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Abstract

In this work, we analyze alternative effective sample size (ESS) metrics for importance
sampling algorithms, and discuss a possible extended range of applications. We show the
relationship between the ESS expressions used in the literature and two entropy families, the
Rényi and Tsallis entropy. The Rényi entropy is connected to the Huggins-Roy’s ESS family
introduced in [22]. We prove that that all the ESS functions included in the Huggins-Roy’s
family fulfill all the desirable theoretical conditions. We analyzed and remark the connections
with several other fields, such as the Hill numbers introduced in ecology, the Gini inequality
coefficient employed in economics, and the Gini impurity index used mainly in machine
learning, to name a few. Finally, by numerical simulations, we study the performance of
different ESS expressions contained in the previous ESS families in terms of approximation
of the theoretical ESS definition, and show the application of ESS formulas in a variable
selection problem.

Keywords: Effective Sample Size; Importance Sampling; Entropy; Diversity measure; Gini
impurity; Gini inequality coefficient; inverse Simpson concentration; Berger-Parker index.

The effective sample size (ESS) measure is an important concept in order to quantify the
efficiency of different Monte Carlo methods, such as Markov Chain Monte Carlo (MCMC) [16, 30]
and Importance Sampling (IS) techniques [4, 6]. In an IS context, the ESS is a heuristic to
approximate how many independent identically distributed (i.i.d.) samples, drawn directly from
the target distribution π̄(x) = 1

Z
π(x) where Z is the normalizing constant, are equivalent in

some sense to the N weighted samples, x1, . . . ,xn, drawn from a proposal distribution q(x) and

weighted according to the ratio wn = π(xn)
q(xn)

[40]. This consideration is represented in the first box
of Figure 1, referred as abstract ESS concept.
The theoretical definition of the ESS for IS is given by the ratio between two variances [16, 26]:
the variance of the ideal Monte Carlo estimator (drawing samples directly from the target), and
the variance of the estimator obtained by an IS scheme, using with the same number of samples
in both estimators (see Eq. (5) for more details). This definition presents some drawbacks (see
[34, 14] for an exhaustive discussion) and is useless for practical purposes since it cannot be
computed in general. Hence, approximations of this theoretical formula are required. In Figure
1, this theoretical definition is represented by the second box. Within an IS context, the most



common choice in literature to approximate this theoretical ESS definition is ESS = 1∑N
n=1 w̄

2
n
, which

involves (only) the normalized importance weights w̄n = wn∑N
j=1 wj

, n = 1, . . . , N [10, 11, 27, 40].

This expression has been widely used in particle filtering in order to apply the resampling steps
adaptively [11, 10, 19]. However, it presents different weaknesses since it has been obtained
after several approximations of the theoretical definition. For instance, it just depends on the
normalized weights, but it is not dependent on particle locations and from the particular integral
to approximate (see [14, 34] for further details). Several other alternatives have been studied in
literature and applied in order to perform adaptive resampling within sequential Monte Carlo
(SMC) methods [22, 34]. For instance, another measure called perplexity, involving the discrete
entropy [9] of the normalized weights has been also proposed in [5] (see also [40, Chapter 4], [13,
Section 3.5]). Another expression is defined as the inverse of the maximum of the normalized
weights w̄n [34].

In this work, we recall the definition of the generalized ESS (G-ESS) functions given in [34].
We stress and show that the G-ESS functions can be considered diversity indices [24] (see third
box in Figure 1). Indeed, we show that the G-ESS functions can be associate to different entropy
families [9]. Given an entropy measure of the probability mass function (pmf) defined by the
normalized weights w̄n, n = 1, . . . , N , we can obtain a G-ESS formula by taking the exponential
transformation of the entropy expression (in some cases, some additional translation and scaling
are needed). More specifically, we analyze the Rényi and Tsallis entropy families, converting them
in G-ESS functions. The ESS formulas corresponding to the Rényi entropy coincides with the
Huggins-Roy’s ESS family introduced and studied independently in [22],

ESS =

(
N∑

n=1

w̄βn

) 1
1−β

, β ≥ 0.

We show that all the G-ESS expressions belonging to this family satisfy all the desired
requirements, being all defined as proper and stable (see Section 3 for further details). Moreover,
almost all the main formulas previously proposed in the literature are contained in the Huggins-
Roy’s family. Using the Tsallis entropy, we obtain another ESS family which contain the Gini
impurity index as special case, that is widely employed in machine learning within decision tree
algorithms [3, 28]. We also discuss the connection to another ESS family provided in [34]. However,
generally the Tsallis ESS formulas are not proper and stable. Other stable expressions that do
not belong to the Huggins-Roy’s family are also given (see, e.g., Sections 6 and 7.3).
The connections with the entropy families show the relationships with multiple studies in different
fields (e.g., ecology and machine learning to name a few). The benefit of creating these bridges
between fields is twofold and bidirectional: different ideas used in other fields can be applied as
ESS expressions in an IS context (as the formula (44) introduced in political science) and, vice-
versa, ESS formulas proposed for IS could be employed in other fields. Showing these bridges is
the main goal of this work. We remark the links with other fields in Section 7, where we discuss
the applications of ESS expression in ecology, economics, political science, physics, and also in
feature selection problems. Other connections with machine learning, economics, and ecology
are also discussed in the previous Sections 5 and 6. Figure 5.2 provides a summary of the main
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nomenclature employed in different fields.
Furthermore, by numerical simulations, we obtain the G-ESS function within Huggins-Roy’s family
which provides the best approximation the theoretical ESS definition, in two specific scenarios.
We also study linear combinations of G-ESS functions in order to enhance the approximation of
the theoretical definition. The results of our numerical simulations suggest the use of the formulas

of the type of ESS =
(

1∑N
n=1 w̄

4
n

)1/3

and ESS =
(

1∑N
n=1 w̄

8
n

)1/7

. Both expression differ from the

classical formula ESS = 1∑N
n=1 w̄

2
n
, which is contained in Huggins-Roy’s family with β = 2. Our

study suggest the use of β > 2. Moreover, we have applied the most relevan ESS formulas
in a variable selection framework. Some of them provides good results in line with the expert’s
opinions. These considerations can be also relevant clues for future applications and studies.

Abstract

ESS concept:

comparing

weighted samples

with i.i.d. samples

from ⇡̄

Theoretical

Definition:

for instance,

ESS = N
var⇡[bI]

varq[eI]

Approximation:

Diversity

measures
for instance,

[ESS =
1

PN
n=1 w̄2

n

Figure 1: Graphical representation of the development of the approximated ESS formulas for importance

sampling. The abstract concept of Effective Sample Size has been translated in a mathematical

formulation providing a first attempt of theoretical definition. Since this definition cannot compute,

several approximations have been proposed (based only in the information provided by the normalized

IS weights). The expression ESS = 1∑M
n=1 w̄

2
n

is the most applied so far in the literature.

1 Effective sample size (ESS) for importance sampling

Let us denote the target probability density function (pdf) as π̄(x) ∝ π(x) (known up to a
normalizing constant) with x ∈ X . Moreover, we consider the following integral involving π̄(x)
and a square-integrable function h(x),

I =

∫

X
h(x)π̄(x)dx, (1)

which we aim to approximate using a Monte Carlo approach. If we are able to draw N independent
samples x1, . . . ,xN from π̄(x), then the Monte Carlo estimator of I is

Î =
1

N

N∑

n=1

h(xn)
N→∞−−−→ I, where xn ∼ π̄(x). (2)

However, generating samples directly from the target, π̄(x), is often impossible. Alternatively, we
can draw N samples x1, . . . ,xN from a (simpler) proposal pdf q(x),1 and then assign a weight to

1We assume that q(x) > 0 for all x where π̄(x)) 6= 0.
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each sample, wn = π(xn)
q(xn)

, with n = 1, . . . , N , according to the importance sampling (IS) approach.
Defining the normalized weights,

w̄n =
wn∑N
i=1wi

, where wn =
π(xn)

q(xn)
, n = 1, . . . , N, (3)

then the self-normalized IS estimator is

Ĩ =
N∑

n=1

w̄nh(xn)
N→∞−−−→ I, where xn ∼ q(x). (4)

Generally, the estimator Ĩ has greater variance than Î, since the samples are not directly drawn
from π̄(x) (for some exceptions, that occur with a suitable choice of the proposal, see [32]).

Moreover, Ĩ is biased whereas Î is unbiased. In several applications [10, 11], it is necessary to

measure the loss of the efficiency when we apply the IS estimator Ĩ, instead of ideal Monte Carlo
estimator Î, i.e., to measure in some way the increase of variance due to the use of Ĩ instead of
Î. Hence, the idea is to define the Effective Sample Size (ESS) as the ratio of the variances of the
estimators [26],

ESSteo(h) = N
varπ[Î]

varq[Ĩ]
. (5)

Note the dependence on the function h(x) corresponding to a specific integral.

2 Practical ESS formulas

2.1 ESS expressions in the literature

Finding a useful expression of ESS derived analytically from the theoretical definition in Eq. (5)
above is not straightforward. Then, different derivations [26, 27], [11, Chapter 11], [40, Chapter
4] proceed using several approximations and assumptions for yielding an expression useful from a
practical point of view. A well-known rule of thumb, widely used in literature [11, 31, 40], is

ESSN(w̄) =
1∑N

n=1 w̄
2
n

, (6)

where we have used the the normalized weights

w̄ = [w̄1, . . . , w̄N ],

defined in Eq. (3). The formula above has also an intuitive probabilistic interpretation (from a
resampling point of view): if we draw random pairs of samples with replacement according to the
probability mass function (pmf) defined by w̄n, with n = 1, ..., N , the value 1∑N

n=1 w̄
2
n

is the expected

number of trials needed to obtain a first pair containing the same sample twice (see Appendix A
for details). Furthermore, another interesting form of Eq. (6) as a function of the variance of the
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weights is given in Appendix B. Another similar measure, called perplexity, has been proposed
independently in literature based only on the normalized importance weights [5, 40],

ESSN(w̄) = exp{H(w̄)} (7)

where

H(w̄) = −
N∑

n=1

w̄n log w̄n,

is the discrete entropy of the vector w̄ [9]. An additional example is the following formula [34],

ESSN(w̄) =
1

max w̄n
. (8)

Let us assume that the maximum value max w̄n is reached only with one sample (only for one
index n). In this case, the expression above has also a probabilistic interpretation: if we draw one
sample with replacement according to the pmf defined by w̄n, with n = 1, ..., N , the value 1

max w̄n
is the expected number of trials needed to obtain for a first time the sample corresponding to the
maximum weight. The proof is very similar the derivation in Appendix A. This interpretation is
interesting from a resampling point of view. An interesting property of all the three expressions
above in Eqs. (6)-(7)-(8) is

1 ≤ ESSN(w̄) ≤ N. (9)

2.2 Relationship with the theoretical definition

All these measures ESSN(w̄) are only based on the normalized weights w̄ and there is a loss of
information regarding the locations of the samples xn, which is clearly a drawback [14, 34], even if
the computation of the weights involves the use of the samples, i.e., wn = π(xn)/q(xn). To clarify
this point, we give the following example. Two different samples x′ and x′′ could have very similar
weights w′ = π(x′)

q(x′)
≈ w′′ = π(x′′)

q(x′′)
, so that the ESS formulas just use this information. However, the

ESS formulas lose completely the information about the positions of the samples x′ and x′′. The
two particles can be very close to each other or far away; the latter scenario is often preferred in
terms of statistical information.
Moreover, the theoretical value ESSteo(h) in (5) is always positive, could be smaller than 1
and, in some situations, bigger than N as well [14, Section 3.3], [32]. This last scenario can
occur when an optimal proposal pdf (or a density close to the optimal one) is used in an IS
scheme [32]. In this case, the IS scheme can beat the baseline Monte Carlo estimator, and
ESSteo(h) > N . Furthermore, ESSteo(h) depends on the function h that does not appear in
the expressions ESSN(w̄). Therefore, the formulas ESSN(w̄) that all satisfy the constrains in
Eq. (9) (i.e., 1 ≤ ESSN(w̄) ≤ N) are quite rough approximations of ESSteo(h). However, they
are often used in practice. The reason for this success is connected to their interpretation as
discrepancy/diversity measures, as explained below.
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2.3 Discrepancy w.r.t. the uniform pmf

All the formulas above can be considered diversity indices or discrepancy measures [24, 34]. We
give more details in the rest of the work. Here, let us start considering the discrepancy between
two pmfs: the pmf defined by the weights w̄ = [w̄1, . . . , w̄N ] and the discrete uniform pmf defined
by w̄∗ =

[
1
N
, . . . , 1

N

]
. Indeed, the ESS formula in Eq. (6) can be directly related to the Euclidean

distance between these two pmfs, i.e.,

‖w̄ − w̄∗‖2 =

√√√√
N∑

n=1

(
w̄n −

1

N

)2

=

√√√√
(

N∑

n=1

w̄2
n

)
+N

(
1

N2

)
− 2

N

N∑

n=1

w̄n

=

√√√√
(

N∑

n=1

w̄2
n

)
− 1

N

=

√
1

ESSN(w̄)
− 1

N
,

where we have used ESSN(w̄) = 1∑N
i=1 w̄

2
n

in Eq. (6). Hence, maximizing the expression in Eq. (6)

is equivalent to minimizing the Euclidean distance ‖w̄ − w̄∗‖2. Note that this behavior is also
typical of discrete entropy measures, as we stress in the next sections. Indeed, if the weights are
more “diverse” to each other, the distance w.r.t. the discrete uniform pmf w̄∗ is higher, the ESS
and the entropy of w̄ are smaller. On the other hand, if the normalized weights are more similar
to each other, they are all closer to the value 1/N , so that the distance w.r.t. the discrete uniform
pmf w̄∗ is smaller. As a consequence, the corresponding ESS and the entropy of w̄ would be
greater. Hence, it appears natural to consider the possibility of using other discrepancy and/or
entropy measures to design alternative ESS expressions. Highlighting these types of connections
is relevant since (a) we can extend the range of applications of the ESS formulas (applying that
expressions in other fields) and (b) derivations employed in other fields can be used to design novel
ESS formulas.

Why discrepancy measures. The maximum ESS value is obtained when w̄ = w̄∗, i.e., all
the normalized weights are equal to 1/N ,

w̄1 = ... = w̄N =
1

N
.

This can be considered a good scenario (and confused with the optimal one) since the ideal Monte
Carlo estimator in Eq. (2) can be interpreted as an estimator with “equal weighted samples”
(each h(xn) is multiplied by a factor 1/N). The problem is that with an IS scheme, the case
w̄1 = ... = w̄N = 1

N
(or w̄1 ≈ ... ≈ w̄N ≈ 1

N
) can occur also in catastrophic scenarios, for instance,
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when all the samples are located in a tail of the target distribution (that often is a quite flat
region), or when the samples are very close to each other.
However, the ESS formulas above based on the discrepancy approach are able to detect other
critical scenarios. For instance, the minimum ESS value is reached when just one weight
concentrates all the probability mass (w̄i = 1 and w̄j = 0 for i 6= j), which is a situation to be
avoided within particle filtering and sequential Monte Carlo schemes [1, 8, 10, 12]. Therefore, this
idea of this discrepancy approach has gained strength in the literature, and the ESS approximations
above have been widely applied.

In the following, we describe five conditions that a generic ESS approximation based only on the
information of the normalized weights must satisfy. Then we show that the family of functions
proposed in [22] fulfills these five conditions. Furthermore, we link this G-ESS family with the
Rényi entropy providing also some theoretical results.

3 Generalized ESS functions

Considering the practical approach employed above for defining ESS formulas as discrepancy-
diversity measures, here we describe the five properties that a generalized ESS measure (G-ESS)
should satisfy, based only on the information of the normalized weights. We list below five
conditions. The formulas which satisfy all of them can be applied as suitable ESS measures in
practical applications (within IS or sequential IS schemes). Otherwise, if they satisfy at least the
first three conditions, they can be considered as discrepancy measures with respect to the the
uniform pmf, but have not the ability to be ”particle/sample counters”, as we clarify below with
practical examples.
First of all, note that any possible G-ESS is a function of the vector of normalized weights
w̄ = [w̄1, . . . , w̄N ],

ESSN(w̄) = ESSN(w̄1, . . . , w̄N) : SN → [1, N ], (10)

where SN ⊂ RN represents the unit simplex in RN . Namely, the variables w̄1, . . . , w̄N are subjected
to the following constraint:

w̄1 + w̄2 + . . .+ w̄N = 1. (11)

Moreover, we denoted

w̄∗ =

[
1

N
, . . . ,

1

N

]
, (12)

and the vertices of the simplex SN are denoted as

w̄(j) = [w̄1 = 0, . . . , w̄j = 1, . . . , w̄N = 0], (13)

i.e., w̄j = 1 and w̄n = 0 (it can occur only if π(xn) = 0), for n 6= j with j ∈ {1, . . . , N}.

Below we list the five conditions that ESSN(w̄) should fulfill:
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C1. Symmetry: ESSN must be invariant under any permutation of the weights, i.e.,

ESSN(w̄1, w̄2, . . . , w̄N) = ESSN(w̄j1 , w̄j2 , . . . , w̄jN ), (14)

for any possible set of indices {j1, . . . , jN} = {1, . . . , N}.

C2. Maximum condition: A maximum value is N and it is reached at w̄∗ (see Eq. (12)), i.e.,

ESSN (w̄∗) = N ≥ ESSN(w̄). (15)

C3. Minimum condition: the minimum value is 1 and it is reached (at least) at the vertices
w̄(j) of the unit simplex in Eq. (13),

ESSN(w̄(j)) = 1 ≤ ESSN(w̄). (16)

for all j ∈ {1, . . . , N}.

C4. Unicity of extreme values: The maximum at w̄∗ is unique and the the minimum value
1 is reached only at the vertices w̄(j), for all j ∈ {1, . . . , N}.

C5. Stability of the rate ESSN/N : Consider the vector of weights w̄ ∈ RN and the vector
v̄ = [v̄1, . . . , v̄MN ] ∈ RMN , M ≥ 1, obtained repeating and scaling by 1

M
the entries of w̄,

i.e.,

v̄ =
1

M
[w̄, w̄, . . . , w̄︸ ︷︷ ︸

M−times

]. (17)

The invariance condition is expressed as

ESSN(w̄) =
1

M
ESSMN(v̄), (18)

for all M ∈ N+.

This last requirement can be interpreted as an adjustment of the well-known homogeneity (scale-
invariance) condition for real functions.2 Note that, given conditions C2 and C3, we always have

1 ≤ ESSN(w̄) ≤ N. (19)

If at least C1, C2 and C3 are fulfilled, the G-ESS can be considered a discrepancy measure with
respect to the the uniform pmf. If also C4 is satisfied, then it is a proper discrepancy measure
since it reaches the maximum value (that is N) only at w̄∗ and the minimum value (that is 1)
only at the vertices w̄(j). However, if C5 is not ensured, the formula cannot be considered a useful
ESS function from a practical point of view.

2A function f(x) is said to be homogeneous of degree k if f(c x) = ckf(x) where c is a non-zero constant value.
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On the condition C5. For clarifying this condition, consider the vector v̄ = [0, 1, 0] with
N = 3, and the two additional vectors obtained repeating v̄ two or three times,

v̄′ =

[
0,

1

2
, 0, 0,

1

2
, 0

]
=

1

2
[v̄, v̄],

v̄′′ =

[
0,

1

3
, 0, 0,

1

3
, 0, 0,

1

3
, 0

]
=

1

3
[v̄, v̄, v̄],

We would like to obtain ESS3(v̄) = 1,ESS6 (v̄′) = 2 and ESS9 (v̄′′) = 3, i.e., the ratio ESSN
N

is
constant, i.e.,

ESS3(v̄)

3
=

ESS6 (v̄′)

6
=

ESS9 (v̄′′)

9
=

1

3
.

A more intuitive explanation is as follows. If we have a vector of normalized weights v̄′ =[
0, 1

2
, 0, 0, 1

2
, 0
]
, we would like to get ESS6(v̄′) = 2, since we have 2 effective samples instead of 6

(at most we have 2 effective samples; we can just say that, looking the vector v̄′). Now, if we have
a vector v̄′′ =

[
0, 1

3
, 0, 0, 1

3
, 0, 0, 1

3
, 0
]
, we would like to obtain ESS9(v̄′′) = 3.

From another point of view, since v̄′′ can be seen as v̄′′ = 1
3
[v̄, v̄, v̄], where v̄ = [0, 1, 0], we would

like that the ESSN formula would be able to count effective samples in the same way in different
pieces of a vector. Namely, if ESS3(v̄) = 1 and v̄′′ is formed by three repetitions of v̄ then we
expect to obtain ESS9(v̄′′) = 3. Any result that differs from these ones, does not make sense from
a practical point of view, e.g., within a particle filter or sequential Monte Carlo scheme.
Classification of G-ESS. Given the previous observations, we can provide a classification of the
possible G-ESS functions. Table 1 classifies the G-ESS functions in different families depending
on the conditions fulfilled. Table 1 shows the cases found in different families of ESS measures
[34]. Recall that the first three conditions are strictly required, to be considered a discrepancy
measure with respect to the uniform pmf. All the G-ESS functions which satisfy at least the first
four conditions, i.e., from C1 to C4, are called proper functions. If all the conditions are fulfilled
they are called proper and stable. We are interested in this last type of G-ESS expressions, proper
and stable.

Remark 1. Only the proper and stable G-ESS functions are useful from a practical point of view,
in order to be employed as ESS measures.

Table 1: Classification of G-ESS formulas.

Class of G-ESS C1 C2 C3 C4 C5

Degenerate X X X x x
Proper X X X X x

Degenerate and Stable X X X x X
Proper and Stable X X X X X

In order to clarify the previous remark, and the importance of the five conditions, below we show
the importance of the condition C5, introducing a family that fulfills the first 4 conditions but
does not satisfy the last condition.
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Example of a proper but non-stable G-ESS family. Here, as an example, we introduce
a G-ESS family such that the formulas in that family are all proper but not stable. This means
that all the contained G-ESS expressions can be used as discrepancy measure with respect to
the uniform pmf but are not suitable to be employs as ESS measures (within particle filters or
sequential Monte Carlo schemes). We can design a G-ESS family based on the Lp distance between
w̄ and w̄∗ which satisfies the first four conditions above. This could be an intuitive idea when we
are interested in discrepancy measures. We can in fact define the family

ESS-D
(p)
N (w̄) =

1

αp||w̄ − w̄∗||p + 1
N

, αp =
N − 1

N
[
N−1+(N−1)p

Np

]1/p
, (20)

where

||w̄ − w̄∗||p =

(
N∑

i=1

∣∣∣∣w̄n −
1

N

∣∣∣∣
p
)1/p

, p > 0.

It is possible to show that ESS-D
(p)
N (w̄∗) = N and ESS-D

(p)
N (w̄(j)) = 1. Hence, ESS-D(p) fulfills

C1, C2, and C3 and it is also easy to show that satisfies C4. Hence, this family can be employed
as a discrepancy measure with respect to the uniform pmf w̄∗. However, it is not a good ESS
measure since does not satisfy C5 (it is not stable). For clarifying this point, let us consider some

examples comparing ESS-D
(p)
N with p = 2 in Eq. (20), with other ESS formulas (but stable) in

Eqs. (6) and (8). The results are given in Table 2.

Table 2: Examples of ESS measures with different vector w̄ with dimension N = 5. Note that
ESS-D

(p)
N (w̄) with p = 2 in Eq. (20) is proper but non-stable, whereas the rest of two ESS formulas

in Eqs. (6)-(8) are both proper and stable.

(a) (b) (c) (d) (e)

w̄ =⇒ [1, 0, 0, 0, 0]
[

1
2 ,

1
2 , 0, 0, 0

] [
1
3 ,

1
3 ,

1
3 , 0, 0

] [
1
4 ,

1
4 ,

1
4 ,

1
4 , 0
] [

1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5

]
= w̄∗

ESS-D
(2)
5 (w̄) — Eq. (20) 1 1.45 1.90 2.5 5

1∑5
n=1 w̄2

n
— Eq. (6) 1 2 3 4 5

1
max w̄n

— Eq. (8) 1 2 3 4 5

the formula ESS-D
(p)
N does not provide the desired results, with the exception of the cases (a)

and (e) (the first and the last scenarios) that are related to the condition C2 and C3. Namely,

ESS-D
(p)
N is not a good particle counter, unlike the other two ESS formulas. For instance, in case

of w̄ = [w̄1 = 1
3
, w̄2 = 1

3
, w̄3 = 1

3
, w̄4 = 0, w̄5 = 0] using just the information of these normalized
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weights w̄n, we can just assert that we have three effective samples, whereas ESS-D
(2)
5 (w̄) returns

≈ 1.90.

4 Huggins-Roy’s ESS family

The Huggins-Roy’s ESS family introduced in [22] is defined as

ESS-H
(β)
N (w̄) =

(
1∑N

n=1 w̄
β
n

) 1
β−1

, (21)

=

(
N∑

n=1

w̄βn

) 1
1−β

, β ≥ 0. (22)

Table 3 shows below that the Huggins-Roy’s family contains all the most important, proper and
stable G-ESS functions introduced in literature. The special cases with β = 0 and β = 1 bring to
two undetermined expressions that will be solved and clarified below (when the relationship with

Rényi entropy is shown). We can easily note that 1 ≤ ESS-H
(β)
N (w̄) ≤ N for all β ≥ 0. More

generally, it is possible to observe that for β 6= 0 the conditions C1, C2, C3 and C4 are fulfilled
(with the exception of β = 0 that does not satisfy C4). Furthermore, the condition C5 is also
satisfied, for all β, as we show next.

Proof. In order to prove that C5 is satisfied, for simplicity let us consider a vector v̄ = 1
2
[w̄, w̄],

defined repeating twice the vector w̄ (i.e., M = 2). In this case, we have

ESS-H
(β)
2N(v̄) =

(
1

2β

N∑

n=1

w̄βn +
1

2β

N∑

n=1

w̄βn

) 1
1−β

,

=

(
1

2β−1

N∑

n=1

w̄βn

) 1
1−β

,

= 2

(
N∑

n=1

w̄βn

) 1
1−β

,

= 2 ESS-H
(β)
N (w̄), ∀β, (23)

which is exactly the condition in Eq. (18). The proof can be easily repeated for a value M > 2.

Remark 2. Hence, all G-ESS functions (except for β → 0) belonging to the Huggins-Roy’s
ESS family are proper and stable. For β → 0, the corresponding ESS is degenerate and stable.
Moreover, some specific cases provided in Table 3, coincide with other proper and stable G-ESS
formulas proposed in [34].
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Table 3: Relevant special cases contained in the Huggins-Roy’s family. They are all proper and
stable, except for N −NZ that is degenerate and stable.

β → 0 β = 1/2 β → 1 β = 2 β →∞

N −NZ

(∑N
n=1

√
w̄n

)2
exp

(
−
∑N

n= w̄n log w̄n

)
1∑N

n=1 w̄
2
n

1
max[w̄1,...,w̄N ]

where NZ is
the number of Perplexity - Eq. (7) Standard formula In Eq. (8)

zeros in w̄ [5, 40] in Eq. (6) - [26] [34]

5 Relationship with the entropy measures

5.1 Relationship with the Rényi entropy

In this section, we show the connection between the Rényi entropy and Huggins-Roy’s family. The
Rényi entropy [9] is defined as

R
(β)
N (w̄) =

1

1− β
log

[
N∑

n=1

w̄βn

]
, β > 0, (24)

Then, first noting that 1
1−β log

[∑N
n=1 w̄

β
n

]
= log

[∑N
n=1 w̄

β
n

] 1
1−β

and taking the exponential of

both sides of the equation above, we obtain

ESS-H
(β)
N (w̄) = exp

(
R

(β)
N (w̄)

)
=

(
N∑

n=1

w̄βn

) 1
1−β

, β > 0. (25)

In ecology, the exponential of the Rényi entropy defines the so-called diversity indices [24]. This
means that the Huggins-Roy’s family contains and coincides with all the diversity indices derived
by the Rényi entropy [9, 24]. See Section 7.1, for further details.

Note that, for β = 0, we have R
(0)
N (w̄) = log(N − NZ) where NZ = #

{
all w̄n: w̄n = 0, ∀n =

1, . . . , N
}

(see [9] for further details), so that ESS-H
(0)
N (w̄) = N −NZ , as also shown in Table 3.

For β = 1, we have R
(0)
N (w̄) = −

∑N
n= w̄n log w̄n [9] then

ESS-H
(1)
N (w̄) = exp

(
−

N∑

n=

w̄n log w̄n

)
, (26)

that is the perplexity in Eq. (7) [5, 40].

5.1.1 Inequalities for the G-ESS within Huggins-Roy family

One of advantages of the connection with the Rényi entropy is that we can obtain easily some
theoretical results about ESS-H

(β)
N . Indeed, for instance, it is well-known that [9]

R
(0)
N (w̄) ≥ R

(1)
N (w̄) ≥ R

(2)
N (w̄) ≥ . . . R

(β′)
N (w̄) . . . ≥ R

(∞)
N (w̄), β′ ≥ 2.

12



Then, since ESS-H
(β)
N is an increasing monotonic function of R

(β)
N , we can also assert

ESS-H
(0)
N (w̄) ≥ ESS-H

(1)
N (w̄) ≥ ESS-H

(2)
N (w̄) ≥ . . .ESS-H

(β′)
N (w̄) . . . ≥ ESS-H

(∞)
N (w̄). (27)

Namely, we can re-write

ESS-H
(∞)
N (w̄) ≤ ESS-H

(β)
N (w̄) ≤ ESS-H

(0)
N (w̄),

1

max w̄n
≤ ESS-H

(β)
N (w̄) ≤ N −NZ , β ≥ 0. (28)

Moreover, since from [9] we have

R
(2)
N (w̄) ≤ 2 R

(∞)
N (w̄),

we can also write
ESS-H

(2)
N (w̄) ≤ 2 ESS-H

(∞)
N (w̄). (29)

5.2 Relationship with the Tsallis entropy

Another famous entropy family is the so-called Tsallis entropy [46] (as known as q-logarithmic
entropy [24]), defined as

T
(α)
N (w̄) =

1

α− 1

[
1−

N∑

n=1

w̄αn

]
, α > 0. (30)

We can obtain a corresponding G-ESS family based on the Tsallis entropy, after some additional
simple operations of translation and scaling, i.e.,

ESS-T
(α)
N (w̄) =

(α− 1)(N − 1)

N1−α − 1
T

(α)
N (w̄) + 1, (31)

=
(α− 1)(N − 1)

N1−α − 1

[
1−

N∑

n=1

w̄αn

]
+ 1, α > 0. (32)

Note that
1 ≤ ESS-T

(α)
N (w̄) ≤ N.

Special cases. For α → 0, we get again the following degenerate and stable formula
ESS-T

(0)
N (w̄) = N − NZ , where NZ = #

{
all w̄n: w̄n = 0, ∀n = 1, . . . , N

}
. For α → ∞,

we have the degenerate expression ESS-T
(∞)
N (w̄) = N if w̄ 6= w̄(j) for all j ∈ {1, . . . , N}, or

ESS-T
(∞)
N (w̄) = 1 if w̄ = w̄(j), for all j ∈ {1, . . . , N}.

Setting α = 2, we have

ESS-T
(2)
N (w̄) = N

(
1−

N∑

n=1

w̄2
n

)
+ 1,

= N Gini-impurity(w̄) + 1, (33)
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where we have used the definition of the function below,

Gini-impurity(w̄) = 1−
N∑

n=1

w̄2
n, (34)

that is the so-called Gini impurity or Gini’s diversity index or also known as Gini-Simpson index in
biodiversity studies, that is widely used in machine learning within decision tree algorithms [3, 28].
Moreover, from an ecology point of view, that Gini-impurity(w̄) represents the probability that
two individuals chosen at random are of different species. The Gini impurity is associated with the
name of Edward H. Simpson, who introduced it as an index of diversity in 1949 [44]. Then, Corrado
Gini used the formula (called as “Gini impurity”) above in economics, statistics, and demography
[7]. It is such a natural quantity that it has been used in many different fields and admits
an unbiased estimator. Despite all these benefits, Gini-impurity(w̄) is not directly an effective

number and needs an additional translation and scaling, becoming ESS-T
(2)
N (w̄). Moreover, the

final expression is not stable.

It is also interesting to remark that the final form of ESS-T
(α)
N (w̄) resembles the G-ESS family

ESS-V
(r)
N (w̄) introduced in [34],

ESS-V
(r)
N (w̄) =

N r−1(N − 1)

1−N r−1

[
N∑

n=1

w̄rn

]
+

N r − 1

N r−1 − 1
, r > 0,

However, generally the ESS expressions contained in ESS-V
(r)
N (w̄) and ESS-T

(α)
N (w̄) are not stable.

For this reason, in this work we focus on mainly Huggins-Roy ESS family. Furthermore, it is also
possible to find another transformation, instead of the standard exponential function exp(·) (as
for the Rényi entropy), that converts the Tsallis entropy into the Huggins-Roy ESS family. That
is the so-called q-exponential function [9]:

expα(t) =

{
(1 + (1− α)t)1/(1−α) if α 6= 1,

exp(t) if α = 1.
(35)

After some manipulations, we arrive to

expα

(
T

(α)
N (w̄)

)
= ESS-H

(α)
N (w̄). (36)

Hence, this confirms in a generalized-sense the definition of a diversity index as “exponential of
an entropy” given in Eq. (25), used in ecology.

6 Other stable G-ESS expressions

All the ESS formulas contained in the Huggins-Roy family are proper and stable, as we have shown
in Section 4. The converse statement is not true, i.e., there are other proper and stable G-ESS
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formulas that are not contained in the Huggins-Roy family. We provide some examples below.

Another degenerate and stable formula. We start with an additional example of degenerate
and stable expression:

ESS-PlusN(w̄) = N+ = # {w̄n ≥ 1/N, ∀n = 1, . . . , N} . (37)

It represents the number of the normalized weights bigger or equal to 1/N . This ESS expression is
stable but degenerate. The issue is that ESS-PlusN(w̄) reaches the minimum value 1 even at points
that are not the vertices w̄(j) of the simplex (see Eq. (13)). For instance, with w̄ = [0.8, 0, 0.2]
we get ESS-Plus3(w̄) = 1, but we would like to reach the minimum value 1 only at the vertex
w̄(1) = [1, 0, 0], w̄(2) = [0, 1, 0] and w̄(3) = [0, 0, 1]. However, ESS-PlusN(w̄) is much more useful
than another degenerate and stable formula that we already found in Table 3, i.e., N−NZ . Indeed,
N −NZ is degenerate since reaches the maximum value, N , in any w̄ that does not contain any
zero (instead of only at w̄∗). This makes N −NZ much less useful from a practical point of view,
for instance, within a particle filter. Whereas ESS-PlusN(w̄) could be perfectly employed within
a particle filter, considering it as a more conservative ESS formula with respect to other ESS
expressions.

Other proper and stable formulas. Let us define
{
w̄+

1 , . . . , w̄
+
N+

}
= {all w̄n such that: w̄n ≥ 1/N, ∀n = 1, . . . , N} , (38)

where N+ is given in Eq. (37), i.e., N+ = #
{
w̄+

1 , . . . , w̄
+
N+

}
. Now, it is possible to define a

correct-proper version of ESS-Plus [34], i.e.,

ESS-QN(w̄) = −N
N+∑

i=1

w̄+
i +N+ +N,

= N+ +N

(
1−

N+∑

i=1

w̄+
i

)
,

= N+ +N

(
N−N+∑

i=1

w̄−i

)
= N+ +Nγ, (39)

where w̄−i are all the normalized weights such that < 1/N , and γ =
∑N−N+

i=1 w̄−i ≤ 1. Note that
γ = 0 in the two extreme cases w̄ = w̄(j) and w̄ = w̄∗ and ESS-QN(w̄) = N+ + 0 = N+, i.e., we
have ESS-QN(w̄j) = 1 and ESS-QN(w̄∗) = N as expected. In all the other scenarios, a portion of
all the number of samples (that is γN with γ ≤ 1) is added to N+. The resulting ESS formula is
proper and stable. This measure is also related to L1 between the two pmfs [34].

Another proper and stable ESS expression introduced in the literature is based on the Gini
inequality coefficient, widely applied in economics [23, 34]. First of all, we define the non-decreasing
sequence of normalized weights as

w̄(1) ≤ w̄(2) ≤ . . . ≤ w̄(N), (40)
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obtained sorting in ascending order the entries of the vector w̄. Let us consider the Gini inequality
coefficient G(w̄) introduced in economy for measuring the wealth inequality can be defined as
follows [17, 7, 23],

G(w̄) = 2
s(w̄)

N
− N + 1

N
, where s(w̄) =

N∑

n=1

nw̄(n). (41)

It is not the unique formulation: there are various equivalent formulations of the Gini coefficient
[47, 33]. Then, the corresponding G-ESS function is given by

ESS-GiniN(w̄) = −NG(w̄) +N,

= −N
[
2
s(w̄)

N
− N + 1

N

]
+N,

= −2s(w̄) + 1 + 2N,

= −2
N∑

n=1

nw̄(n) + 1 + 2N, (42)

which is proper and stable. It can be easily also shown that ESS-GiniN(w̄(j)) = −2N+1+2N = 1

for all j and ESS-GiniN(w̄∗) = −2 1
N
N(N+1)

2
+ 1 + 2N = N .

The fact that some proper and stable ESS expressions do not belong to the Huggins-Roy family
shows there is still room and need for further research on in this topic. For instance, new proper
and stable formulas could be discovered, as we shown in the next section.

7 Connections with other research fields: extended range

of applications

In the previous section, we have already seen that the connections with the Rényi and Tsallis
entropy families show the existence of other relationships with many studies in different fields
(e.g., ecology and machine learning). The benefit of creating these bridges between fields is
bidirectional: different ideas used in other fields can be applied as ESS in a IS context and, vice-
versa, ESS formulas proposed for IS could be employed in other fields.
A clear example of this benefit is given, in Section 7.3, where we discover a new proper and stable
ESS formula, that has been introduced in political science.

7.1 ESS in ecology

The connection with the Rényi entropy shows that the G-ESS functions of the Huggins-Roy’s
family are also diversity indices [24]. More specifically, the exponential of the Rényi entropy
is known in ecology as the Hill number of order β [24]. The Hill numbers are the most
important measures of biological diversity. For instance, the Hill number of order 0 corresponds
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to ESS-H
(0)
N (w̄) = N − NZ , and represents the number of species. This is also called the species

richness in ecology, and is often used as a measure of diversity in the popular media and the ecology
literature. However, it does not make any distinction between a rare species and a common species.
Moreover, ESS-H

(0)
N does not provide any information about the balance between the species that

are involved.
In Section 5.2, we have seen that the formula 1 −

∑N
n=1 w̄

2
n is called Gini-impurity in machine

learning. Whereas, in ecology, it is called Gini-Simpson index, since Simpson introduced it as an
index of diversity [44]. Moreover, since the sum of the squares

∑N
n=1 w̄

2
n can be interpreted as a

measure of concentration (see Section 7.2), the Hill number (diversity) of order 2, ESS-H
(2)
N (w̄), is

also called the inverse Simpson concentration in ecology [44]. Furthermore, the diversity of order

∞, i.e., ESS-H
(∞)
N (w̄) = 1/max w̄i, is known as the Berger-Parker index in ecology [2]. While the

Hill number of order 0 gives rare species the same importance as any other, diversity of order ∞
ignores them and takes into account only the dominant species. More generally, the parameter β
controls the sensitivity of the diversity measure ESS-H

(β)
N to rare species, with higher values of β

corresponding to measures less sensitive to rare species. In other words, β reflects the inverse of
the importance given to rare species.

7.2 ESS in economics

The ESS indices have been also widely employed (under other names) as metrics for portfolio
dispersion and/or concentration. The effective number of positions held in a portfolio is usually
measured as ESSN(w̄) = 1∑N

n=1 w̄
2
n
, where the normalized weights w̄n represent the proportion of

market value invested in each security. A high value of ESSN(w̄) implies a very diversified portfolio
(at most different N equally weighted positions). The formula 1∑N

n=1 w̄
2
n

has been shown to be one

of the most efficient measures of portfolio diversification. It has been also used as a constraint to
force a portfolio to hold a minimum number of effective assets, denoted for instance as Neff (e.g.,
‖w̄‖2 ≤ N−1

eff ).
Concentration measures. In Section 7.1, we have seen that there is a coincidence between
Hill numbers and the Huggins-Roy ESS formulas. More generally, the reciprocals of the Hill
numbers (hence, the reciprocals of the G-ESS formulas as well) have been used in economics as
concentration measures, i.e.,

Conc
(β)
N (w̄) =

1

ESS-H
(β)
N (w̄)

=

(
N∑

n=1

w̄βn

) 1
β−1

, β > 0. (43)

As an example, we could investigate if an industry or a market is concentrated in the hands of a
small number of large players. Let assume there are N competing companies in a given industry,
each one occupying a portion of the market represented by the normalized weights w̄1, . . . , w̄N ,
then the concentration 1/ESS-H

(β)
N (w̄) is maximized when one company has a monopoly, i.e., when

w̄ = w̄(j) (the j-th company has conquered all the market, w̄j = 1). Namely, a concentration
index ranges from 1/N (in case of perfect competition) to 1 (in case of monopoly), where N
represents the number of companies in the market. The concentration measure for β = 2,
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i.e., Conc
(2)
N (w̄) = 1

ESS-H(2)

N (w̄)
=
∑N

n=1 w̄
2
n is known as Herfindahl-Hirschman index in economy.

Finally, in the previous section, we have also seen the application of similar indices for measuring
the wealth inequality, e.g., using the Gini coefficient [7, 17, 47].

7.3 ESS in political science

In political science, ESS formulas has been used to set the effective number of parties in a political
system. More precisely, the authors in [29] proposed the effective number of parties using the
following formula 1∑N

n=1 w̄
2
n

(the Hill number of order 2 in ecology), where N is the total number of

parties and w̄n is the proportion of votes of the n-th party. An alternative formula was introduced
in political science by Grigorii Golosov [18],

ESS-GolN(w̄) =
N∑

n=1

1

1 +
(

(max w̄n)2

w̄n

)
− w̄n

=
N∑

n=1

w̄n

w̄n + (max w̄n)2 − w̄2
n

, (44)

that is also proper and stable. The value max w̄n denotes the portion of votes of the party that
are obtained the greatest number of votes. Other alternatives can be found in the literature [37].

7.4 ESS in quantum physics

In quantum physics, there exists a quantity that is related to the formula ESS-H
(2)
N (w̄) =

∑N
n=1 w̄

2
n,

that is called participation ratio (PR) and the corresponding concentration Conc
(2)
N (w̄) is known

as inverse participation ratio (IPR). For a fully delocalized or spread state, we have the lowest
value of the IPR, i.e., min(IPR) = 1/N . On the other hand, for a fully localized state, we have
the highest value of IPR, i.e., max(IPR) = 1. IPR is also close to the concept of purity whereas
PR is close to the concept of separability, employed both in quantum mechanics [49]. Moreover,
since the purity P of a quantum state is a quantity such that P ≤ 1, another concepts naturally
arises that is state mixedness as the complement of purity, M = 1 − P . The quantum state is
pure if P = 1. Figure 5.2 summarizes the main nomenclature described so far.

7.5 Application to model selection as effective number of components

Model selection is a fundamental task in statistics and machine learning. An interesting scenario
is when we have a family of nested models, where the model complexity can change since the
number of parameters can vary (i.e., the dimension of the vector of parameters grows, building
more complex models). The dimension of the vector of parameters is itself object of inference.
This is the case of the order selection in polynomial regression problems or autoregressive schemes,
variable selection, clustering, dimension reduction, just to name a few. In the literature, generally
cross-validation (CV) techniques [3], and information criteria [21, 35, 43, 45] the procedures used
to handle this problem. More recently, other approaches based on geometric considerations, have
been also proposed in the literature, such as the automatic detection of an “elbow” or “knee-point”
in a non-increasing curve describing a metric of performance of the model versus its complexity
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Figure 2: Graphical summary of the main nomenclature in different fields.

[38, 39, 48, 25]. An effective number of variables/features (ENV) has been also proposed [36].
The ENV index is inspired by the concept of maximum area-under-the-curve (AUC) in receiver
operating characteristic (ROC) curves [20] and the Gini inequality index, described in Section 6
and mentioned in Section 7.2 [23]. In the variable selection scenario, the ENV index is given by

IENV = 1 +
2

V (0)

N−1∑

k=1

V (k), for V (0) 6= 0, and V (N) = 0, (45)

where V (k) is a non-increasing error curve, e.g., the mean square errors (MSE), for a model
that uses only k ≤ N input variables (instead of all the N possible variables). By construction,
it is always possible to have V (N) = 0 (by a simple translation). It is possible to show that
1 ≤ IENV ≤ N . The ENV index could be defined also for non-decreasing curve by the alternative
definition

IENV = 1 +
2

V (N)

N−1∑

k=1

V (k), for V (N) 6= 0, and V (0) = 0. (46)

Thus, we can convert the ENV index in an ESS formula building the curve V (k) as follows:

• Sort in ascending order the normalized weights as

w̄(1) ≤ w̄(2) ≤ . . . ≤ w̄(N).
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• Build a non-decreasing curve V (k), as in (46), following the recursion:

V (k) =
k∑

i=1

w̄(i) = V (k − 1) + w̄(k), (47)

starting with V (0) = 0. Note that we always have V (N) = 1.

The corresponding ESS formula is

ESS-ENVN(w̄) = 1 + 2
N−1∑

k=1

k∑

i=1

w̄(i). (48)

Note that ESS-ENVN(w̄(j)) = 1 + 0 = 1 for all j, and

ESS-ENVN(w̄∗) = 1 +
2

N

N−1∑

k=1

k = 1 +
2

N

(N − 1)(N)

2
= 1 +N − 1 = N. (49)

Remark 3. It is possible to show that ESS-ENVN(w̄) is proper and stable. Furthermore, it
coincides with ESS-Gini(w̄) in Eq. (42), i.e., ESS-ENVN(w̄) = ESS-GiniN(w̄). Recall that there
exist different formulations of the Gini coefficient [47]. The closest one in this framework is related
to the Lorenz curve [33].

Remark 4. This section opens the possibility to apply the ESS formulas as effective number fo
components in model selection problems. Indeed, given a non-increasing error curve V (k), i.e.,
V (k − 1) ≤ V (k), we can build the normalized weights in this way:

dk = V (k − 1)− V (k), w̄k =
dk∑N
i=1 di

, (50)

for all k = 1, ..., N . Then the ESS formula can be applied to the vector w̄ = [w̄1, ..., w̄N ].

8 Numerical experiments

8.1 Analyzing the Huggins-Roy family

Since all the ESS functions in the Huggins-Roy family are proper and stable and, since this family
contains the main relevant formulas, we focus the numerical experiments on this family. First of
all, we recall the theoretical definition of ESS in Eq. (5),

ESSteo(h) = N
varπ[Î]

varq[Ĩ]
. (51)

where, for simplicity, we consider a scalar x ∈ R the use of the integrand h(x) = x (in the

definition above, we have clarified the dependence on the function h). Namely, Î and Ĩ are
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estimators of the expected value of a random variable X with a target pdf π̄(x) (defined below).
In this numerical example, we compute approximately via Monte Carlo the theoretical definition
ESSteo, and compare them with the G-ESS functions ESS-H

(β)
N . More specifically, we consider a

univariate standard Gaussian density as target pdf,

π̄(x) = N (x; 0, 1), (52)

and also a Gaussian proposal pdf,
q(x) = N (x;µp, σ

2
p), (53)

with mean µp and variance σ2
p. In all the experiments, we consider N = 1000.

8.1.1 Varying the proposal mean µp

In a first analysis, we keep fixed σp = 1 and vary µp ∈ [0, 2]. Figures 3(a)-3(b) depict two scenarios
in this experimental setup, corresponding to two specific values of µp, 0.5 and 1.5. Clearly, for
µp = 0 we have the ideal Monte Carlo case, q(x) ≡ π̄(x). As µp increases, the proposal becomes
more different from π̄. We recall that N = 1000. Figure 4(a) shows the theoretical ESSteo/N

curves (solid line) ESS-H
(2)
N /N (circles) and ESS-H

(∞)
N /N (squares), averaged over 105 independent

runs. Note that 1
N
≤ ESS

N
≤ 1.

Optimal linear combination of ESS-H
(2)
N and ESS-H

(∞)
N . The functions ESS-H

(2)
N and

ESS-H
(∞)
N are the most used and suggested formulas in different studies [22, 34]. Moreover, at

least in this simulation scenario, they seem to play the role of upper bound and lower bound of
the true value, as shown by Figure 4(a). For this reason, we also consider the linear combination

of the G-ESS formulas ESS-H
(2)
N and ESS-H

(∞)
N ,

Comb-ESSN(w̄) = a1ESS-H
(2)
N (w̄) + a2ESS-H

(∞)
N (w̄). (54)

This example suggests the use of

a1 = 0.6245,

a2 = 0.4289, (55)

obtained using a Least Squares (LS) regression in order to obtain an expression Comb-ESSN(w̄)
as close as possible to the theoretical ESS curve.

Optimal β for ESS-H
(β)
N (w̄). Furthermore, we have computed the curves (as function β) of

ESS-H
(β)
N (w̄) for different values of β, considering a thin grid of β values from 0.2 to 50 with

a step of 0.01 (i.e., β ∈ G denoting G the thin grid). We consider a L1 distance between each

ESS-H
(β)
N (w̄) curve and the theoretical ESS curve,3, i.e., |ESS-H

(β)
N − ESSteo|, and compute

β∗ = arg min
β∈G
|ESS-H

(β)
N − ESSteo|. (56)

With this procedure, we obtain
β∗ ≈ 4.

3Recall that these curves are functions of µp and are averaged over 105 independent runs.
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Discussion of the results. Figure 4(b) shows the curves of the ESS rates corresponding to
the theoretical ESS curve (solid line), the best linear combination corresponding to the Eqs.

(54)-(58) (squares) and the curve corresponding to ESS-H
(β∗)
N (dashed line). First of all, we can

note that the linear combination can return values greater than 1 (recall that we are considering

ESS/N). Moreover, we can see that the curve corresponding to ESS-H
(4)
N (w̄) fits particularly well

in this numerical setup, providing a very close to the theoretical ESS curve. Observe that the
approximation provided by ESS-H

(4)
N is virtually perfect for µp ≤ 1. Hence, in this kind of scenario,

we would suggest the use of the expression

ESS-H
(4)
N (w̄) =

(
1∑N

n=1 w̄
4
n

) 1
3

. (57)
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Figure 3: Target and proposal pdfs: (a)-(b) with µp ∈ {0.5, 1.5}. The variances in both is set to 1. (c)

here µp = 0 and σp ∈ {0.5, 0.8}.

8.1.2 Varying the proposal standard deviation σp

Now, we keep fixed µp = 0 and vary the standard deviation of the proposal σp ∈ [0.5, 1]. Figure
3(c) depicts the target density and the proposal density for two specific values of σp, 0.5 and 0.8,
used in this experimental setup. We recall that N = 1000 and the results have been averaged
over 105 independent runs. In Figure 5(a), we can observe the results of ESSteo/N versus σp (in

solid line), jointly with the curves ESS-H
(2)
N /N (given with circles) and ESS-H

(∞)
N /N (shown with

squares).

Optimal linear combination of ESS-H
(2)
N and ESS-H

(∞)
N . Since the formulas ESS-H

(2)
N and

ESS-H
(∞)
N are the most used in practice, again we consider the linear combination of the G-ESS

formulas ESS-H
(2)
N and ESS-H

(∞)
N ,

Comb-ESSN(w̄) = a1ESS-H
(2)
N (w̄) + a2ESS-H

(∞)
N (w̄), (58)
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Figure 4: Ratio of ESS values over N (with N = 1000) versus µp. The curve corresponding to theoretical

ESS value, i.e., ESSteo/N is shown in black solid line in both figures. In (a) the curves of ESS-H
(2)
N /N

(circles) and ESS-H
(∞)
N /N (squares) are also depicted. In (b) we show the curves ESS-H

(4)
N /N (dashed

line) and the linear combination in Eq. (54)-(58) (squares), as well. The approximation provided by

ESS-H
(4)
N is virtually perfect for µp ≤ 1.

where in this scenario we get by LS solution

a1 = 0.2715,

a2 = 0.8483, (59)

hence ESS-H
(∞)
N takes more importance in this scenario. Figure 5(b) provides the curve

corresponding to Comb-ESSN(w̄)/N with a dashed line and green squares.

Optimal β for ESS-H
(β)
N (w̄). Furthermore, we have computed the curves (as function β) of

ESS-H
(β)
N (w̄) for different values of β, considering a grid of values of β denoted as G. We consider

a L1 distance between each ESS-H
(β)
N (w̄) curve and the theoretical ESS curve, and compute

β∗ = arg min
β∈G
|ESS-H

(β)
N − ESSteo|. (60)

In this scenario, we obtain
β∗ ≈ 7.6.

The corresponding curve is depicted in Figure 5(b) with a dashed line and red triangles. We can
see that we obtain a very good approximation of ESSteo/N , but slightly worse than in the case
described in the previous section. Moreover, here the optimal β∗ is ≈ 7.6 whereas, in the previous
section, was β∗ is ≈ 4.
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Figure 5: Ratio of ESS values over N (with N = 1000) versus σp. The curve corresponding to theoretical

ESS value, i.e., ESSteo/N is shown in black solid line in both figures. In (a) the curves of ESS-H
(2)
N /N

(circles) and ESS-H
(∞)
N /N (squares) are also depicted. In (b) we show the curves ESS-H

(7.6)
N /N (dashed

line) and the linear combination in Eq. (59) (squares), as well.

Discussion of the results. Figure 5(b) shows the curves of the ESS rates corresponding to
the theoretical ESS curve (solid line), the best linear combination corresponding to the Eqs.

(54)-(58) (green squares) and the curve corresponding to ESS-H
(β∗)
N (red triangles). Again the

linear combination can return values greater than 1 (recall that we are considering ESS/N).
This behavior could be exploited in future works since actually ESSteo/N can exceed 1 (see [14,

Section 3.3]). Moreover, we can see that ESS-H
(7.6)
N (w̄) performs particularly well in this scenario,

providing a close to the theoretical ESS curve. Hence, in this setup, we would suggest the use of
ESS-H

(7.6)
N (w̄). Only for simplicity in computation and comparison, one could consider the closest

integer and use β = 8,

ESS-H
(8)
N (w̄) =

(
1∑N

n=1 w̄
8
n

) 1
7

. (61)

Finally, it is important to remark that even if the optimal β∗ ≈ 7.6 (or 8) is different from the value
β∗ ≈ 4 suggested in the previous section, however both values differ from 2 (that corresponds to
the typical formula employed in the literature) and both values are bigger than 2. The expression

with β → ∞, i.e., ESS-H
(∞)
N = 1

max w̄n
seems that can be employed as a lower bound for the

theoretical value ESSteo, in both setups. These considerations can be relevant clues for future
applications and studies.
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8.2 Application to a variable selection in a regression problem with
real data

Finding the connections with other fields creates the opportunities for new applications for the
ESS formulas. As we described in Section 7.5, the ESS can be applied in a feature selection
problem to find the effective number of components. In this section, we provide an example of
this application with a real dataset.
Let us consider a regression problem, where we observe a dataset of N pairs {xn, yn}Nn=1, with
each input vector xn = [xn,1, . . . , xn,K ] is formed by K variables, and the outputs yn ’s are scalar
values [42]. We consider the case that being K ≤ N and assume a linear observation model,

yn = θ0 + θ1xn,1 + θ2xn,2 + . . . θKxn,K + εn, (62)

where εn is a Gaussian noise with zero mean and variance σ2
ε , i.e., εn ∼ N (ε|0, σ2

ε ). More
specifically, in this real dataset [42, 41, 15], we have K = 122 features and N = 1214 number of
data points xi. We focus on the first of the two outputs in the dataset (called “arousal”). We
set V (k) = −2 log (`max) with `max = maxθ p (y|θk) with k ≤ K, after ranking the 122 variables
(see [42]), where the likelihood function p (y|θk) is induced by the Eq. (62). In order to find the
effective number of variables Neff ≤ K = 122, we compare with different well-known information
criteria4, AIC, BIC and HQIC, and other methods provided in the literature. For the spectral
information criterion (SIC), we test two confidence internal parameter to 95% and 99%. We also
test different stable ESS formulas obtained the weights as in Eq. (50). We test the expressions

in the Huggins-Roy family, ESS-H
(β)
N , with β → 1, β = 2, β → ∞, and the other stable formulas

given in the Eqs. (37), (39), (42), and (44). All the results are rounded to the closest integer.
Thus, the results provided by each method are given in Table 4.

Table 4: Results in the variable selection example with a real dataset.

Scheme AIC BIC HQIC UAED SIC-95 SIC-99 ENV
Neff 44 17 41 11 7 17 13
Ref. [45] [43] [21] [38] [35] [35] [36]

ESS formula β → 1 β = 2 β →∞ Plus Q Gini Gol
Neff 10 5 3 11 24 11 4
Eq. (7) (6) (8) (37) (39) (42) (44)

After an exhaustive analysis, the authors in [42, Section 4-C] suggest that there are 7 very relevant
variables (level 1 of [42, Section 4-C]), other 7 relevant variables (level 2 of [42, Section 4-C]) and
other 2 variables in a level 3 of importance [42, Section 4-C], hence, overall 16 variables among
very relevant, relevant, and important ones (16 over 122 possible features). The minimum value in

4Considering the cost function C(k) = V (k) + λk, each information criterion suggests the use of a different
parameter λ.
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Table 4 is 3, provided by ESS-H
(∞)
N , whereas the maximum value is 44 given by AIC. These values

and the rest of results in Table 4 are in line with the conclusions in [42]. More specifically, the

results given by the SIC-99, BIC, UAED, ENV, the perplexity ESS-H
(1)
N , ESS-Plus and ESS-Gini

are 10 ≤ Neff ≤ 17, and are close to the results of the analysis in [42]. Hence, in this experiment,

some ESS formulas like the perplexity ESS-H
(1)
N , ESS-Plus and ESS-Gini, seem to provide good

performance as effective number of components in model selection.

9 Conclusions

In this work, we have analyzed alternative effective sample size (ESS) measures for Monte Carlo
algorithms based on the importance sampling techniques. We have remarked the connection to
the practical ESS formulas used in the literature and entropy families [9]. We have shown that
all the ESS functions included in the Huggins-Roy’s ESS family fulfill all the required theoretical
conditions described in [34], and we have also highlighted the relationship of this family with the
Rényi entropy [9]. We have also shown the application of the Gini impurity index as ESS formula
and its connection to the Tsallis entropy.
Furthermore, we have studied the performance of different Huggins-Roy’s ESS formulas by
numerical simulations, introducing also an optimal linear combination of the most promising
ESS indices. In two numerical examples, we have obtained the best ESS approximations within

the Huggins-Roy’s family in two different setups, ESS =
(

1∑M
n=1 w̄

4
n

)1/3

and ESS =
(

1∑M
n=1 w̄

8
n

)1/7

.

These formulas provide a good approximation (and in the first case almost a perfect match) of
the theoretical ESS values, in two different considered experimental scenarios. Moreover, the
expression ESS = 1

max w̄n
, which corresponds to β → ∞, also provides good performance in some

specific cases (and playing the role of a lower bound of the ESS measures in other cases). All these
considerations suggest us that the use of a β > 2 can more adequate in practical applications, e.g.,
in order to fight the sample degeneracy and impoverishment within a particle filtering algorithm.
The relationship with the entropy families has also clarified the connections with other fields:
possible applications in ecology, economics, political science, and machine learning have been
discussed. The application of the ESS expressions as the effective number of components in model
selection seems to be promising but should be further investigated and tested. Moreover, the
construction of these connections with other fields can also yield novel contributions in the IS
context. As a final consideration, finding a novel and broader family that contains all the stable
ESS formulas (that do not belong to the Huggins-Roy’s family) could be object of future research.
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A Probabilistic interpretation

Let us define a pair of random variables {Xt, Zt} that corresponds to generate a random pair of
samples that are independently drawn with replacement according to the pmf defined by w̄n, with
n = 1, ..., N . We denote with t ∈ N a sub-index corresponding the trial/experiment. We perform
different independent trials. Let also define the random variable

T = {minimum t ∈ N such that Xt = Zt}.

We aim to compute the expected number of trials needed to obtain a first pair containing the
same sample twice, i.e.,

E[T ] =
∞∑

t=1

t · Prob(T = t). (63)

Note now that

Prob(T = 1) =
N∑

n=1

w̄2
n, Prob(T = 2) =

(
1−

N∑

n=1

w̄2
n

)
N∑

n=1

w̄2
n, and

Prob(T = t) =

(
1−

N∑

n=1

w̄2
n

)t−1 N∑

n=1

w̄2
n.

Thus, replacing into Eq. (63), we have

E[T ] =
∞∑

t=1

t ·



(

1−
N∑

n=1

w̄2
n

)t−1 N∑

n=1

w̄2
n


 , (64)

=

(
N∑

n=1

w̄2
n

)

∞∑

t=1

t

(
1−

N∑

n=1

w̄2
n

)t−1

 , (65)

=

( ∑N
n=1 w̄

2
n

1−
∑N

n=1 w̄
2
n

)

∞∑

t=1

t

(
1−

N∑

n=1

w̄2
n

)t

 . (66)

To simplify the expression above, we can set r = 1−
∑N

n=1 w̄
2
n, so that we can rewrite it as

E[T ] =

(
1− r
r

)[ ∞∑

t=1

t rt

]
, (67)

=

(
1− r
r

)
r

(1− r)2
=

1

1− r
=

1∑N
n=1 w̄

2
n

, (68)

where we have used the following equality,
∞∑

t=1

t rt =
r

(1− r)2
, when r ≤ 1,

which is a well-known result of power series.
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B Other form for the ESS formula in Eq. (6)

Let us recall
∑N

n=1 w̄n = 1 so that the arithmetic mean of the normalized weights is always

µ = 1
N

∑N
n=1 w̄n = 1

N
. Note that the ESS formula in Eq. (6) can

ESSN(w̄) =
1∑N

n=1 w̄
2
n

=
1

1
N

+Nσ̂2
, (69)

where σ̂2 = 1
N

∑N
n=1(w̄n−µ)2 is the variance of the normalized weights. If σ̂2 = 0, then ESSN(w̄)

reaches the maximum value N . We can write:

1
1
N

+Nσ̂2
=

1

1
N

+N
(

1
N

∑N
n=1(w̄n − µ)2

) ,

=
1

1
N

+N
(

1
N

∑N
n=1 w̄

2
n + 1

N

∑N
n=1 µ

2 − 2 1
N
µ
∑N

n=1 w̄n

) ,

=
1

1
N

+N
(

1
N

∑N
n=1 w̄

2
n + 1

N
Nµ2 − 2µ2

) ,

=
1

1
N

+N
(

1
N

∑N
n=1 w̄

2
n − µ2

) ,

=
1

1
N

+
(∑N

n=1 w̄
2
n −Nµ2

) ,

=
1

1
N

+
∑N

n=1 w̄
2
n − 1

N

=
1∑N

n=1 w̄
2
n

.

The equation above proves the equality (69).
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