 𝑥 − 𝑣𝑡
√1 − 𝑣2

𝑐2

,

you are amazed ‘why on earth a scalar is being transformed?’ Apart from
special relativity you can well take the other route: as you are quite used
to 𝑥(𝑡), ‘well, maybe I should consider the function space of 𝑥(𝑡)s in which
𝑥(𝑡) is not a scalar’. You will be guided by the Pythagorean theorem to
introduce the following distance on the function space of 𝑥(𝑡)s

𝑑𝑠 = √(𝑥′(𝑡) − 𝑥(𝑡))2 𝑑𝑡 = |𝑥′(𝑡) − 𝑥(𝑡)|𝑑𝑡 ⇒ 𝑠 = ∫ |𝑥′(𝑡) − 𝑥(𝑡)|𝑑𝑡,

which is quite expected as this is one of the natural distances for a function
space[2]. Yet, this metric is using an absolute time

𝑡′ = 𝑡,
thus to consider special relativity we must consider

𝑠(𝑥′(𝑡′), 𝑥(𝑡));
in other words we must pay attention also to the ‘inputs’ of functions,
something which the current theory of functional analysis completely
misses!1 The current theory of functional analysis is as prema-
ture as Euclidean geometry for it has so far neglected inputs of
functions.

1To the best of my knowledge, the closest that mathematical analysis has come to this in-
sight, is via the Skorokhod metric[3], in relation to càdlàg functions. I maintain that Skorokhod
metric is quite inelegant for a firm physical theory.
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2 Heuristic path
Therefore let us begin by analogy to the Minkowski metric and consider

𝑑𝑀(𝑓(𝑥), 𝑔(𝑦))(𝑥, 𝑦) ∶= √𝑐2(𝑥 − 𝑦)2 − (𝑓(𝑥) − 𝑔(𝑦))2, (1)

where 𝑐 is the speed of light. But this 𝑑𝑀 is not a proper metric on
a function space solely; it also takes into consideration the ‘inputs’ of
functions, something which is not considered at all in the current theory
of functional analysis, to the best of my knowledge. It is easy to see this
point: let

𝑓(𝑥) = 𝑔(𝑦), 𝑥 ≠ 𝑦
If this was a proper metric on a function space, we would expect to have

𝑑𝑀(𝑓(𝑥), 𝑓(𝑦)) ?= 0,

yet in this case (1) yields
𝑑𝑀 = 𝑐|𝑥 − 𝑦|

signifying its hybrid nature.
To turn (1) into a proper metric for the function space solely, it is natural
to try to ‘get rid’ of the ‘inputs’ by integrating over them. Therefore we
have to define the differential of 𝑑𝑀 . The first guess would be

𝑑2𝑑𝑀(𝑓(𝑥), 𝑔(𝑦)) = √(𝑓(𝑥) − 𝑔(𝑦))2 − (𝑥 − 𝑦)2 𝑑𝑥𝑑𝑦,

but this faces two problems: first, the sign is different from (1). To solve
this problem one might be tempted to simply take

√(𝑓(𝑥) − 𝑔(𝑦))2 − 𝑐2(𝑥 − 𝑦)2

but this ruins an elegant property of (1): demanding the expression under
square root in (1) to be positive, results in

∀(𝑥 ≠ 𝑦) |𝑓(𝑥) − 𝑔(𝑦)| ≤ 𝑐|𝑥 − 𝑦|, (2)

meaning that our functions are speed of light-Lipschitz continuous!
More on this will be said later. Therefore we must seek another solution;
the most straightforward one is to introduce

𝐴(𝑥, 𝑦) ∶= {1, 𝑥 = 𝑦
−1, 𝑥 ≠ 𝑦

and write
𝑐2(𝑥 − 𝑦)2 + 𝐴(𝑥, 𝑦)(𝑓(𝑥) − 𝑔(𝑦))2;

which does the job.
The second problem is that we expect (1) to pass us over to its functional
aspect by letting 𝑥 = 𝑦, which results in

𝑑2𝑑𝑀(𝑓(𝑥), 𝑔(𝑦)) = |𝑓(𝑥) − 𝑔(𝑥)|𝑑𝑥𝑑𝑥,
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as we are going to have to finally integrate this differential, –quite roughly-
speaking– we are going to need one of the 𝑑𝑥es on the right-hand-side,
so

𝑑2

𝑑𝑥𝑑𝑀 = |𝑓(𝑥) − 𝑔(𝑥)|𝑑𝑥,
the only way to make sense of the ‘fraction’ on the left-hand-side which
would allow integration seems to be

𝑑(𝑑𝑑𝑀
𝑑𝑥 ) = |𝑓(𝑥) − 𝑔(𝑥)|𝑑𝑥,

upon integration it gives

𝑑𝑑𝑀
𝑑𝑥 = ∫ |𝑓(𝑥) − 𝑔(𝑥)|𝑑𝑥,

which is absurd as the right-hand-side is not a function of 𝑥; rendering it
not well-defined. Even if we ignore this problem –rather silly but just to
make sure–, changing the integration variable to 𝑡 to avoid confusion, and
letting the domain of integration to be [𝑎, 𝑏], we have

∫
𝑏

𝑎
|𝑓(𝑡) − 𝑔(𝑡)|𝑑𝑡 = 𝐴 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,

so
𝑑𝑑𝑀
𝑑𝑥 = 𝐴 ⇒ 𝑑𝑀 = 𝐴𝑥 + 𝐶,

which is an absurdity as this 𝑑𝑀 is not even a metric. So it seems that
we are having a ‘surplus’ of differentials: on the left-hand-side of

𝑑2

𝑑𝑥𝑑𝑀 = |𝑓(𝑥) − 𝑔(𝑥)|𝑑𝑥,

there is a ‘surplus’ 𝑑𝑥 and one ‘surplus’ 𝑑 [again quite roughly-speaking].
Everything would be perfect had we had

𝑑𝑑𝑀 = |𝑓(𝑥) − 𝑔(𝑥)|𝑑𝑥,

yielding the 𝐿1-norm distance 𝑑 = ∫ |𝑓(𝑥) − 𝑔(𝑥)|𝑑𝑥.
So let us define

𝑑𝑑𝑀(𝑓(𝑥), 𝑔(𝑦)) = √𝑐2(𝑥 − 𝑦)2 + 𝐴(𝑥, 𝑦)(𝑓(𝑥) − 𝑔(𝑦))2√
𝑑𝑥

√
𝑑𝑦 (3)

and give it a chance! Let
𝑥 = 𝑦; (4)

Before continuing, recall our expectation: 𝑥 = 𝑦 should ‘wash away’ the
‘input-dependent’ aspect of (1) and yield a proper metric for function
space. Since from Fractional calculus[4] we have

√
𝑑𝑥

√
𝑑𝑥 = 𝑑𝑥 (5)

then

𝑑 𝑑𝑀(𝑓(𝑥), 𝑔(𝑥)) = √(𝑓(𝑥) − 𝑔(𝑥))2𝑑𝑥 = |𝑓(𝑥) − 𝑔(𝑥)| 𝑑𝑥
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⇒ 𝑑(𝑓(𝑥), 𝑔(𝑥)) = ∫ |𝑓(𝑥) − 𝑔(𝑥)| 𝑑𝑥 (6)

Note that it might seem that (1) is the product metric of space of functions
and ℝ but notice that

𝑑=√𝑑2
1(𝑓, 𝑔) + 𝑑2

2(𝑥, 𝑦)
‘glues’ two metrics together while respecting their ‘independence’: 𝑓, 𝑔
and 𝑥, 𝑦 in the above (product) metric are ‘dummies’. You do not need to
know anything about 𝑑2 to find 𝑑1. This is not at all the case for (1) as it
is in fact ‘intertwining’ functions and their inputs.

3 Lipschitz cones and Light cones
If we recall that for a Lipschitz continuous function, there exists a double
cone whose origin can be moved along the graph so that the whole graph
always stays outside the cone

Figure 1: Geometry of Lipschitz continuity [Picture from the Wikipedia page on
Lipschitz continuity]

and from the appearance of speed of light in (1) we can see a profound
connection between geometry of Lipschitz functions space and that of
Minkowski, i.e. light cones of special relativity and ‘Lipschitz cones’ are
deeply connected.

4 Outline of a program
4.1 (n,m)-integrals and symbols
The most strikingg feature of (1) that is inevitable is its use of

√
𝑑𝑥

√
𝑑𝑦,
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whose understanding requires us to first consider
√

𝑑𝑥,

i.e. half-forms; more generally 𝑝-forms that 𝑝 ∈ ℚ, at least. The integral

∫ 𝑓(𝑥, 𝑦)
√

𝑑𝑥
√

𝑑𝑦

is a hybrid between
∫ 𝑓(𝑥)𝑑𝑥,

and
∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦,

but it is none exactly: it is almost a double integral in that it has two
variables, but it is not! To be precise, we better define
Definition 1. Multipleness of an integral

𝑚(𝑑𝛼1
1 𝑥, 𝑑𝛼2

2 𝑦) ∶= ∑
𝑖

𝛼𝑖. (7)

We call a 𝑛-variable integral with multipleness 𝑚, a (n,m)-ingegral. As
a special case for our purpose, which is a (2,1)-ingegral, we first define
Symbol. (1,1/2)-integral Let 𝑓 ∶ 𝐼 ⊂ ℝ → ℝ be a smooth function;

⌠𝐼 𝑓(𝑥)
√

𝑑𝑥, (8)

and then
Symbol. (2,1)-integral Let 𝑧 ∶ 𝐼 × 𝐽 ⊂ ℝ2 → ℝ be a smooth function;

⌠𝐽⌠𝐼 𝑧(𝑥, 𝑦)
√

𝑑𝑥
√

𝑑𝑦. (9)

Using this notation, and
Definition 2.

𝐴(𝑥, 𝑦) ∶= {1, 𝑥 = 𝑦
−1, 𝑥 ≠ 𝑦 (10)

we can write our metric (1) concisely
Definition 3. Let 𝑓 ∶ 𝐼 ⊂ ℝ → ℝ and 𝑔 ∶ 𝐽 ⊂ ℝ → ℝ be speed-of-
light–Lipschitz continuous functions. We define the ‘distance’ of the two
functions by

𝑠(𝑓(𝑥), 𝑔(𝑦)) = ⌠𝐽⌠𝐼√𝑐2(𝑥 − 𝑦)2 + 𝐴(𝑥, 𝑦)(𝑓(𝑥) − 𝑔(𝑦))2 √
𝑑𝑥

√
𝑑𝑦 (11)
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4.2 Requirements on a future theory of (n,m)-
integrals
No coherent theory of these forms and integrals exists as far as I can see
and it would be a naïve expectation to demand it from me now in this
very paper! To talk quite formally ∫ 𝑓(𝑥, 𝑦)√𝑑𝑥𝑑𝑦 requires us to make
the 𝑛 in

∫ 𝑓 𝑑𝑛x ∶= ∫ 𝑓(𝑥1, ..., 𝑥𝑛) 𝑑𝑥1 ⋯ 𝑑𝑥𝑛

more than a mere notation; 𝑛 ∈ ℚ, maybe even 𝑛 ∈ ℝ.
History of mathematics shows us that the way to make progress is to
first identify our expectations from a theory of rational-forms and then
construct a theory such that our expectations are satisfied. These ex-
pectations will then be seen to be theorems in the axiomatic system of
the theory that we are after. Accordingly I name all the statements as
‘theorems’ but since they are not possible to prove now, until proved, all
of them logically remain hypotheses or conjectures. In order to arrive at
(1) consistently we seem to have used two theorems:
Theorem 1. (11) is a metric.

But for what space is the vital question that I prefer to leave open. (11)
cannot be a simple metric for a function space for the reasons explained
earlier, but all the requirements of a metric are easily seen to be satisfied
except for the triangle inequality, and triangle inequality shows again that
(11) is not a simple well-studied metric in the scope of current theory
functional analysis: in that case we must have

𝑑(𝑓, ℎ) ≤ 𝑑(𝑓, 𝑔) + 𝑑(𝑔, ℎ),

but again this triangle inequality is incomplete in that it does not pay
attention to inputs of functions.
Theorem 2.

⌠𝐼⌠𝐼
√

𝑑𝑥
√

𝑑𝑥 ≡ ∫
𝐼

𝑑𝑥 (12)

Corollary (𝐿1 distance). In (11) let

𝑥 = 𝑦,

then
⌠𝐼⌠𝐼 |𝑓(𝑥) − 𝑔(𝑥)|

√
𝑑𝑥

√
𝑑𝑥,

using theorem 2,
𝑠(𝑓, 𝑔) = ∫

𝐼
|𝑓(𝑥) − 𝑔(𝑥)| 𝑑𝑥.
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