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Abstract

The Planck constant is considered one of the most important universal constants of physics, but its physical
nature still has not been fully understood. Further investigation and new perspectives on this quantity should
therefore be of interest. We demonstrate that the Planck constant can be directly linked to the Compton
frequency of one divided by the Compton frequency of one kg. This further implies that the Planck constant
is related to the quantization of matter, not only energy. We will also show that the frequency of one, when
expressed in relation to kg, depends on the observation time. This new interpretation of the Planck constant
could be an important step towards more in-depth understanding its physical nature, and potentially explaining
the origin of the mass-gap and the rest mass of a photon.
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1 Background

The Planck constant is a cornerstone of modern physics, especially quantum mechanics where it plays an impor-
tant role in the Heisenberg’s uncertainty principle [1], the Schrödinger equation [2], the Klein–Gordon equation
and the Dirac equation [3]. Max Planck introduced it to the scientific community in 1900 at the presentation of
his derivation of the spectral distribution of black-body radiation, the so-called Planck’s law [4]. The radiation,
as a stream of photons of frequency f , comes in quanta of energy proportional to the Planck constant h, E = hf .
Other ways of determining the Planck constant [14] include the Landauer quantization of conductance [5], pho-
toemission spectroscopy [6] or a Kibble balance [7–9]. The last method links it to the kilogram, following the
2019 IS revision, which fixed the Planck constant’s value at an exact number of 6.62607015·10�34 J·Hz�1 [12, 13].

We and several other authors note, however, that despite its omnipresence in the physical world, the Planck
constant lacks in-depth understanding [10, 11]. In this paper we will propose a new, deeper perspective on this
physical quantity, which provides its new definition as the frequency of one divided by the Compton frequency
in an arbitrary amount of matter that we are used to call one kilogram, multiplied by c2. The Planck constant is
therefore linked to the frequency ratio, and most importantly to the Compton frequency of one. This approach
will give us a new insight in energy and matter, and a new way to define and measure the Planck constant.

2 The Planck constant as the Compton frequency of one, di-
vided by the Compton frequency of 1 kg multiplied by c2

The reduced Compton frequency of a mass is simply the speed of light divided by the reduced Compton wave-
length of this mass. For an electron we have

fe =
c

�̄
⇡ 7.76⇥ 1020 per second . (1)

The hypothetical reduced Compton wavelength of one kilogram can be found by Compton’s [18] wavelength
formula

�̄ =
~
mc

=
~

1kg ⇥ c
=

~
c
= 3.52⇥ 10�43 m . (2)

As we will explain in section 4, composite masses can have a Compton wavelength shorter than the Planck
length. This leads to a reduced Compton frequency of one kilogram

f1kg =
c

�̄1kg
⇡ 8.52⇥ 1050 per second . (3)
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All masses expressed in kilograms can be described as reduced Compton frequencies divided by the reduced
Compton frequency of one kilo, see Haug [15, 16]. This gives, for example, the kg mass of the electron equal to

me =
fe

f1kg
⇡ 7.76⇥ 1020

8.52⇥ 1050
⇡ 9.11⇥ 10�31 kg (4)

A frequency divided by a frequency is a dimensionless number, so how did we arrive to a kg unit in the
above calculations? First we need to ask what one kilogram is exactly. A kilogram of a mass is the amount of
matter forming this mass relative to what has been decided upon as a kilogram of this matter. Our calculations
correspond to the observed mass of the electron in terms of kg. This mass is in general observational time
independent. Consequently, if we shrink the observational time window to half a second, both the reduced
Compton frequency of the electron and the one kg will decrease by half, so their ratio will stay the same. However,
if the observational window is close to or below the Compton time, then this mass becomes observational time
dependent.

We will claim that the smallest observable mass inside a time interval is always linked to a reduced Comp-
ton frequency of 1. This is because observed frequencies must come in integer numbers, whereas fractions of
frequencies do not make any sense from the observational point of view (non-integer frequencies can be linked
to probabilities of observing events [15, 16], which are beyond the scope of this paper). If we are operating in
an observational window of one second, the smallest observable reduced Compton frequency is one. To turn this
into a kg of a mass, we need to divide one by the reduced Compton frequency of 1 kg, which gives

m1 =
f1
f1kg

⇡ 1
8.52⇥ 1050

⇡ 1.17⇥ 10�51 kg . (5)

We can calculate the energy equivalent of this mass using Einstein’s energy–mass relation E = mc2:

1
f1kg

c2 =
1

8.52⇥ 1050
c2 ⇡ 1.0545⇥ 10�34 J (6)

The obtained value is equal to the reduced Planck constant, ~. In our view, this is not a coincidence. It shows
that the Planck constant is linked not only to the quantization of energy, but also to the quantization of matter.
We will further postulate that matter comes in discrete units linked to their reduced Compton frequency, and
that the smallest frequency that can be observed is 1. At this point our considerations do not provide any new
method for finding the Planck constant’s value, as we already inserted it in our equations to find the reduced
Compton wavelength of the one kilogram. However we will soon show how we can determine the Compton
frequency of matter without any knowledge of the Planck constant.

As stated above, within a given time interval one can observe only an integer frequency, which means that
we can observe only an integer number of occurrences of observed phenomena. The Planck constant’s units are
Joules per second, where Joule is kg·m2·s�2. Consequently, it is linked to kilograms, meters and seconds.

Let us now look more carefully at the reduced Compton frequency of one kilogram in relation to the exact
2019 NIST-defined value of the reduced Planck constant, ~ = h/(2⇡). We have

f1kg =
c

�̄1kg
=

c
~

1kg⇥c

=
c2

~


kg ·m2/s2

m2 · kg/s

�
=

89, 875, 517, 873, 681, 800
1.054571817 . . .⇥ 10�34

s�1 (7)

⇡ 852246536697289379581438217023772407526798148826311.7503 s�1 . (8)

That is, the reduced Compton frequency of one kg in one second is given by only the speed of light and the
reduced Planck constant. Since the speed of light and the Planck constant are both fixed at exact values,
we obtain a non-integer reduced Compton frequency of one kg during an observational time window of one
second. Fractional Compton frequencies cannot be observed, as explained above. The natural limitation on
the observable frequency values, which is equal to one, invokes the problem of the mass gap [17]. Furthermore,
the reduced Planck constant is equal to the frequency of 1 divided by the Compton frequency of a mass of 1
kg multiplied by c2 (where we assumed that 1 kg physically represents a frequency ratio). A frequency of one
divided by the reduced Compton frequency of one kilogram in the chosen observational window is then the kg
definition of the mass gap. To turn it into the energy gap, we need to multiply it by c2. An issue here is that
the reduced Compton frequency that is linked to the Planck constant can’t be observed in one second, because
it is not an integer. An alternative and exact definition of the reduced Planck constant would therefore require
us to decide on a new definition of a kilogram that is linked to an exact integer number in the reduced Compton
frequency during a given time interval. For example we could round the current number up to exact

852246536697289379581438217023772407526798148826312

or down to
852246536697289379581438217023772407526798148826311
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We could in fact decide on any integer number, if we did not mind obtaining a kilogram definition deviating
significantly from the current value. However, it would make sense to round up the above number, even if it
would enforce adjusting slightly the current definition of c or ~ for the sake of remaining close to the current
kilogram unit value. For instance, if we hold c as it is and round up the reduced Compton frequency, the new
value of the reduced Planck constant is

~ = c2
1

852246536697289379581438217023772407526798148826312

⇡ 1.05457181699999999999999999999999999999999999999999969 . . .⇥ 10�34 , (9)

and if we decide to round it up, it is

~ = c2
1

852246536697289379581438217023772407526798148826311

⇡ 1.054571817000000000000000000000000000000000000000000928 . . .⇥ 10�34 (10)

The later one is particularly convenient for defining a very accurate approximation of ~ ⇡ 1.054571817⇥10�34,
in cases where maximum precision is not needed.

Even if one ha chosen to operate with seconds in the SI unit system, this is an arbitrarily chosen time
interval. If there is a fundamental time interval in nature it is likely the Planck time. The reduced Planck
constant re-formulated in relation to Planck time would be

~p = c2
1

852246536697289379581438217023772407526798148826312
lp
c

=
c

852246536697289379581438217023772407526798148826312lp
(11)

or

~p = c2
1

852246536697289379581438217023772407526798148826311
lp
c

=
c

852246536697289379581438217023772407526798148826311lp
⇡ 1954056587 = mpc

2 (12)

The uncertainty of this definition would be high due to the uncertainty of the Planck length (which equals
1.616255(18) · 10�35 m). Still, putting the CODATA value of the Planck length in the divisor, we obtain the
Planck constant’s value equal to the value of Planck mass energy. Again, however, the observable divisor value
has to be integer. Should the current Planck constant value, as given by CODATA 2019 definition, turn out
not to give an integer number at the Planck time for the reduced Compton frequency of one kg, the current
definition is perhaps not fully consistent. The correction would be miniscule, anyway, as it would just require
rounding e.g. 45994327.12 to 45994327. Still, the main problem here is that we do not know accurately the
Planck length and, consequently, nor the Planck time. The Planck length is normally given by the formula first

described by Max Planck as lp =
q

G~
c3

, which suggests that we need to know the Planck constant to find the

Planck length [19, 20]. However, recent research has shown that it is possible to measure the Planck length
without any knowledge of G or ~, see [22, 23].

The quantisaztion of matter (and energy) through the Planck constant is given by one divided by the reduced
Compton frequency in one kilogram. If measured over one second then this gives the standard value of the Planck
contant, which correspond to a energy of ~ ⇥ 1, and a mass of ~⇥1

c2
. This is very close to the what has been

suggested as the possible photon mass see [15, 21]. If we choose a time window of the Planck time, then a
frequency of one divided by the Planck frequency per Planck time is the Planck mass. The smallest even
hypothetical mass above zero is therefore observational time window dependent. , this ulike most masses that
are observational time-independent. Well they are so as long as the observational time-window is above the
Compton time. This is a new and somewhat controversial view, still we think it should be considered by the
research community.

3 A new way to define and find the Planck constant

First we measure the Compton wavelength [18] of an electron by Compton scattering, which is given as

�e =
��,2 � ��,1

1� cos ✓
(13)
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We shoot a photon into an electron and measure the wavelengths of the photon when sent towards the electron
and after the reflection, as well as the angle ✓ between the incident and reflected photon paths. We could also
find the electron Compton wavelength from the kg mass of the electron by the well-known formula (also given
by Compton in 1923),

�e =
h
mc

. (14)

However, since we want to find the Compton wavelength in order to find the Planck constant, this formula
naturally can’t be used for our purpose. Once we find the Compton wavelength of the electron independent of
the Planck constant, we can use the fact that the ratio of cyclotron frequencies a proton and an electron must
be identical to the ratio of their Compton wavelengths. This cyclotron frequency is given by

f =
qB
2⇡m

(15)

and, since the proton and electron charge is the same, we end up with

fe
fP

=
qB

2⇡me

qB
2⇡mP

=
mP

me
=

�e

�P
⇡ 1836.15 (16)

This is more than a theoretical value, as the cyclotron frequency has indeed been used as a method to find
the proton–electron mass ratio, which is identical to their Compton length ratio, see for example [24, 25]. The
CODATA 2019 value for the Compton wavelength of the electron and the proton is respectively 2.42631023867⇥
10�12 m and 1.32140985539⇥ 10�15 m.

Now that we know the proton wavelength to be approximately equal

�P =
�e
!e
!P

⇡ 2.42⇥ 10�12

1836.15
⇡ 1.32⇥ 10�15 m , (17)

we can decide how many protons we want in our kilogram definition. This approach is not new, as counting the
number of atoms is one of important ways to define the Planck constant, see e.g. [26–28]. What is new here,
however, is that at the deeper level we link it to the Compton frequency of matter. We can define it exactly as
6⇥ 1026 protons plus 6⇥ 1026 electrons. This means the Compton frequency per second for such a mass is

6⇥ 1026 ⇥
✓

c
�P

+
c
�e

◆
⇡ 1.36⇥ 1050 times per second . (18)

If we take the frequency of one per second and divide by this value, we obtain

1
1.36⇥ 1050

⇡ 7.35⇥ 10�51 kg . (19)

By assigning it the kilogram unit, we postulate that the kg mass is, at the deeper level, the frequency of the
mass (energy) of interest divided by the Compton frequency in the arbitrary mass called kilogram. This view
is discussed in more detail in [15], and it will also be discussed further in this paper. If we multiply the above
frequency by c2, we obtain energy,

hf = h⇥ 1 =
1

1.36⇥ 1050
c2 ⇡ 6.6⇥ 10�34 kg ·m2/s2 (20)

and we naturally have per definition ~ = h
2⇡ ⇥ 1 ⇡ 1.05⇥ 10�34kg ·m2/s. The value is very close to the Planck

constant and the reduced Planck constant, and we could make it even closer by linking the Planck constant to
the Compton frequency in today’s kg definition. However, the main point of this derivation is not what the
exact value of Planck constant should be, as we see that it is linked to an arbitrary quantity of matter, that we
choose to call one kilogram. The Planck constant is always equal to one divided by the Compton frequency in
this chosen quantity of matter, multiplied by c2. The multiplication by c2 is needed simply because the Planck
constant is directly linked to the minimum physical amount (quantum) of energy and, therefore, indirectly to
the minimum physical amount (quantum) of mass.

Let us now look at the quantization of energy in the context of the proposed Planck constant’s definition.
Energy comes in quanta, as expressed by the following formula

E = hf = h
c
�

(21)

The energy is thus h multiplied by a frequency, where the frequency is measured per a time unit. On the other
hand, the energy comes in Joules, namely kg·m2·s�2. Consequently, Joule is linked to time. In particular, if we
look only at the frequency f , it is easy to see it is time dependent, as the Planck constant is just a constant, and
the frequency is a frequency per second, f = c

� .
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4 Can composite masses have a Compton wavelength?

In section 3 of this paper we found the Compton wavelength of a proton, by first finding the Compton wavelength
of an electron and then using the cyclotron frequency to estimate the Compton wavelength of a proton. One
could argue that only elementary particles like the electron can have the Compton wavelength, whereas composite
masses such as a proton cannot. We generally agree with such arguments. Yet, composite masses ultimately
consist of aggregates of elementary particles. If each of these elementary particles has a real Compton wavelength,
we should be able to somehow put them together to find the Compton wavelength of the composite particle.
Naturally, the aggregated Compton wavelength of a composite mass must be consistent with standard mass
aggregation, that is

m = m1 +m2 +m3 + · · ·+mn (22)

Furthermore, since any kilogram mass can be represented mathematically as m = ~
�̄

1
c , we can rewrite it as

~
�̄

1
c

=
~
�̄1

1
c
+

~
�̄2

1
c
+

~
�̄3

1
c
· · ·+ ~

�̄n

1
c

1

�̄
=

1

�̄1
+

1

�̄2
+

1

�̄3
· · ·+ 1

�̄n

�̄ =
1

1
�̄1

+ 1
�̄2

+ 1
�̄3

· · ·+ 1
�̄n

(23)

Consequently, any mass should have a Compton wavelength, even astronomical objects like planets, the
Sun and other stars. Yet, any mass larger than the Planck mass has a Compton wavelength shorter than the
Planck length, which suggests that it is not a physical Compton wavelength, since the Planck length is likely the
shortest possible physical Compton wavelength. However, the aggregated Planck length could be shorter than
the Planck length as it is not a physical length, but just an ancillary number that is very useful in calculations
and in understanding the deeper constitution of reality. There is therefore nothing wrong in using the Compton
wavelength of one kilogram as we have done above. Actually, recent research indicates that matter ticks at
the Compton frequency, see for example [29, 30]. The interest for the Compton wavelength of the proton (a
composite mass) goes back to at least to Levitt’s paper [31] from 1958, and it has revived recently as Trinhammer
and Bohr [32] have shown that the Compton wavelength of the proton could potentially be directly linked to
the proton radius.

5 Conclusion

We have presented a new in-depth interpretation of the physical nature of the Planck constant as resulting from
the quantum nature of mass and its Compton frequency. We derived its definition as equal to one divided by the
Compton frequency of one kilogram, multiplied by c2. By defining the kilogram as a given number of protons,
we obtained the Compton frequency of one kilogram of matter as the sum of the Compton frequency of all the
protons and electrons making up this matter. It is naturally important for our definition of the Planck constant
that we can find the Compton frequency of a proton without knowing the Planck constant, and we demonstrated
that it is fully possible. We believe that the presented physical picture gives a new insight in the nature of the
Planck constant. Potentially it could help to explain the origin of the mass-gap as a consequence of the natural
limit on the observable (integer by necessity) Compton frequency of one.
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