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Abstract

In this work, we analyze alternative effective sample size (ESS) measures for importance
sampling algorithms. We show the relationship between the ESS expressions used in the
literature and two entropy families, the Rényi and Tsallis entropy. The Rényi entropy is
connected to the Huggins-Roy’s ESS family introduced in [12]. We prove that that all
the ESS functions included in the Huggins-Roy’s family fulfill all the desirable theoretical
conditions. Moreover, we show that the Gini impurity index can be converted in a proper
ESS formula. We also highlight its connection with the Tsallis entropy. Finally, by numerical
simulations, we study the performance of different ESS expressions contained in the previous
ESS families in term of approximation of the theoretical ESS definition.

Keywords: Importance Sampling; Effective Sample Size; Entropy; Diversity measure; Gini
impurity; Resampling.

The effective sample size (ESS) measure is an important concept in order to quntify the
efficiency of different Monte Carlo methods, such as Markov Chain Monte Carlo (MCMC) [10, 17]
and Importance Sampling (IS) techniques [2, 4]. In an IS context, heuristically speaking, we can
assert that ESS measures how many independent identically distributed (i.i.d.) samples, drawn
directly from the target distribution π̄(x) = 1

Z
π(x), are equivalent in some sense to the N weighted

samples, x1, . . . ,xn, drawn from a proposal distribution q(x) and weighted according to the ratio

wn = π(xn)
q(xn)

[20]. This consideration is represented in the first box of Figure 1, referred as “abstract
ESS concept”.
The theoretical definition [10, 14] considers the ESS function proportional to the ratio between the
variance of the ideal Monte Carlo estimator (drawing samples directly from the target) over the
variance of the estimator obtained by the IS technique, using with the same number of samples in
both estimators. This definition presents some drawbacks (see [19, 9] for an exhaustive discussion)
and is useless for practical purposes since it cannot be computed in general. Hence, approximations
of this theoretical formula are required. In Figure 1, this theoretical definition is represented by
the second box. Within a IS context, the most common choice in literature to approximate this
theoretical ESS definition is ESS = 1∑M

n=1 w̄
2
n
, which involves (only) the normalized importance

weights w̄n = wn∑N
j=1 wj

, n = 1, . . . , N [6, 7, 15, 20]. This expression has been widely used in

particle filtering in order to apply the resampling steps adaptively [7, 6, 11]. However, it presents



different weaknesses since it has been obtained after several approximations of the theoretical
definition. For instance, it just depends on the normalized weights, but it is not dependent on
particle locations and from the particular integral to approximate (see [19] for further details).
Several other alternatives have been studied in literature and applied in order to perform adaptive
resampling within sequential Monte Carlo (SMC) methods [12, 19]. For instance, another measure
called perplexity, involving the discrete entropy [5] of the normalized weights has been also
proposed in [3]; see also [20, Chapter 4], [8, Section 3.5]. Another expression is defined as the
inverse of the maximum of the normalized weights w̄n [19].
In this work, we recall the definition of the Generalized ESS (G-ESS) functions given in [19]. We
stress and show that the G-ESS functions can be considered diversity indices [13] (see third box in
Figure 1). The actual reason for the success of the ESS expressions introduced in the literature,
is related to the fact they are discrepancy measure and/or can considered as diversity indices.
Indeed, we show that the G-ESS functions can be associate to different entropy families [5]. Given
an entropy measure of the probability mass function (pmf) defined by the normalized weights w̄n,
n = 1, . . . , N , we can obtain a G-ESS formula by taking the exponential transformation of the
entropy expression (in some cases, some additional translation and scaling are needed).
More specifically, we analyze the Rényi and Tsallis entropy families, converting them in G-ESS
functions. The ESS formulas corresponding to the Rényi entropy coincides with the Huggins-Roy’s
ESS family introduced and studied independently in [12],

ESS =

(
N∑

n=1

w̄βn

) 1
1−β

, β ≥ 0.

We show that all the G-ESS expressions belonging to this family satisfy all the desired
requirements, being all proper and stable. Moreover, all the main formulas previously proposed
in the literature are contained in the Huggins-Roy’s family. Using the Tsallis entropy, we obtain
another ESS family which contain the Gini impurity index as special case, that is widely employed
in machine learning within decision tree algorithms [1, 16]. We also discuss the connection to
another ESS family provided in [19]. However, generally the Tsallis ESS formulas are not proper
and stable. Hence, we focus the numerical studies to the Huggins-Roy’s family.
Furthermore, by numerical simulations, we obtain the G-ESS function within Huggins-Roy’s family
which provides the best approximation the theoretical ESS definition, in two specific scenarios.
We also study linear combinations of G-ESS functions in order to enhance the approximation of
the theoretical definition. The results of our numerical simulations suggest the use of the formulas

of type ESS =
(

1∑M
n=1 w̄

4
n

)1/3

and ESS =
(

1∑M
n=1 w̄

8
n

)1/7

. Both expression differ from the classical

formula ESS = 1∑M
n=1 w̄

2
n
, which is contained in Huggins-Roy’s family with β = 2. Our study

suggest the use of β > 2. These considerations can be also relevant clues for future applications
and studies.
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Figure 1: Graphical representation of the development of the approximated ESS formulas for importance

sampling. The abstract concept of Effective Sample Size has been translated in a mathematical

formulation providing a first attempt of theoretical definition. Since this definition cannot compute,

several approximations have been proposed (based only in the information provided by the normalized

IS weights). The expression ESS = 1∑M
n=1 w̄

2
n

is the most applied so far in the literature.

1 Effective sample size (ESS) for importance sampling

Let us denote the target probability density function (pdf) as π̄(x) ∝ π(x) (known up to a
normalizing constant) with x ∈ X . Moreover, we consider the following integral involving π̄(x)
and a square-integrable function h(x),

I =

∫

X
h(x)π̄(x)dx, (1)

which we desire to approximate using a Monte Carlo approach. If we are able to draw N
independent samples x1, . . . ,xN from π̄(x), then the Monte Carlo estimator of I is

Î =
1

N

N∑

n=1

h(xn) ≈ I, (2)

where xn ∼ π̄(x), with n = 1, . . . , N . However, in general, generating samples directly from the
target, π̄(x), is impossible. Alternatively, we can draw N samples x1, . . . ,xN from a (simpler)

proposal pdf q(x),1 and then assign a weight to each sample, wn = π(xn)
q(xn)

, with n = 1, . . . , N ,

according to the importance sampling (IS) approach. Defining the normalized weights,

w̄n =
wn∑N
i=1wi

, n = 1, . . . , N, (3)

then the self-normalized IS estimator is

Ĩ =
N∑

n=1

w̄nh(xn) ≈ I, (4)

with xn ∼ q(x), n = 1, . . . , N . In general, the estimator Ĩ is less efficient than Î, since the samples
are not directly drawn from π̄(x). In several applications [6, 7], it is necessary to measure the loss

1We assume that q(x) > 0 for all x where π̄(x)) 6= 0, and q(x) has heavier tails than π̄(x).
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of the efficiency using Ĩ instead of Î. The idea is to define the Effective Sample Size (ESS) as the
ratio of the variances of the estimators [14],

ESSteo(h) = N
varπ[Î]

varq[Ĩ]
. (5)

Note the dependence on the function h(x) corresponding to a specific integral. The theoretical
value above ESSteo(h) is always positive, could be smaller than 1 and, in some situations, bigger
than N as well [9].

2 Practical ESS formulas

2.1 ESS expressions in the literature

Finding a useful expression of ESS derived analytically from the theoretical definition is not
straightforward. Then, different derivations [14, 15], [7, Chapter 11], [20, Chapter 4] proceed
using several approximations and assumptions for yielding an expression useful from a practical
point of view. A well-known rule of thumb, widely used in literature [7, 18, 20], is

ESSN(w̄) =
1∑N

i=1 w̄
2
n

, (6)

where we have used the the normalized weights

w̄ = [w̄1, . . . , w̄N ],

in the first equality, and the unnormalized ones in the second equality.2 Another similar measure,
called perplexity, has been proposed in literature [3, 20] based only on the normalized importance
weights,

ESSN(w̄) = exp{H(w̄)} (7)

where

H(w̄) = −
N∑

n=1

w̄n log w̄n,

is the discrete entropy of the vector w̄ [5]. Another proposed in the literature and easy to use is
the following formula

ESSN(w̄) =
1

max w̄n
. (8)

An interesting property of all the three expressions above in Eqs. (6)-(7)-(8) is

1 ≤ ESSN(w̄) ≤ N. (9)

2Due to the several approximations which have been applied to obtain the final formula, PN does not depend
on the particles xn, n = 1, . . . , N , which is obviously a drawback (for further considerations see [19]).
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They are only based on the normalized weights w̄ and do not consider the information of the
generated samples xn, which is clearly a drawback [9, 19]. Moreover, the theoretical value above
ESSteo(h) could be smaller than 1 and, in some scenario, bigger than N as well (see [9, Section
3.3]). Therefore, all of them are quite rough approximations of ESSteo(h) but are quite use in
practice. The reason is perhaps explained below: they are actually discrepancy/diversity measures.

2.2 Discrepancy w.r.t. the uniform pmf.

All the formulas above can be considered diversity indices or discrepancy measures [13, 19]. Indeed,
consider the discrepancy between two pmfs: the pmf defined by the weights w̄ = [w̄1, . . . , w̄N ] and
the discrete uniform pmf defined by w̄∗ =

[
1
N
, . . . , 1

N

]
. The ESS formula in Eq. (6) is related to

the Euclidean distance between these two pmfs, i.e.,

‖w̄ − w̄∗‖2 =

√√√√
N∑

n=1

(
w̄n −

1

N

)2

=

√√√√
(

N∑

n=1

w̄2
n

)
+N

(
1

N2

)
− 2

N

N∑

n=1

w̄n

=

√√√√
(

N∑

n=1

w̄2
n

)
− 1

N

=

√
1

ESSN(w̄)
− 1

N
,

where we have used ESSN(w̄) = 1∑N
i=1 w̄

2
n

in Eq. (6). Hence, maximizing the expression in Eq. (6)

is equivalent to minimizing the Euclidean distance ‖w̄ − w̄∗‖2. Note that this behavior is also
typical of discrete entropy measures, as we stress in the next sections. Indeed, if the weights are
more “diverse” to each other, the distance w.r.t. the discrete uniform pmf w̄∗ is higher, the ESS
and the entropy of w̄ are smaller. On the other hand, if the normalized weights are more similar
to each other, they are all closer to the value 1/N , so that the distance w.r.t. the discrete uniform
pmf w̄∗ is smaller. As a consequence, the corresponding ESS and the entropy of w̄ would be
greater. Hence, it appears natural to consider the possibility of using other discrepancy and/or
entropy measures to design alternative ESS expressions.

In the following, we describe five conditions that a generic ESS approximation based only on the
information of the normalized weights must satisfy. Then we show that the family of functions
proposed in [12] fulfills these five conditions. Furthermore, we link this G-ESS family with the
Rényi entropy providing also some theoretical results.
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3 Generalized ESS functions

Considering the practical approach employed above for defining ESS formulas as discrepancy-
diversity measures, here we describe the five properties that a generalized ESS measure (G-ESS)
should satisfy, based only on the information of the normalized weights. Here, first of all, note
that any possible G-ESS is a function of the vector of normalized weights w̄ = [w̄1, . . . , w̄N ],

ESSN(w̄) = ESSN(w̄1, . . . , w̄N) : SN → [1, N ], (10)

where SN ⊂ RN represents the unit simplex in RN . Namely, the variables w̄1, . . . , w̄N are subjected
to the constrain

w̄1 + w̄2 + . . .+ w̄N = 1. (11)

Moreover, we denoted

w̄∗ =

[
1

N
, . . . ,

1

N

]
, (12)

and the vertices of the simplex SN are denoted as

w̄(j) = [w̄1 = 0, . . . , w̄j = 1, . . . , w̄N = 0], (13)

i.e., w̄j = 1 and w̄n = 0 ( it can occurs only if π(xn) = 0), for n 6= j with j ∈ {1, . . . , N}.

Below we list the five conditions that ESSN(w̄) should fulfill:

C1. Symmetry: ESSN must be invariant under any permutation of the weights, i.e.,

ESSN(w̄1, w̄2, . . . , w̄N) = ESSN(w̄j1 , w̄j2 , . . . , w̄jN ), (14)

for any possible set of indices {j1, . . . , jN} = {1, . . . , N}.

C2. Maximum condition: A maximum value is N and it is reached at w̄∗ (see Eq. (12)), i.e.,

ESSN (w̄∗) = N ≥ ESSN(w̄). (15)

C3. Minimum condition: the minimum value is 1 and it is reached (at least) at the vertices
w̄(j) of the unit simplex in Eq. (13),

ESSN(w̄(j)) = 1 ≤ ESSN(w̄). (16)

for all j ∈ {1, . . . , N}.

C4. Unicity of extreme values: The maximum at w̄∗ is unique and the the minimum value
1 is reached only at the vertices w̄(j), for all j ∈ {1, . . . , N}.
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C5. Stability of the rate ESSN/N : Consider the vector of weights w̄ ∈ RN and the vector
v̄ = [v̄1, . . . , v̄MN ] ∈ RMN , M ≥ 1, obtained repeating and scaling by 1

M
the entries of w̄,

i.e.,

v̄ =
1

M
[w̄, w̄, . . . , w̄︸ ︷︷ ︸

M−times

]. (17)

The invariance condition is expressed as

ESSN(w̄) =
1

M
ESSMN(v̄), (18)

for all M ∈ N+.

This last requirement can be interpreted as an adjustment of the well-known homogeneity (scale-
invariance) condition for real functions.3 Note that, given conditions C2 and C3, we always have

1 ≤ ESSN(w̄) ≤ N. (19)

On the condition C5. For clarifying this condition, consider the vector v̄ = [0, 1, 0] with N = 3,
and the two additional vectors obtained repeating v̄ two or three times,

v̄′ =

[
0,

1

2
, 0, 0,

1

2
, 0

]
=

1

2
[v̄, v̄],

v̄′′ =

[
0,

1

3
, 0, 0,

1

3
, 0, 0,

1

3
, 0

]
=

1

3
[v̄, v̄, v̄],

We would like to obtain ESSN(v̄) = 1,ESS2N (v̄′) = 2 and ESS3N (v̄′′) = 3, i.e., the ratio ESSN
N

is
constant, i.e.,

ESSN(v̄)

N
=

ESS2N (v̄′)

2N
=

ESS3N (v̄′′)

3N
=

1

3
.

Classification of G-ESS. Table 1 classifies the G-ESS functions in different families depending
on the conditions fulfilled. Recall that the first three conditions are strictly required, to be
considered an ESS function. For instance, all the G-ESS functions which satisfy at least the first
four conditions, i.e., from C1 to C4, are called proper functions. If all the conditions are fulfilled
they are called proper and stable. We are interested in this kind of G-ESS expressions, proper
and stable.

4 Huggins-Roy’s ESS family

The Huggins-Roy’s ESS family introduced in [12] is defined as

ESS-H
(β)
N (w̄) =

(
1∑N

n=1 w̄
β
n

) 1
β−1

, (20)

=

(
N∑

n=1

w̄βn

) 1
1−β

, β ≥ 0. (21)

3A function f(x) is said to be homogeneous of degree k if f(c x) = ckf(x) where c is a non-zero constant value.

7



Table 1: Classification of G-ESS expressions.

Class of G-ESS C1 C2 C3 C4 C5

Degenerate X X X x x
Proper X X X X x

Degenerate and Stable X X X x X
Proper and Stable X X X X X

Table 2 shows that the Huggins-Roy’s family contains all the main G-ESS functions introduced
in literature. The special cases with β = 0 and β = 1 bring to two undetermined expressions
that will be solved and clarified below (when the relationship with Rényi entropy is shown). We

can easily note that 1 ≤ ESS-H
(β)
N (w̄) ≤ N for all β ≥ 0. More generally, it is straightforward

to observe that the conditions C1, C2, C3 and C4 are fulfilled (with the exception of β = 0 that
does not satisfy C4). Furthermore, the condition C5 is also satisfied as we show below.

Proof. In order to prove that C5 is satisfied, for simplicity let us consider a vector v̄ = 1
2
[w̄, w̄],

defined repeating twice the vector w̄ (i.e., M = 2). In this case, we have

ESS-H
(β)
2N(v̄) =

(
1

2β

N∑

n=1

w̄βn +
1

2β

N∑

n=1

w̄βn

) 1
1−β

,

=

(
1

2β−1

N∑

n=1

w̄βn

) 1
1−β

,

= 2

(
N∑

n=1

w̄βn

) 1
1−β

,

= 2 ESS-H
(β)
N (w̄), ∀β, (22)

which is exactly the condition in Eq. (18). The proof can be easily repeated for a value M > 2.

Remark. Hence, all G-ESS functions (except for β → 0) belonging to the Huggins-Roy’s
ESS family are proper and stable. For β → 0, the corresponding ESS is degenerate and stable.
Moreover, some specific cases, provided in Table 2, coincide with other proper and stable G-ESS
formulas proposed in [19].
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Table 2: Relevant special cases contained in the Huggins-Roy’s family.

β → 0 β = 1/2 β → 1 β = 2 β =∞

N −NZ

(∑N
n=1

√
w̄n

)2
exp

(
−
∑N

n= w̄n log w̄n

)
1∑N

n=1 w̄
2
n

1
max[w̄1,...,w̄N ]

where NZ is
the number of Perplexity - Eq. (7) Standard formula In Eq. (8)

zeros in w̄ [3, 20] in Eq. (6) - [14] [19]

5 Relationship with the entropy measures

5.1 Relationship with the Rényi entropy

The Rényi entropy [5] is defined as

R
(β)
N (w̄) =

1

1− β
log

[
N∑

n=1

w̄βn

]
, β > 0, (23)

Then, it is straightforward to note that

ESS-H
(β)
N (w̄) = exp

(
R

(β)
N (w̄)

)
=

(
N∑

n=1

w̄βn

) 1
1−β

, β > 0. (24)

i.e., the Huggins-Roy’s family contains diversity indices derived by the Rényi entropy [5, 13]. For

β = 0, we have R
(0)
N (w̄) = log(N −NZ) [5] where NZ = #

{
all w̄n: w̄n = 0, ∀n = 1, . . . , N

}
, so

that ESS-H
(0)
N (w̄) = N −NZ . For β = 1, we have R

(0)
N (w̄) = −

∑N
n= w̄n log w̄n [5] then

ESS-H
(1)
N (w̄) = exp

(
−

N∑

n=

w̄n log w̄n

)
, (25)

that is the perplexity in Eq. (7) [3, 20]. The connection with the Rényi entropy shows that the
G-ESS functions contained in the Huggins-Roy’s family are diversity indices [13]. Moreover, this

observation allow us to obtain some theoretical results about ESS-H
(β)
N . Indeed, for instance, it is

well-known that [5]

R
(0)
N (w̄) ≥ R

(1)
N (w̄) ≥ R

(2)
N (w̄) ≥ . . . R

(β′)
N (w̄) . . . ≥ R

(∞)
N (w̄),

with β′ ≥ 2, Then, since ESS-H
(β)
N is an increasing monotonic function of R

(β)
N , we can also assert

ESS-H
(0)
N (w̄) ≥ ESS-H

(1)
N (w̄) ≥ ESS-H

(2)
N (w̄) ≥ . . .ESS-H

(β′)
N (w̄) . . . ≥ ESS-H

(∞)
N (w̄). (26)

with β′ > 2. Moreover, since from [5]

R
(2)
N (w̄) ≤ 2R

(∞)
N (w̄),

we also have
ESS-H

(2)
N (w̄) ≤ 2ESS-H

(∞)
N (w̄). (27)
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5.2 Relationship with the Tsallis entropy

Another famous entropy family is the so-called Tsallis entropy [21], defined as

T
(α)
N (w̄) =

1

α− 1
log

[
1−

N∑

n=1

w̄αn

]
, α > 0. (28)

We can obtain a corresponding G-ESS family based on the Tsallis entropy, taking the exponential
of T

(α)
N (w̄) and after some additional simple operations of translation and scaling, i.e.,

ESS-T
(α)
N (w̄) =

N(N − 1)

(Nα−1 − 1)
1

α−1

exp
(
T

(α)
N (w̄)

)
+ 1, (29)

=
N(N − 1)

(Nα−1 − 1)
1

α−1

[
1−

N∑

n=1

w̄αn

] 1
α−1

+ 1, α > 0. (30)

Note that
1 ≤ ESS-T

(α)
N (w̄) ≤ N.

Setting α = 2, we have

ESS-T
(2)
N (w̄) = N

(
1−

N∑

n=1

w̄2
n

)
+ 1,

= N Gini-impurity(w̄) + 1, (31)

where we have used the definition of the function below,

Gini-impurity(w̄) = 1−
N∑

n=1

w̄2
n,

that is the so-called Gini impurity or Gini’s diversity index or also known as Gini-Simpson index
in biodiversity field, that is widely used in machine learning within decision tree algorithms [1, 16].

Furthermore, it is interesting to remark that the final form of ESS-T
(α)
N (w̄) resembles the G-ESS

family ESS-S
(r)
N (w̄) introduced in [19],

ESS-S
(r)
N (w̄) =

N − 1

N
1−r
r − 1

[
N∑

n=1

w̄rn

] 1
r

+ 1− N − 1

N
1−r
r − 1

, r > 0,

that contains ESS-S
(1/2)
N (w̄) =

(∑N
n=1

√
w̄n

)2

for r = 1/2, that is a proper and stable ESS formula.

However, generally the rest of ESS expressions contained in ESS-S
(r)
N (w̄) and ESS-T

(α)
N (w̄) are not

stable. For this reason, in the rest of work we focus on Huggins-Roy ESS family.

10



6 Numerical experiments

Since all the ESS functions in the Huggins-Roy family are proper and stable and contains all the
relevant formulas, we focus our study on this family. First of all, we recall the theoretical definition
of ESS in Eq. (5),

ESSteo(h) = N
varπ[Î]

varq[Ĩ]
. (32)

where, for simplicity, we consider a scalar x ∈ R the use of the integrand h(x) = x (in the

definition above, we have clarified the dependence on the function h). Namely, Î and Ĩ are
estimators of the expected value of a random variable X with a target pdf π̄(x) (defined below).
In this numerical example, we compute approximately via Monte Carlo the theoretical definition
ESSteo, and compare them with the G-ESS functions ESS-H

(β)
N . More specifically, we consider a

univariate standard Gaussian density as target pdf,

π̄(x) = N (x; 0, 1), (33)

and also a Gaussian proposal pdf,
q(x) = N (x;µp, σ

2
p), (34)

with mean µp and variance σ2
p. In all the experiments, we consider N = 1000.

6.1 Varying the proposal mean µp

In a first analysis, we keep fixed σp = 1 and vary µp ∈ [0, 2]. Figures 2(a)-2(b) depict two scenarios
in this experimental setup, corresponding to two specific values of µp, 0.5 and 1.5. Clearly, for
µp = 0 we have the ideal Monte Carlo case, q(x) ≡ π̄(x). As µp increases, the proposal becomes
more different from π̄. We recall that N = 1000. Figure 3(a) shows the theoretical ESSteo/N

curves (solid line) ESS-H
(2)
N /N (circles) and ESS-H

(∞)
N /N (squares), averaged over 105 independent

runs. Note that 1
N
≤ ESS

N
≤ 1.

Optimal linear combination of ESS-H
(2)
N and ESS-H

(∞)
N . The functions ESS-H

(2)
N and

ESS-H
(∞)
N are the most used and suggested formulas in different studies [12, 19]. Moreover, at

least in this simulation scenario, they seem to play the role of upper bound and lower bound of
the true value, as shown by Figure 3(a). For this reason, we also consider the linear combination

of the G-ESS formulas ESS-H
(2)
N and ESS-H

(∞)
N ,

Comb-ESSN(w̄) = a1ESS-H
(2)
N (w̄) + a2ESS-H

(∞)
N (w̄). (35)

This example suggests the use of

a1 = 0.6245,

a2 = 0.4289, (36)

obtained using a Least Squares (LS) regression in order to obtain an expression Comb-ESSN(w̄)
as close as possible to the theoretical ESS curve.
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Optimal β for ESS-H
(β)
N (w̄). Furthermore, we have computed the curves (as function β) of

ESS-H
(β)
N (w̄) for different values of β, considering a thin grid of β values from 0.2 to 50 with

a step of 0.01 (i.e., β ∈ G denoting G the thin grid). We consider a L1 distance between each

ESS-H
(β)
N (w̄) curve and the theoretical ESS curve,4, i.e., |ESS-H

(β)
N − ESSteo|, and compute

β∗ = arg min
β∈G
|ESS-H

(β)
N − ESSteo|. (37)

With this procedure, we obtain
β∗ ≈ 4.

Discussion of the results. Figure 3(b) shows the curves of the ESS rates corresponding to
the theoretical ESS curve (solid line), the best linear combination corresponding to the Eqs.

(35)-(39) (squares) and the curve corresponding to ESS-H
(β∗)
N (dashed line). First of all, we can

note that the linear combination can return values greater than 1 (recall that we are considering

ESS/N). Moreover, we can see that the curve corresponding to ESS-H
(4)
N (w̄) fits particularly well

in this numerical setup, providing a very close to the theoretical ESS curve. Observe that the
approximation provided by ESS-H

(4)
N is virtually perfect for µp ≤ 1. Hence, in this kind of scenario,

we would suggest the use of the expression

ESS-H
(4)
N (w̄) =

(
1∑N

n=1 w̄
4
n

) 1
3

. (38)
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0.3

0.4
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p
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p
=0.5

(x)
q(x)

(c)

Figure 2: Target and proposal pdfs: (a)-(b) with µp ∈ {0.5, 1.5}. The variances in both is set to 1. (c)

here µp = 0 and σp ∈ {0.5, 0.8}.

6.2 Varying the proposal standard deviation σp

Now, we keep fixed µp = 0 and vary the standard deviation of the proposal σp ∈ [0.5, 1]. Figure
2(c) depicts the target density and the proposal density for two specific values of σp, 0.5 and 0.8,

4Recall that these curves are functions of µp and are averaged over 105 independent runs.
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Figure 3: Ratio of ESS values over N (with N = 1000) versus µp. The curve corresponding to theoretical

ESS value, i.e., ESSteo/N is shown in black solid line in both figures. In (a) the curves of ESS-H
(2)
N /N

(circles) and ESS-H
(∞)
N /N (squares) are also depicted. In (b) we show the curves ESS-H

(4)
N /N (dashed

line) and the linear combination in Eq. (35)-(39) (squares), as well. The approximation provided by

ESS-H
(4)
N is virtually perfect for µp ≤ 1.

used in this experimental setup. We recall that N = 1000 and the results have been averaged
over 105 independent runs. In Figure 4(a), we can observe the results of ESSteo/N versus σp (in

solid line), jointly with the curves ESS-H
(2)
N /N (given with circles) and ESS-H

(∞)
N /N (shown with

squares).

Optimal linear combination of ESS-H
(2)
N and ESS-H

(∞)
N . Since the formulas ESS-H

(2)
N and

ESS-H
(∞)
N are the most used in practice, again we consider the linear combination of the G-ESS

formulas ESS-H
(2)
N and ESS-H

(∞)
N ,

Comb-ESSN(w̄) = a1ESS-H
(2)
N (w̄) + a2ESS-H

(∞)
N (w̄), (39)

where in this scenario we get by LS solution

a1 = 0.2715,

a2 = 0.8483, (40)

hence ESS-H
(∞)
N takes more importance in this scenario. Figure 4(b) provides the curve

corresponding to Comb-ESSN(w̄)/N with a dashed line and green squares.

Optimal β for ESS-H
(β)
N (w̄). Furthermore, we have computed the curves (as function β) of

ESS-H
(β)
N (w̄) for different values of β, considering a grid of values of β denoted as G. We consider

13
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Figure 4: Ratio of ESS values over N (with N = 1000) versus σp. The curve corresponding to theoretical

ESS value, i.e., ESSteo/N is shown in black solid line in both figures. In (a) the curves of ESS-H
(2)
N /N

(circles) and ESS-H
(∞)
N /N (squares) are also depicted. In (b) we show the curves ESS-H

(7.6)
N /N (dashed

line) and the linear combination in Eq. (40)-(??) (squares), as well.

a L1 distance between each ESS-H
(β)
N (w̄) curve and the theoretical ESS curve, and compute

β∗ = arg min
β∈G
|ESS-H

(β)
N − ESSteo|. (41)

In this scenario, we obtain
β∗ ≈ 7.6.

The corresponding curve is depicted in Figure 4(b) with a dashed line and red triangles. We can
see that we obtain a very good approximation of ESSteo/N , but slightly worse than in the case
described in the previous section. Moreover, here the optimal β∗ is ≈ 7.6 whereas, in the previous
section, was β∗ is ≈ 4.

Discussion of the results. Figure 4(b) shows the curves of the ESS rates corresponding to
the theoretical ESS curve (solid line), the best linear combination corresponding to the Eqs.

(35)-(39) (green squares) and the curve corresponding to ESS-H
(β∗)
N (red triangles). Again the

linear combination can return values greater than 1 (recall that we are considering ESS/N).
This behavior could be exploited in future works since actually ESSteo/N can exceed 1 (see [9,

Section 3.3]). Moreover, we can see that ESS-H
(7.6)
N (w̄) performs particularly well in this scenario,

providing a close to the theoretical ESS curve. Hence, in this setup, we would suggest the use of
ESS-H

(7.6)
N (w̄). Only for simplicity in computation and comparison, one could consider the closest
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integer and use β = 8,

ESS-H
(8)
N (w̄) =

(
1∑N

n=1 w̄
8
n

) 1
7

. (42)

Finally, it is important to remark that even if the optimal β∗ ≈ 7.6 (or 8) is different from the value
β∗ ≈ 4 suggested in the previous section, however both values differ from 2 (that corresponds to
the typical formula employed in the literature) and both values are bigger than 2. The expression

with β → ∞, i.e., ESS-H
(∞)
N = 1

max w̄n
seems that can be employed as a lower bound for the

theoretical value ESSteo, in both setups. These considerations can be relevant clues for future
applications and studies.

7 Conclusions

In this work, we have analyzed alternative effective sample size (ESS) measures for Monte Carlo
algorithms based on the importance sampling techniques. We have remarked the connection to
the practical ESS formulas used in the literature and entropy families [5]. We have shown that
all the ESS functions included in the Huggins-Roy’s ESS family fulfill all the required theoretical
conditions described in [19], and we have also highlighted the relationship of this family with the
Rényi entropy [5]. We have also shown the application of the Gini impurity index as ESS formula
and its connection to the Tsallis entropy.
Furthermore, we have studied the performance of different Huggins-Roy’s ESS formulas by
numerical simulations, introducing also an optimal linear combination of the most promising
ESS indices. In two numerical examples, we have obtained the best ESS approximations within

the Huggins-Roy’s family in two different setups, ESS =
(

1∑M
n=1 w̄

4
n

)1/3

and ESS =
(

1∑M
n=1 w̄

8
n

)1/7

.

These formulas provide a good approximation (and in the first case almost a perfect match) of
the theoretical ESS values, in two different considered experimental scenarios. Moreover, the
expression ESS = 1

max w̄n
, which corresponds to β → ∞, also provides good performance in some

specific cases (and playing the role of lower bound of the ESS measures in other cases). All these
considerations suggest us that the use of a β > 2 can more adequate in practical applications, e.g.,
in order to fight the sample degeneracy and impoverishment within a particle filtering algorithm.
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