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Abstract 
 
In this paper, it is proposed that to fully describe the Cosmology of the Universe, we need 
to consider two metrics together: the FRW metric and the internal Schwarzschild metric.  
In static spacetime, if you zoom into a local region of the spacetime, you get the Minkowski 
metric locally.  In this case, where the spacetime is dynamic, if we zoom in to a specific 
time slice of the internal Schwarzschild metric, we get the Minkowski-equivalent FRW 
metric for flat space with a spatial scale factor that depends on the specific time slice at 
which we are looking.  By solving for the unknowns in the internal Schwarzschild metric 
using cosmological data, we obtain values for the scale factor at different times which can 
then be used in the FRW metric to obtain energy densities of the Universe at various times.  
No cosmological constant is required because the internal Schwarzschild metric provides 
a scale factor that generates a slowing expansion for some time after the Big Bang followed 
by an accelerated expansion that ultimately ends in a Big Rip.  The entire Schwarzschild 
metric in Kruskal-Sezekeres coordinates is examined and we see that it describes two CPT 
symmetric Universes moving in opposite directions in the time dimension.  One Universe 
contains matter while the other contains antimatter.  When these Universes meet at the 
singularity, they annihilate each other resulting in a single, massless, pure radiation 
Universe.  This state regenerates the Big Bang conditions where the radiation decays into 
matter and antimatter pairs, resulting in a new cycle where the two Universes again fall in 
time. 
  
 
The Case for Global and Local Cosmological Metrics 
 
Let us consider a 2D shell of gas spherically symmetrically distributed in space.  This shell 
will collapse according to the Schwarzschild metric where the shell falls toward the center 
of the gas shell.  This metric is a vacuum solution because there is no matter at larger or 
smaller radii, the gas exists effectively at a specific radius at any given time.  

Now suppose we have an observer in the gas.  The observer is a 2D creature that can only 
see along the surface of the shell.  The observer would expect the gas around them to 
become more dense over time as the matter and energy in the gas pulls the gas to higher 
density over time.  However, over time, the observer would find that the matter is 
collapsing more quickly than expected because it is not taking into account the additional 
collapse that comes from the fact that the entire shell is falling in the Schwarzschild 
spacetime. 

As will be shown, the same can be said to be true for Cosmology.  In the Cosmological 
case, we can imagine that the matter and energy in the Universe is isotropically distributed 
throughout infinite space (3D space in this case), but exists only at the present time (time 



is the radius in this case).  Another way to say this is that matter and energy in the past and 
future has no gravitational effects on the present.  The curvature of the present spacetime 
can be understood completely using present data.   

It is well established that in static, curved spacetimes, if one zooms in to a region of the 
spacetime, it would look locally like Minkowski spacetime.  The FRW metric is essentially 
the Minkowski metric where the spatial dimension is scaled by a function of time.  As will 
be demonstrated, the Universe can be modelled as 3D space falling in the internal 
Schwarzschild metric.  If one zooms in to a specific time slice of this spacetime, it looks 
like the FRW metric (assuming zero spatial curvature) instead of the Minkowski metric 
because the scale factor of space depends on which slice of time we are zooming into.  
Thus, we can say the Universe has a ‘Global Metric’ which is the internal Schwarzschild 
metric when looking at the Universe over large cosmological time scales, and a ‘Local 
Metric’ which is the FRW metric when describing the Universe over negligible changes of 
cosmological time.  When viewing the Universe as a whole as falling through time in the 
internal Schwarzschild metric, we get accurate predictions not only of accelerated 
expansion after a period of slowing expansion, but an eventual Big Rip after a finite, 
calculable time.   

Going back to the collapsing shell scenario, note that the radii in the two metrics would 
mean very different things.  To that observer, arc lengths given by the Scharzschild metric 
would have little meaning with regard to the observer’s direct observations.  The observer 
would use the local metric, centered on themselves to calculate arc lengths.  To the 
observer, the radius from the Schwarzschild metric essentially acts as a measure of time 
that can be used to account for discrepancies in the collapse of the gas when calculated 
with only the local metric.  In other words, the scale factor of the collapse in the local 
metric will be a function of the gas’s present radius in the Schwarzschild metric.  As will 
be shown, this is exactly what the internal Schwarzschild metric provides when used as the 
global Cosmological metric with the difference being that in the Cosmological case, the 
shell is now a 3D volume of space and the radial direction is the time dimension. 

Therefore, we can say that the FRW metric allows us to predict energy distributions at 
given times in the Universe when provided the scale factor for the times in question from 
the global metric.  As will be shown, the scale factor can be calculated exactly for any time 
by solving for the unknowns in the internal Schwarzschild metric using cosmological data 
(the transition redshift and the Hubble parameter).  Thus, we can plug known values for 
the scale factor and its derivatives from the global metric into the FRW metric to predict 
the energy densities of the Universe at different times. 
 
 
The Schwarzschild (Global) Metric 
 
The Schwarzschild metric is the simplest solution to Einstein’s field equations.  It is a 
vacuum solution for the spacetime around a spherically-symmetric distribution of energy.  
The general form of the metric can be expressed as: 
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Depending on the ratio &

%
, we get three distinct descriptions of spacetime: 

 
1. 𝑢 = 0: This gives us the flat Minkowski metric of Special Relativity. 
2. &

%
< 1: This describes the metric for an eternally spherically-symmetric vacuum 

centered in space.  This metric is also used to describe the vacuum outside a 
spherically symmetric object occupying a finite amount of space (like a star or 
planet). 

3. &
%
≥ 1: This describes the metric for a spherically symmetric vacuum centered on a 

point in time.  Analogous to the second case, this metric should also describe a 
vacuum of time outside a spherically-symmetric object spanning infinite space.  The 
center of the metric is everywhere in space, but at a single point in time (just like 
one could say that the vacuum described in the second case is centered at all times 
on a single point in space). 

 
An important observation is that the internal metric describes a vacuum solution to the field 
equations.  But the Universe is clearly filled with energy, so how can this solution apply?  
In order to satisfy the requirements of the metric, the Universe must be “a spherically-
symmetric energy distribution occupying an infinite amount of space for a finite amount of 
time”.  For this metric to be a cosmological description, it must be that Universe only truly 
exists in the present and in a very real sense moves into the future.  The surrounding 
vacuum is the future, and the Universe is freefalling through time toward the temporal 
center of the metric.     
 
Time being the radial dimension of the metric combined with the fact that the solution is a 
vacuum solution gives a mathematical justification for our intuitive notions of past, present, 
and future.  The anisotropy along the radial direction gives us an arrow of time that 
distinguishes the ‘past’ and ‘future’ analogous to the way the external solution gives us an 
absolute distinction between ‘up’ and ‘down’.  And the vacuum as described above gives 
us a boundary between them, that boundary being the ‘present’ time.   
 
Observation has shown that the Universe is: 
 

• Spherically	symmetric.			
• Homogenous	in	space		
• Inhomogeneous	across	time.				

	
We will also make one further assumption in this paper: 
 

• The	Universe	only	ever	occupies	a	single	instant	of	Cosmic	time1	and	moves	
from	one	moment	 of	 cosmic	 time	 to	 the	next	where	 the	 time	measured	by	
observers	 between	 cosmic	 times	 depends	 on	 their	 respective	 motions.	 	 In	

                                                
1	In	the	classical	approximation.		Quantum	uncertainty	would	blur	that	instant.	



other	words,	the	3D	spatial	distribution	of	energy	in	the	Universe	is	physically	
moving	through	the	time	dimension	from	the	past	into	the	future,	and	energy	
only	exists	in	the	present.		So	if	one	were	to	view	the	Universe	on	a	spacetime	
diagram,	they	would	only	see	the	Universe	at	one	value	of	time	with	the	rest	
of	the	diagram	empty.			

 
This further assumption implies that the spherically symmetric Universe is ‘surrounded’ 
by vacuum in the time dimension, analogously to how the aforementioned 2D shell was 
surrounded by a vacuum of space.  Since the only spherically symmetric vacuum solution 
in General Relativity is the Schwarzschild metric, this assumption implies that the global 
metric of the Universe is the internal Schwarzschild metric.  Relativity of simultaneity does 
not prohibit the idea of the energy existing at a specific Cosmological time because of the 
nature of the metric.  In Cosmology, we can determine absolute motion and absolute 
simultaneity because we have the Cosmic Microwave Background.  For example, consider 
two events that are causally disconnected.  If observers at each event see the CMB 
temperature to be uniform in all directions (the observers are comoving), then if both 
observers measure the CMB to have the same temperature at both events, then we know 
the events are absolutely simultaneous, even if an observer in motion sees them as non-
simultaneous.  Any observer in motion through space, inertial or otherwise, will see a 
dipole on the CMB, and that dipole will provide all the info about the state of motion of 
the observer.  Therefore, because of the structure of the metric, we can define past, present, 
future, and motion in an absolute sense.  To put it another way, the fact that cosmological 
time is finite into both the past and future allows us to specify the distance of any event 
from either the beginning or end of time absolutely. 
 
Consider the celestial spheres around an observer in the Universe.  When we look out to 
distant events, we can use the redshift from these events to determine their distance from 
us.  Events with the same distance from us can be thought of as residing on a celestial 
sphere, such that all these events are separated from us by the same magnitude of space 
and time.  We can classify these spheres into three types: 
 

1. Dynamic Spheres – These are the spheres that galaxies reside on.  Objects on these 
spheres maintain a constant coordinate distance from us and move forward in time.  
We are able to move toward or away from objects on these spheres by moving 
through space.  If we fix our sights on a particular galaxy, the light we see from 
that galaxy is being emitted later in time as we ourselves move through time.   
 

2. Static Spheres – These are spheres fixed in time.  The Cosmic Microwave 
Background is the most obvious example of these spheres.  Light from the CMB 
sphere is always emitted from the same cosmological time, but as we ourselves 
move through time, we see light from that time emitted from farther and farther 
away from us in space, giving the impression that the CMB sphere is growing.  We 
cannot move toward or away any objects on this sphere because it is frozen in time.  
Both metrics are able to capture this behaviour, but they do so in different ways. 

 



3. The Dark Sphere – The Dark Sphere is the Big Bang and lies beyond the CMB.  It 
is in principle unobservable for two reasons.  First, the CMB is opaque so that any 
light from the Big Bang cannot penetrate it.  Second, even if the CMB was not 
blocking our view, any light from that sphere would be infinitely redshifted in the 
frame of all future observers since the scale factor on that sphere is zero.  But 
though we cannot see the Dark Sphere, it must be there if the model of the Universe 
is consistent.  	

 
These spheres are shown in terms of the internal Schwarzschild metric in Figure 1.  Figure 
1 shows the Schwarzschild coordinates of the internal metric plotted on the Kruskal-
Szekeres coordinate plane.  In these coordinates, space is the ‘t’ coordinate emanating from 
the center of the diagram (Big Bang) and time is the ‘r’ coordinate depicted as hyperbolas 
(time is flowing forward as r goes toward zero).  The upper right quadrant of this diagram 
represents a single fixed direction (𝜃 = 𝑐𝑜𝑛𝑠𝑡, 𝜙 = 𝑐𝑜𝑛𝑠𝑡).  So each bold line representing 
a sphere would be a point on each sphere over time.  Note that light on this diagram travels 
on 45-degree lines. 
 

 
Figure 1 – Celestial Sphere Types on Kruskal-Szekeres Coordinate Chart2 

 
 
The Antimatter Universe and Regeneration 
 
Figure 2 shows the full Schwarzschild metric in Kruskal-Sezekeres coordinates.  The 
diagram can be split in two along the diagonal where in the top right half, forward time 
points up while in the bottom right half, forward in time points down.  Left and right are 
also swapped when looking at the upper and lower halves.   
 
We can therefore conjecture that the diagram is describing both a matter Universe flowing 
up from the center and an antimatter Universe flowing down from the center both toward 
                                                
2	Diagram	modified	from:	“Kruskal	diagram	of	Schwarzschild	chart"	by	Dr	Greg.	Licensed	under	CC	BY-SA	3.0	via	Wikimedia	
Commons	-	
http://commons.wikimedia.org/wiki/File:Kruskal_diagram_of_Schwarzschild_chart.svg#/media/File:Kruskal_diagram_of_Sch
warzschild_chart.svg	
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the singularity.  The reason we expect an antimatter Universe is both because the directions 
of time and space are reversed relative to each other and because we expect that equal 
amounts of matter and antimatter are created at the beginning of the Universe and therefore, 
we expect the particles of the second Universe to have opposite charges relative to the first.  
Thus, the pair of Universes satisfy CPT symmetry.   
 
At 𝑟 = 1, we can see that the Universe must be massless because, as will be shown, the 
scale factor there is zero.  This means that infinite space can be traversed in zero time there, 
which can only happen with massless particles.  Thus, we can say that the Universe must 
be pure radiation at 𝑟 = 1.  After 𝑟 = 1, this radiation would decay into matter/antimatter 
pairs that seed the two different Universes as each Universe begins falling in different 
directions in the diagram.  Each matter particle in one Universe will also be entangled with 
its sister antimatter particle in the other Universe.  Therefore, the Universes are maximally 
entangled at this point, giving the combined Universes a low entropy initial state at the 
beginning of expansion.  Decoherence between the Universes over time will lead to an 
increase in entropy as time moves forward in each Universe.  If the Universes then meet at 
the singularity, the matter and antimatter in the two Universes would annihilate, leaving 
only a Universe filled with high energy radiation.  This regenerates the 𝑟 = 1 state, cycling 
the entire process over and over again.  The metric is singular at 𝑟 = 0  because the 
annihilation would end the worldlines of the matter particles.   
 

 
Figure 2 – Matter and Antimatter Universes on Kruskal-Szekeres Coordinate Chart3 
 
 
 
 
 

                                                
3	Diagram	modified	from:	“Kruskal	diagram	of	Schwarzschild	chart"	by	Dr	Greg.	Licensed	under	CC	BY-SA	3.0	via	Wikimedia	
Commons	-	
http://commons.wikimedia.org/wiki/File:Kruskal_diagram_of_Schwarzschild_chart.svg#/media/File:Kruskal_diagram_of_Sch
warzschild_chart.svg	



Freefall Through Time 
 
Let us take the center of our galaxy as the origin of an inertial reference frame.  We can 
draw a line through the center of the reference frame that extends infinitely in both 
directions radially outward.  This line will correspond to fixed angular coordinates (𝜃, 𝜙).  
There are infinitely many such lines, but since we have an isotropic, spherically symmetric 
Universe, we only need to analyze this model along one of these lines, and the result will 
be the same for any line.  
 
The radial distance in this frame is kind of a compound dimension.  It is a distance in space 
as well as a distance in time.  The farther away a galaxy is from us, the farther back in time 
the light we currently receive from it was emitted.  Fortunately the &

%
≥ 1 spacetime of the 

Schwarzschild solution plotted in Kruskal-Szekeres coordinates provides us with a method 
to understand this radial direction.  Figure 1 showed the &

%
≥ 1  solution on a Kruskal-

Szekeres coordinate chart where, in this model, the hyperbolas of constant r represent 
spacelike slices of constant cosmological time and the rays of t represent spatial distances.  
We will not be considering differences in angles until a later section in the paper, so we 
only need to consider the two halves of Figure 1.  We will focus on the upper half where 
the half represents an observer pointed in a particular direction and the positive t’s represent 
the coordinate distance from the observer in that particular direction while the negative t’s 
represent coordinate distance in the opposite direction.   
 
We must first determine the paths of inertial observers in the spacetime.  For this we need 
the geodesic equations for the internal Schwarzschild metric [1] given in Equation 1.  In 
these equations u represents a time constant that in the external metric would be the 
Schwarzschild radius (in Figure 1, the value of u is 1).  The following equations are the 
geodesic equations for t and r (𝑟 ≤ 𝑢): 
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In Equations 1, 2, and 3, we use units where 𝑐 = 1 and equations 2 and 3 assume no angular 
motion.  Looking at points 0 < 𝑟 < 𝑢, then by inspection of Equation 2 it is clear that an 
inertial observer at rest at t will remain at rest at t (;
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;><

= 0 if ;=
;>
= 0).  Also, we see that if 

an observer is moving inertially with some initial ;=
;>

, then if ;%
;>
< 0, the coordinate speed 

of the observer will be reduced over time (the coordinates are expanding beneath her) and 
if ;%
;>
> 0, the coordinate speed will be increased over time (the coordinates are collapsing 

beneath her).   
 
Let us therefore examine Equation 3 for an observer with no angular motion. Combining 
Equations 1 and 3, equation 3 becomes: 



  ;
<%
;><

= − &
#%<

?1 + @;C
;>
A
#
B − (𝑢 − 𝑟) @;C

;>
A
#
 (4) 

 
For ;C

;>
= 0, notice that the observer’s acceleration through cosmological time is similar to 

the form of Newton’s law of gravity, where r (a time coordinate) varies from u to 0 (If the 
Schwarzschild constant was 2GM, as it would be in the external solution, Equation 4 would 
be Newton’s gravity).  Also, anyone moving inertially starting with non-zero ;=

;>
 will 

experience the same acceleration through time as someone with zero ;=
;>

 since 𝑑𝑡 does not 
appear in Equation 4.  
 
So we will first use Figure 1 to describe the freefall of the galaxies through the 
cosmological time dimension where galaxies (or galaxy clusters) follow lines of constant t 
(and any such observer can choose 𝑡 = 0 as their coordinate).  The ‘Big Bang’ will have 
occurred in Figure 1 along the line 𝑟 = 1.  We know this because the above analysis 
showed that space expands if ;%

;>
 is negative, so for our current cosmological time, our 

worldlines must be moving toward 𝑟 = 0.  
 
 
The Scale Factor  
 
Expressions for the proper time interval along lines of constant t and Ω and the proper 
distance interval along hyperbolas of constant r and Ω from Equation 1 are: 
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Where a is the scale factor.  First we should notice that neither Equation 5 nor 6 depend on 
the t coordinate.  This is good because the t coordinate marks the position of other galaxies 
relative to ours.  Since all galaxies are freefalling in time inertially, the particular position 
of any one galaxy should not matter.  The proper velocity and proper distance only depends 
on the cosmological time r.   
 
What is notable here is that in Schwarzschild coordinates, the scale factor is equal to the 
velocity through the time dimension for an observer at rest @;=

;>
= ;C

;>
= 0A.  When 𝑟 = 𝑢, 

Equations 5 and 6 are both 0.  At this point (the Big Bang), it is our proper velocity in time 
that is zero.  So at that instant, we are no longer moving through time and therefore all 
points in space are coincident (the observer can reach every point in space without moving 
through time, all paths are light-like).  So this why the scale factor goes to zero there and 
why the lines of t in Figure 1 converge at that point; it is an instant where our velocity 
through cosmological time goes to zero as our speed through cosmological time changes 
from positive to negative (we can see that if we draw a worldline through the center point, 



;%
;>

 will change signs as it passes the 𝑟 = 𝑢 point).  In fact, for any choice of time coordinate, 
that point will be a stationary point in those coordinates. 
 
At 𝑟 = 0, both equations 5 and 6 are infinite.  So when the worldlines enter or exit one of 
the 𝑟 = 0 hyperbolas, they do so at infinite proper speed through the time dimension. If 
something is travelling through space at the speed of light, the proper distance between 
points in space is zero.  In this case, since we have infinite proper velocity in the time 
dimension, the proper distance between points in space will be infinite, because you would 
traverse an infinite amount of time in order to move through an infinitesimal amount of 
space.  What we see then is that at 𝑟 = 0 space will be infinitely expanded and thus the 
scale factor is infinite.  A plot of the scale factor vs. r (with 𝑢 = 1) is given in Figure 3 
below: 

 
Figure 3 – Scale Factor vs. r for 𝑢 = 1 

 
 
Cosmological Parameters 
 
In order to compare this model to cosmological data, we must solve for u and find our 
current position in time (𝑟J) in the model.  Reference [3] gives us a 95% confidence interval 

for the measured transition redshift at 𝑧= = 0.426'J.JPQRJ.#S .  We can use the fact that G&'%
%

 is 

the scale factor and get the expression for cosmological redshift caused by the expansion 
[1] (note that this Equation was derived from the FRW metric in the reference, but the 
internal metric, when setting 𝑑Ω = 0, can be put in the same form as the FRW metric with 
a coordinate change, so the equation below is still valid for the internal metric): 
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We can see in Figure 2 that there is an inflection point that corresponds to the transition 
redshift in the model.  To find this inflection point, we need to derive the Hubble parameter 
and deceleration parameter equations using the scale factor.  The Hubble parameter is given 
by: 
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And the deceleration parameter is given by: 
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The transition redshift occurs when 𝑞 = 0, giving us @%
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Equation 7, we can find @&
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Giving: 
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The current Hubble constant, as measured by the Planck mission was found to be 𝐻J =
67.8 ± 0.9	(km/s)/Mpc and from the Hubble Space telescope 𝐻J = 73.48 ±
1.66	(km/s)/Mpc.  With these and Equation 11, we can solve for limiting values of u 
and 𝑟J (after converting the units of 𝐻J so that u is measured in Gly): 
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Note that in Equation 12, 𝐻J is in units of (𝐺𝑦)'c.  Before presenting the results, let us 
derive the expression for t vs. r along a null geodesic where the geodesic ends at the current 
time 𝑟J.  We can do this by setting 𝑑𝜏 = 𝑟𝑑Ω = 0 in Equation 1 and integrating: 
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Table 1 below gives the values of u, 𝑟J,	𝑎J,	𝑞J,	𝑟= (coordinate time at transition redshift), 
𝐻=  (Hubble constant at the transition redshift), and 𝑡=  (coordinate distance of transition 
redshift) given the measured bounds of 𝑧= and 𝐻J.  All times are in Gy, distances are in 
Gly, and 𝐻 are in (km/s)/Mpc. 
 

𝒛𝒕 𝑯𝟎 𝒖 𝒓𝟎 𝒖 − 𝒓𝟎 𝒂𝟎 𝑯𝒕 𝒓𝒕 𝒕𝒕 𝒓𝒕 − 𝒓𝟎 𝒒𝟎 
0.337 68.7 30.4 19.0 11.4 0.77 85.8 22.8 8.5 3.8 -0.5 
0.337 66.9 31.2 19.5 11.7 0.77 83.6 23.4 8.8 3.9 -0.5 
0.337 75.14 27.8 17.4 10.4 0.77 94.3 20.9 7.9 3.5 -0.5 
0.337 71.82 29.1 18.2 10.9 0.77 89.5 21.8 8.1 3.6 -0.5 
0.696 68.7 28.5 14.3 14.2 1.00 91.8 21.4 12.7 7.1 -1.0 
0.696 66.9 29.3 14.7 14.6 1.00 89.3 22.0 13.0 7.3 -1.0 
0.696 75.14 26.0 13.0 13.0 1.00 100.4 19.5 11.5 6.5 -1.0 
0.696 71.82 27.3 13.7 13.6 1.00 95.8 20.5 12.1 6.8 -1.0 

 
Table 1: Limiting Cosmological Parameter Values Based on 𝑧= and 𝐻J Measurement 



Note that these values cannot be calculated for the CMB because of lack of precision in 𝑧= 
and 𝐻J measurements (The CMB is too close to 𝑟 = 𝑢 to get meaningful values given the 
imprecise measurements).  Table 2 has the proper times from the Big Bang to the transition 
redshift and current time for stationary, inertial observers (𝑑𝑡 = 𝑟𝑑Ω = 0) by integrating 
Equation 1 (there is not enough precision in the measurements to calculate this for the 
CMB).  The column 𝜏=�=	gives the time from 𝑟 = 𝑢 to 𝑟 = 0.  The expression for 𝜏=�= turns 
out to be quite simple4: 
  𝜏=�= =

�
#
𝑢 (14) 

 
The column 𝜏%��Y�� gives the time between 𝑟 = 𝑟J and 𝑟 = 0. 
 

𝒛𝒕 𝑯𝟎 𝝉𝟎 𝝉𝒕 𝝉𝒕𝒐𝒕 𝝉𝒓𝒆𝒎𝒂𝒊𝒏 
0.337 68.7 34.6 29.1 47.8 13.2 
0.337 66.9 35.7 30.1 49.2 13.5 
0.337 75.14 31.7 26.5 43.7 12.0 
0.337 71.82 33.3 27.9 45.7 12.4 
0.696 68.7 36.3 27.2 44.8 8.5 
0.696 66.9 37.4 28.0 46.0 8.6 
0.696 75.14 33.3 25.1 41.0 7.7 
0.696 71.82 34.8 26.2 42.9 8.1 

 
Table 2: Limiting Proper Times Based on 𝑧= and 𝐻J Measurements (Time is in Gy) 

 
Note that while the coordinate times for the current age of the Universe (𝑢 − 𝑟J) are close 
to current estimates (for high 𝑧= ), the proper time 𝜏J  is actually much larger.  This is 
because in the early Universe, observers are moving slower through the time dimension 
and therefore they accrue more proper time per unit coordinate time early on.  But the speed 
through the time dimension increases over time such that even though we are presently 
only about halfway through the “coordinate life” of the Universe (according to Table 1), 
the amount of proper time remaining is actually much less than the amount of proper time 
that has already passed (according to Table 2). 
 
Next we would like to use the u and 𝑟J values found to create an envelope on a Hubble 
diagram to compare to measured supernova data.  First we need to find r as a function of 

redshift.  We can do this by solving for 𝑟���= in Equation 7 where 𝑎J ≡ G&'%
%

, the present 

value of the scale factor: 
  𝑟 = 𝑢 �<R#�Rc

Ye<R�<R#�Rc
 (15) 

 

                                                
4 Thinking of 𝜏=�= as a ‘Universal Period’ allows us to define a Universal constant 𝑈 = �

#
𝑢 for time and space.  Equation 14 is the 

maximum amount of time that can be measured between the Big Bang and 𝑟 = 0.  So if we set 𝑈 = �
#
𝑢 = 𝑐 = 1 then we are working 

in units where space and time have the same units and all measurable times will be between 0 and 1.  When working in these units, the 
constant in the interior Schwarzschild metric will be 𝑢 = #

�
. 

	



Next we substitute Equation 15 into Equation 13 to get coordinate distance in terms of 
redshift: 
  𝑡 = 𝑢 �ln @%e�Ye

<R�<R#�Rc�
&

A − �<R#�Rc
Ye<R�<R#�Rc

� + 𝑟J (16) 
 
Finally, we convert Equation 16 to the distance modulus, μ, which is defined as: 
 
  𝜇 = 5	logcJ @

=
cJ
A (17) 

 
Where t in Equation 17 is in units of parsecs.  A plot of distance modulus vs. redshift is 
shown in Figure 4 below plotted over data obtained from the Supernova Cosmology Project 
[6].  Curves calculated from all combinations of u and 𝑟J in Table 1 are plotted, giving an 
envelope for the model’s prediction of the true Hubble diagram. 
 

 
Figure 4 – Distance Modulus vs. Redshift Plotted with Supernova Measurements 

 
Note that the lower curves correspond to the 𝑧= = 0.696 data, suggesting that, if this model 
is correct, the true transition redshift is closer to 0.696 than 0.337. 
 
In [7], the authors analyze a large sample of quasar data to obtain distance moduli at higher 
redshifts than is possible with supernova data.  Although not definitive, the results of this 
analysis suggests that the “Dark Energy” density may be increasing with time, which does 
not fit with the LCDM model.  However, the accelerated expansion predicted by the 
Schwarzschild solution is consistent with this type of expansion.  Figure 5 shows the same 
predicted envelope from Figure 4 for the Hubble diagram plotted out to higher redshifts 
with the quasar data from [7] also shown with error bars.  The black diamonds in the figure 
are the 18 high-luminosity XMM-Newton quasar points described in [7].   
 



 
Figure 5 – Distance Modulus vs. Redshift Plotted with Quasar Measurements 

 
 
Relationship to the External Schwarzschild Solution 
 
Let us consider a meter stick at rest at the center of a collapsing spherically symmetric 
collapsing shell in space.  The meter stick inside the shell stretches from the center of the 
shell out to a distance 2GM (the shell is at a radius greater than 2GM so the entire stick is 
in flat space).  An observer in freefall on the collapsing shell does so with speed (in natural 
units measured by her clock) [5]: 

  ;%
;>
= −G#¢£

%
 (18) 

 
Therefore, the freefall observer will see observers at rest at r moving past her at the speed 
given in Equation 18.  Since the meter stick is also at rest relative to observers at rest at 
any r, Equation 18 will also give the relative velocity between the freefall observer and the 
meter stick when the shell is at r.  Since the spacetime between the freefall observer and 
central observer is flat, they will each see the other’s clock dilated by the Special Relativity 
Relationship: 

  𝑑𝜏 = 𝑑𝑡√1 − 𝑉# = 𝑑𝑡G1 − #¢£
%

 (19) 

 
Because the meter stick will appear to be moving in the frame of the freefalling observer, 
its length in her frame would be: 

  𝐿 = 2𝐺𝑀G1 − #¢£
%

 (20) 

 
We see from Equation 20 that as the freefalling observer approaches 𝑟 = 2𝐺𝑀 the length 
of the meter stick in her frame will contract to zero length.  So observers in freefall will see 
the space beyond 𝑟 = 2𝐺𝑀 fully contracted as they approach 𝑟 = 2𝐺𝑀.  Furthermore, the 
clock of an observer at the center of the shell will be slowed as the shell collapses (the 
clock of an observer at the center ticks at a rate equal to an observer at rest at the location 
of the shell) such that if she exchanges light signals with the shell as it collapses, the time 
she measures for the light to return will shrink to zero as the shell reaches the Schwarzschild 



radius.  Thus, she also effectively sees the space within the shell shrink to zero as the shell 
approaches the Schwarzschild radius. 
 
But the freefalling observer of the external solution will never fall into a ‘black hole’.  It 
would take an infinite amount of time in the frame of an observer at infinity for the 
freefalling observer to reach the event horizon.  But the Universe itself will reach 𝑟 = 0 in 
a finite amount of time in the frame of the infinite observer and therefore the freefalling 
observer will only reach the 𝑟 = 2𝐺𝑀 location when the entire Universe has reached 𝑟 =
0.  Thus, she will never actually reach any event horizon, she will reach 𝑟 = 0 when the 
entire Universe has reached 𝑟 = 0. 
 
 
Pair Production and the Charge and Spin Hypothesis 
 
We can visualize the process of a pair of particles created at the Big Bang, moving through 
their respective Universes over time and then annihilating at the end of time in Figure 6 
below. 
 

 
Figure 6 – Pair Production at the Big Bang and Annihilation at the End of Time5 

 
In Figure 6, three stages are shown: 
 

1. The	 line	 commonly	 thought	of	 as	a	 ‘White	Hole	Horizon	 (WHH)’	 shows	 the	
matter	and	antimatter	particles	being	emitted	on	opposite	sides	of	the	line	into	
the	 external	 Schwarzschild	 metric.	 	 We	 also	 see	 the	 starting	 point	 in	 the	
internal	Schwarzschild	metric	at	the	center	of	the	diagram.		All	the	events	on	

                                                
5	Diagram	modified	from:	“Kruskal	diagram	of	Schwarzschild	chart"	by	Dr	Greg.	Licensed	under	CC	BY-SA	3.0	via	Wikimedia	
Commons	-	
http://commons.wikimedia.org/wiki/File:Kruskal_diagram_of_Schwarzschild_chart.svg#/media/File:Kruskal_diagram_of_Sch
warzschild_chart.svg	



the	WHH	are	coincident	because	the	particles	enter	the	external	metric	at	the	
same	r	and	t	coordinate.	

2. The	particles	are	travelling	through	their	respective	Universes	in	the	external	
metric	as	their	Universes	fall	in	the	internal	metric	

3. The	line	commonly	thought	of	as	the	 ‘Black	Hole	Horizon	(BHH)’	shows	the	
matter	and	antimatter	particles	coming	back	together	and	annihilating	in	the	
external	metric	since	all	the	points	on	that	line	are	also	coincident	for	the	same	
reason	as	 the	WHH.	 	At	 this	 time	 in	 the	 internal	metric,	 the	Universes	have	
reached	the	singularity.	

 
Given that the matter and antimatter are moving in opposite directions in time, we can 
hypothesize that the electric charge of a particle is related to the particle’s orientation in 
time.  The sign of the charges of matter particles would indicate that these particles are 
oriented along the time radius in the same direction that the matter Universe is moving.  
The antimatter particles have opposite sign and so they are oriented in the direction of 
travel of the antimatter Universe.  Chargeless particles such as photons would have no such 
orientation and have the same properties moving in both directions of time. 
 
We can extend this hypothesis further by considering the spin of Fermions.  Fermions can  
be measured to be spin up or spin down.  We could interpret the spin to be a physical spin 
about the time dimension with, for instance, spin up indicating the spin vector is pointed in 
the direction of motion of the matter Universe along the time radius, and spin down 
indicating the spin vector is pointed in the direction of motion of the antimatter Universe 
along the time radius.  This interpretation of Quantum spin also gives meaning to the 
angular term in the internal Schwarzschild metric in Equation 1.  Fermion spins can be 
measured in any direction in three dimensions, so if the particles are spinning about the 
time radius, the angular term of Equation 1 gives us the space in which to interpret spin 
about the time dimension in multiple directions.   
 
 
Equivalence of Time and Space 
 
In Quantum Mechanics, the concept of spin was needed to achieve a relativistic description 
of quantum wave functions.  We can see here that by modelling spin as rotation about the 
time radius, time gets treated on equal footing with space in that particles can rotate about 
either type of dimension.  This equal treatment of time and space is the hallmark of 
relativistic theories.  
 
The spacetime of the Universe can be thought of as being a spherically symmetric object 
having both a time and a space dimension along each of the directions of Ω.  When we look 
out at the Universe in a particular direction we see both distant space and distant (past) 
time together.  The origin of Ω can be placed anywhere in space at all times when observing 
the spatial structure of the Universe, but it has a fixed origin in time at all spatial locations 
when observing the temporal structure.   
 
 



Equation 1 gives a clue as to how both space and time dimensions can be overlaid in all 
directions.  Notice that the 𝑑𝑟 and 𝑟𝑑Ω terms have opposite signs.  As is the case in the 
external Schwarzschild and FRW metrics, we would expect the angular and pure radius 
terms to have the same sign.  We can remedy this by changing Equation 1 to: 
 
   𝑑𝜏# = −&'%

%
𝑑𝑡# + %

&'%
𝑑𝑟# + (𝑖𝑟)#𝑑Ω# (21) 

 
Making the radius in the angular term imaginary gives us the expected form of the metric. 
We can interpret this as every direction having a complex radius with a real spatial part 
and imaginary temporal part.   
 
All observers have a minimum speed through time which depends on the present 
cosmological time, even if an observer is at rest spatially.  And if an observer moves more 
rapidly through space in a given direction, they also effectively move more rapidly through 
cosmological time as a result of the time dilation of the observer’s clock caused by the 
motion (i.e. a fast-moving observer will have aged less by the time they reach the 
singularity than an observer that remained at rest relative to the CMB during the 
expansion).   
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