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Abstract. I will explore in brief a simple geometry that could
unify quantum physics with general relativity.

1. Field

In this paper i present a simple scalar field model that could be
solution to quantum gravity problem. This scalar field depends on
metric tensor g and energy tensor T . I can write field equation , where
angle of rotation of coordinate system is φ = ϕ (1 − σ) where σ is spin,

R̂ is rotation matrix and ϕ is rotation angle of system. Coordinate
system when rotated is equal to: x′ = R̂ (φ)x, now i can write field
equation as, where constant κ is equal to κ = 1

~ or κ = 1
~c depending

on do i use time or space units:
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Probability of finding particle or many particle collection in volume V
is equal to some volume of particle or particles in time interval divided
by whole field volume in that time interval:
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Field density does change with time if field expands so probability is
time dependent. Field equation has n3 independent components where
n is number of dimensions. Space-time interval no longer consist of one
metric tensor but n ones:
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