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Abstract: This document writes a new, very simple algorithm to solve linear diophantic equations in 

their particular solution, without having to solve them with the Euclid algorithm and the Bezout 
identity among others. 
The algorithm is very simple, fast and practical, we can choose any method to find the GCD and then 
replace it in the formula. This algorithm helps us to predict whether the result belongs to integers 
numbers or natural numbers. 

 
Introducción  
The Diophantine equations, which, as their name indicates, are due to Diophantus, an ancient Greek 
mathematician whose work had great importance and influence on later generations. The problems 
dealt with by Diophantus dealt with merely numerical aspects in which the properties of integers 
intervene. 
 
There are several methods for solving linear Diophantian equations, from the method of Diophantus, 
Euler and others. 
 
Linear Diophantine equations are the expressions 𝑎𝑥 + 𝑏𝑦 = 𝑐, where 𝑎, 𝑏, 𝑐 are given integers, so 𝑥, 𝑦 
are the integer variables to be found. The so-called “Bézout Lemma” states that the system has a 
solution if and only if 𝑑 = 𝑚𝑐𝑑(𝑎, 𝑏)  divides 𝑐. In that case the equation has infinite solutions. 

 
Theorem: Let 𝑎, 𝑏, 𝑐 ∈ ℤ. The Diophantine equation 𝑎𝑥 + 𝑏𝑦 = 𝑐 has an integer solution if, and only if 
the greatest common divisor of 𝑎 and 𝑏 divides 𝑐. 
 
Demonstration: 
Suppose that the integers 𝑥0 and 𝑦0 are a solution to the equation 𝑎𝑥 + 𝑏𝑦 = 𝑐 
with this we have that 𝑎𝑥0  + 𝑏𝑦0 = 𝑐. Then if 𝑑 = 𝑚𝑐𝑑 (𝑎, 𝑏), then 
𝑑 = 𝑚𝑐𝑑 (𝑎, 𝑏) → 𝑑 | 𝑎 and 𝑑 | 𝑏 → 𝑑 | (𝑎𝑥0 + 𝑏𝑦0) → 𝑑 | 𝑐 

 
Greatest Common Divisor 

Definition: Given the integers 𝑎;  𝑏 >  0, we define greatest common divisor of a and b, as the largest 
number that divides both a and b. It is denoted in two ways: (𝑎;  𝑏)  =  𝑐 𝑜𝑟 𝑔𝑐𝑑(𝑎;  𝑏)  =  𝑐. We will 
use (𝑎;  𝑏) to denote the greatest common divisor. 
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Example. Let's find GCD of 20 and 25. The divisors are of 20:±1; ±2; ±4; ±5, ±10, ±20, the divisors of 25 
are: ±1; ±5, ±25 and the common divisors of 20 and 25 are; ±1; ±5, and the greatest common divisor is 5, so 
the GCD of 20 and 25 is 5 and by notation (20; 25) = 5. 
 
Definition: If the greatest common divisor of (𝑎;  𝑏)  =  1, we say that the integers are relatively prime, or 
coprime. 
 
 

Example 
 𝑎𝑥 + 𝑏𝑦 = 𝑐 

 
𝟕𝒙 + 𝟑𝒚 = 𝟏𝟎𝟎 

𝑑 = 𝑀𝐶𝐷(7,3) = 1  
∴  ℎ𝑎𝑠 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑠𝑖𝑛𝑐𝑒  1|100 

 

A) Particular solution of the equation: Using Euclid's algorithm and Bezout's lemma 
𝟕𝒙𝟎 + 𝟑𝒚𝟎 = 𝟏 

𝑥0 = 1 
𝑦0 = −2 

 

∴ 7 ∗ 1 + 3 ∗ (−2) = 1 
B) Particular Final Solution 

 
Then 7x + 3y = 100  

 
I multiply by 100 on both sides of the previous result (A) 

7 ∗ (1 ∗ 100) + 3 ∗ (−2 ∗ 100) = 1 ∗ 100 
𝟕 ∗ 𝟏𝟎𝟎 + 𝟑 ∗ (−𝟐𝟎𝟎) = 𝟏𝟎𝟎  

C) General Solution 
 

𝑥 = 𝑥0 ∗ 𝐶 −
𝑏

𝑑
∗ 𝑘 

𝑦 = 𝑦0 ∗ 𝐶 +
𝑎

𝑑
∗ 𝑘 

 K ∈ ℤ 

 
 
 

𝐶 = 𝑐/𝑑  
𝐶 = 100/1 

𝑥 = 1 ∗ 100 −
3

1
∗ 𝑘            𝒙 =   𝟏𝟎𝟎 − 𝟑𝒌    

𝑦 = −2 ∗ 100 +
7

1
∗ 𝑘           𝒚 = −𝟐𝟎𝟎 + 𝟕𝒌 

 
Replacing x, y in the initial equation: 

7x + 3y = 100 
∴     𝟕(𝟏𝟎𝟎 − 𝟑𝒌) + 𝟑(−𝟐𝟎𝟎 + 𝟕𝒌) = 𝟏𝟎𝟎 
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New simple formula to solve diophantic linear equations 

∀ |𝒂| < |𝒃|   𝑎, 𝑏, 𝑐, 𝑑 , 𝑥, 𝑦, 𝑧 ∈ 𝒁  

𝒂𝒙 ± 𝒃𝒚 = 𝒄 
 

 

(±
𝒛 ∗ |𝒃| ± 𝒅

𝒌
, ±

𝒛 ∗ |𝒂| ± 𝒅

𝒌
) 

The algorithm presents 2 variables for its positive form and 2 variables for its negative form, 
 when |𝒂| < |𝒃| 

𝑧 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 |𝒙𝟎|, |𝒚𝟎|  
𝐾 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 |𝑎 − 𝑏| 

𝑑 = 𝐺𝐶𝐷 
In the next examples it will be clearer how to obtain (z). 
 

********************************************************* 

Chapter I 
New positive algorithm 

𝑎𝑥 + 𝑏𝑦 = 𝑐 
 

𝑎𝑥0 + 𝑏𝑦0 = 𝐺𝐶𝐷(𝑎, 𝑏) 
 
The result of this can have two variables, one when 𝒙𝟎 is positive and ∈ ℕ and another when −𝒙𝟎 is 

negative and ∈ ℤ. The same thing happens in the opposite way for the 𝒚𝟎. 

 
Variable I: (positive) x 

(𝑥0, −𝑦0) 

 

(
𝒛 ∗ |𝒃| − 𝒅

𝒌
, −

𝒛 ∗ |𝒂| − 𝒅

𝒌
)   

 
Variable II: (negative) 

(−𝒙𝟎, 𝒚𝟎) 
 

When x is negative we add the minus before the parentheses to the previous formula 

− (
𝑧 ∗ |𝑏| − 𝑑

𝑘
, −

𝑧 ∗ |𝑎| − 𝑑

𝑘
)   

= (−
𝒛 ∗ |𝒃| + 𝒅

𝒌
,
𝒛 ∗ |𝒂| + 𝒅

𝒌
)   
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What variable do we use then? 

The algorithm to find the particular solution A and B then has two possibilities from which we must choose one. 

(𝒙𝟎 , −𝒚𝟎) 𝒐𝒓 (−𝒙𝟎, 𝒚𝟎) 

(
𝒛 ∗ |𝒃| − 𝒅

𝒌
, −

𝒛 ∗ |𝒂| − 𝒅

𝒌
)  𝒐𝒓 (−

𝒛 ∗ |𝒃| + 𝒅

𝒌
,
𝒛 ∗ |𝒂| + 𝒅

𝒌
) 

To know which of the two variables we should use, we only have to take into account the following: 

𝒙𝟎 = 𝑲| 𝒛 ∗ 𝒃 − 𝒅       𝒐𝒓       𝒙𝟎 = 𝑲| 𝒛 ∗ 𝒃 + 𝒅 

If K divides and works with the first we use the left formula, otherwise we use the right formula. It could also be 

checked using 𝒚𝟎 but using one of the two is enough to know which variable to use. 

New positive algorithm 
 

∀ |𝒂| < |𝒃|   𝑎, 𝑏, 𝑐, 𝑑 , 𝑥, 𝑦, 𝑧 ∈  ℤ 
 

𝒂𝒙 + 𝒃𝒚 = 𝒄 

𝑖𝑡 ℎ𝑎𝑠 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑺 ↔ 𝐺𝐶𝐷(𝑎, 𝑏)  |𝑐 
 

𝒂𝒙𝟎 + 𝒃𝒚𝟎 = 𝒅 
𝑑 = 𝐺𝐶𝐷(𝑎, 𝑏) 

𝑘 = |𝑎 − 𝑏| 
 

|𝒂| Ʌ |𝒃| ≡ 𝒓(𝒎𝒐𝒅 𝑲) 
 

𝑊ℎ𝑒𝑛 𝑑 ≠  𝑟                                            𝑊ℎ𝑒𝑛 𝑑 =  |𝑟|  or  𝑟 = 0           

𝑍 = |
𝑘 ∗ 𝑛 ± 𝑑

𝑟
|                                             𝑍 = 1       

𝑍, 𝑛 ∈ 𝐍 ≠0 
𝑍 =  𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 |𝑥0|, |𝑦0| 

Particular solution, Variable I:  
(𝒙𝟎 , −𝒚𝟎) 

 

(
𝒛 ∗ |𝒃| − 𝒅

𝒌
, −

𝒛 ∗ |𝒂| − 𝒅

𝒌
) 

 
Particular solution, Variable II:  

(−𝒙𝟎, 𝒚𝟎) 

 

(−
𝒛 ∗ |𝒃| + 𝒅

𝒌
,
𝒛 ∗ |𝒂| + 𝒅

𝒌
) 
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𝒂𝒙 + 𝒃𝒚 = 𝒄 
𝑾𝒉𝒆𝒏 |𝒂| > |𝒃| 

Starting from variable I 
𝑭𝒐𝒓 | 𝒂 | >  | 𝒃 | 𝒕𝒉𝒆𝒚 𝒄𝒉𝒂𝒏𝒈𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏𝒔  

(−𝒙𝟎 , 𝒚𝟎) 
 

(−
𝑧 ∗ |𝑎| − 𝑑

𝑘
,
𝑧 ∗ |𝑏| − 𝑑

𝑘
) = 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐼𝐼𝐼 

Starting from variable II 
𝑭𝒐𝒓 | 𝒂 |> |𝒃 |𝒕𝒉𝒆𝒚 𝒄𝒉𝒂𝒏𝒈𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏𝒔 

(𝒙𝟎 , −𝒚𝟎) 

 

(
𝑧 ∗ |𝑎| + 𝑑

𝑘
−

𝑧 ∗ |𝑏| + 𝑑

𝑘
) = 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐼𝑉 

 

 

 

Example 1: Solve the Diophantine Sum Equation 
𝟐𝟓𝒙 + 𝟑𝟔𝒚 = 𝟏𝟎 

𝑖𝑡 ℎ𝑎𝑠 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛  𝑺 ↔ 𝐺𝐶𝐷(25,36)|10            𝑆 = 10 
 

𝟐𝟓𝒙𝟎 + 𝟑𝟔𝒚𝟎 = 𝟏 
𝑘 = |25 − 36| = 11 

 
25 Ʌ 36 ≡ 3(𝑚𝑜𝑑 11) 

𝑊ℎ𝑒𝑛 𝐺𝐶𝐷 ≠  𝑟 

𝑍 = |
11 + 1

3
| = 4, 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 |𝒙𝟎|, |𝒚𝟎|          

Particular solution A 

(
4 ∗ 36 − 1

11
, −

4 ∗ 25 − 1

11
) = (13, −9) 

 
Solution A:    𝒙𝟎 = 𝟏𝟑     𝒚𝟎 = −𝟗 

 
Particular solution B  

𝑺 ∗ 𝒙𝟎 Ʌ 𝑺 ∗ 𝒚
𝟎

 

𝒙 = 𝟏𝟑𝟎, 𝒚 = −𝟗𝟎 
Replacing in the initial equation 
∴ 𝟐𝟓 ∗ 𝟏𝟑𝟎 + 𝟑𝟔 ∗ (−𝟗𝟎) = 𝟏𝟎 
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Example 2: Solve the Diophantine Sum Equation 
𝟑𝟓𝒙 + 𝟓𝟓𝒚 = 𝟏𝟎𝟎 

𝑖𝑡 ℎ𝑎𝑠 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛  𝑺 ↔ 𝐺𝐶𝐷(35,55)|100          𝑆 = 20 
 

𝟑𝟓𝒙𝟎 + 𝟓𝟓𝒚𝟎 = 𝟓 
𝑘 = |35 − 55| = 20 

 
35 Ʌ 55 ≡ −5(𝑚𝑜𝑑 20)  

𝑊ℎ𝑒𝑛 𝐺𝐶𝐷 = |𝑟| 
𝑍 = 1, 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 |𝑥0|, |𝑦0| 

Particular solution A  
𝒔(−𝒙𝟎, 𝒚𝟎) 

 

(−
1 ∗ 55 + 5

20
,
1 ∗ 35 + 5

20
) = (−3, 2) 

 

Solution A:    𝒙𝟎 = −𝟑     𝒚𝟎 = 𝟐 

 
Particular solution B  

𝑺 ∗ 𝒙𝟎 Ʌ 𝑺 ∗ 𝒚
𝟎

 

𝒙 = −𝟔𝟎  ,      𝒚 = 𝟒𝟎 
Replacing in the initial equation 
∴ 𝟑𝟓 ∗ (−𝟔𝟎) + 𝟓𝟓 ∗ 𝟒𝟎 = 𝟏𝟎𝟎 
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Chapter II 
New negative algorithm 

𝑎𝑥 − 𝑏𝑦 = 𝑐 
 

𝑎𝑥0 − 𝑏𝑦0 = 𝐺𝐶𝐷(𝑎, 𝑏) 
 
The result of this can have two variables, one when 𝒙𝟎, 𝒚𝟎 are positive and ∈ ℕ. 
 Another when −𝒙𝟎, −𝒚

𝟎
 are negative ∈ ℤ. 

 
Variable V (positive) 

(𝒙𝟎, 𝒚𝟎) 

 

(
𝒛 ∗ |𝒃| − 𝒅

𝒌
, −

𝒛 ∗ |𝒂| − 𝒅

𝒌
)   𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑚𝑢𝑙𝑎, 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐼 

When y is negative we add the minus in the position of the y in the previous formula 

 

(
𝑧 ∗ |𝑏| − 𝑑

𝑘
, − (−

𝑧 ∗ |𝑎| − 𝑑

𝑘
))   

(
𝒛 ∗ |𝒃| − 𝒅

𝒌
,
𝒛 ∗ |𝒂| − 𝒅

𝒌
) =  𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆 𝑽 

 
Variable VI (negative) 

(−𝒙𝟎, −𝒚𝟎) 
 

(−
𝒛 ∗ |𝒃| + 𝒅

𝒌
,
𝒛 ∗ |𝒂| + 𝒅

𝒌
)  𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑚𝑢𝑙𝑎, 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐼𝐼  

When y is negative we add the minus in the position of the y in the previous formula 

(−
𝑧 ∗ |𝑏| − 𝑑

𝑘
, −

𝑧 ∗ |𝑎| − 𝑑

𝑘
)   

(−
𝒛 ∗ |𝒃| + 𝒅

𝒌
, −

𝒛 ∗ |𝒂| + 𝒅

𝒌
) = 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑉𝐼   

 

We choose between variables V and VI, where K divides to obtain a correct solution. 
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New negative algorithm 
 

∀ |𝒂| < |𝒃|   𝑎, 𝑏, 𝑐, 𝑑 , 𝑥, 𝑦, 𝑧 ∈  ℤ 
𝒂𝒙 − 𝒃𝒚 = 𝒄 

𝑖𝑡 ℎ𝑎𝑠 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑺 ↔ 𝐺𝐶𝐷(𝑎, 𝑏)  |𝑐 
 

𝒂𝒙𝟎 − 𝒃𝒚𝟎 = 𝒅 
𝑑 = 𝐺𝐶𝐷(𝑎, 𝑏) 

𝑘 = |𝑎 − 𝑏| 
 

|𝒂| Ʌ |𝒃| ≡ 𝒓(𝒎𝒐𝒅 𝑲) 
 

𝑊ℎ𝑒𝑛 𝑑 ≠  𝑟                                            𝑊ℎ𝑒𝑛 𝑑 =  |𝑟|  or  𝑟 = 0           

𝑍 = |
𝑘 ∗ 𝑛 ± 𝑑

𝑟
|                                             𝑍 = 1       

𝑍, 𝑛 ∈ ℕ ≠0 
𝑍 =  𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 |𝑥0|, |𝑦0| 

Particular solution, Variable V:  
(𝒙𝟎 , 𝒚𝟎) 

 

(
𝒛 ∗ |𝒃| − 𝒅

𝒌
,
𝒛 ∗ |𝒂| − 𝒅

𝒌
) 

 
Particular solution, Variable VI:  

(−𝒙𝟎, −𝒚𝟎) 

 

(−
𝒛 ∗ |𝒃| + 𝒅

𝒌
, −

𝒛 ∗ |𝒂| + 𝒅

𝒌
) 

 

 
𝑎𝑥 − 𝑏𝑦 = 𝑐 

𝑊ℎ𝑒𝑛 |𝑎| > |𝑏| 
Starting from variable V 
𝐹𝑜𝑟 | 𝑎 |> |𝑏 | 𝑠𝑖𝑔𝑛𝑠 𝑎𝑛𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑐ℎ𝑎𝑛𝑔𝑒 

(𝑥0 , 𝑦0)→(−𝑥0 , −𝑦0) 
 

 

(−
𝒛 ∗ |𝒂| − 𝒅

𝒌
, −

𝒛 ∗ |𝒃| − 𝒅

𝒌
) = 𝑽𝒂𝒓𝒊𝒂𝒃𝒍𝒆 𝑽𝑰𝑰 

Starting from variable VI 
 
𝐹𝑜𝑟 | 𝑎 |> |𝑏 | 𝑠𝑖𝑔𝑛𝑠 𝑎𝑛𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑐ℎ𝑎𝑛𝑔𝑒 

(−𝑥0 , −𝑦0)→(𝑥0 , 𝑦0) 

 

(
𝒛 ∗ |𝒂| + 𝒅

𝒌
,
𝒛 ∗ |𝒃| + 𝒅

𝒌
) = 𝑽𝒂𝒓𝒊𝒂𝒃𝒍𝒆 𝑽𝑰𝑰𝑰 
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Diophantic equation example with subtraction 

Example 3:  Solve 7𝑥 ≡  5 (𝑚𝑜𝑑 9) by using Diophantine equation. To find a solution, we need only obtain a 
solution of the linear Diophantine equation 7𝑥 −  9𝑦 =  5. 
 

𝟕𝒙 − 𝟗𝒚 = 𝟓 
𝑖𝑡 ℎ𝑎𝑠 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑺 ↔ 𝐺𝐶𝐷(7,9)|5 

𝑆 = 5 
𝟕𝒙𝟎 − 𝟗𝒚𝟎 = 𝟏 
𝑘 = |7 − 9| = 2 

 
7 Ʌ 9 ≡ 1(𝑚𝑜𝑑 2) 

𝑊ℎ𝑒𝑛 𝐺𝐶𝐷 =  𝑟→ 𝑍 = 1, 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 |𝑥0|, |𝑦0| 
Particular solution A : I use the variable V  

(𝒙𝟎, 𝒚𝟎) 
 

(
1 ∗ 9 − 1

2
,
1 ∗ 7 − 1

2
) = (4,3) 

Solution A:    𝒙𝟎 = 𝟒     𝒚𝟎 = 𝟑 
Particular solution B 

𝑺 ∗ 𝒙𝟎  Ʌ  𝑺 ∗ 𝒚
𝟎

 

𝒙 = 𝟐𝟎          𝒚 = 𝟏𝟓 
Replacing in the initial equation 

∴ 𝟕 ∗ 𝟐𝟎 − 𝟗 ∗ 𝟏𝟓 = 𝟓 
 

 
Example 4: Solve the Diophantine Subtraction Equation 

 
𝟑𝟓𝒙 − 𝟓𝟓𝒚 = 𝟏𝟎𝟎 

𝑖𝑡 ℎ𝑎𝑠 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛  𝑺 ↔ 𝐺𝐶𝐷(35,55)|100 
𝑆 = 20 

𝟑𝟓𝒙 − 𝟓𝟓𝒚 = 𝟓 
𝑘 = |35 − 55| = 20 

 
35 Ʌ 55 ≡ −5(𝑚𝑜𝑑 20)  

𝑊ℎ𝑒𝑛 𝐺𝐶𝐷 =  |𝑟|→𝑍 = 1, 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 |𝑥0|, |𝑦0| 
Particular solution A  

I use the variable VI (−𝒙𝟎, −𝒚𝟎) 
 

(−
1 ∗ 55 + 5

20
, −

1 ∗ 35 + 5

20
) = (−3, −2) 

 

Solution A:    𝒙𝟎 = −𝟑     𝒚𝟎 = −𝟐 
Particular solution B  

𝑺 ∗ 𝒙𝟎  Ʌ  𝑺 ∗ 𝒚
𝟎

 

𝒙 = −𝟔𝟎        𝒚 = −𝟒𝟎 
Replacing in the initial equation 

∴ 𝟑𝟓 ∗ (−𝟔𝟎) − 𝟓𝟓 ∗ (−𝟒𝟎) = 𝟏𝟎𝟎 
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Chapter III 
Special K values 

 
Recall that k is the difference between a, b 

There are values of K that for all their combinations between 𝒂 and 𝒃 always Z = 1 

 
𝑊ℎ𝑒𝑛 𝐾 = {1,2,3,4,6}  →  𝑍 = 1 

Since the GCF and the remainder are always the same number. 
 

 
Example A: k=4 
 

𝟐𝟓𝒙 + 𝟐𝟗𝒚 = 𝟏𝟎 
𝑮𝑪𝑫 = 𝟏 

𝑘 = |25 − 29| = 4 
25 Ʌ 29 ≡ −𝟏(𝑚𝑜𝑑 4) 

GCD=|𝑟|→Z=1 
 

Example B: k=6 
 

𝟑𝟗𝒙 + 𝟒𝟓𝒚 = 𝟏𝟐 
𝑮𝑪𝑫 = 𝟑 

𝑘 = |39 − 45| = 6 
39 Ʌ 45 ≡ −𝟑(𝑚𝑜𝑑 6) 

GCD=|𝑟|→Z=1 
 

 
 
Demonstration 
 
 

𝒂𝒙 + 𝒃𝒚 = 𝑮𝑪𝑫(𝒂, 𝒃) 

𝑘 = |𝑎 − 𝑏| 
𝑎 Ʌ 𝑏 ≡ 𝒓(𝑚𝑜𝑑 𝑘) 

𝑊ℎ𝑒𝑛 𝐺𝐶𝐷 =  𝑟→ 𝒁 = 𝟏 
 

𝑍 = |
𝑘𝑥 ± 𝐺𝐶𝐷

𝑟
| 

𝐼𝑓 𝑥 = 0, 𝑡ℎ𝑒𝑛 𝑍 = 1 

 

applying modular arithmetic we prove the result of Z = 1 
 

𝒌𝒙 ≡ 𝑮𝑪𝑫( 𝒎𝒐𝒅 𝒓) 

     𝐾(𝑥) − 𝑟(𝑦) = 𝐺𝐶𝐷 
𝑆𝑜 𝑖𝑓 𝑥 =  0, 𝑦 = 1 

∴  𝑟 =  𝐺𝐶𝐷 𝑎𝑛𝑑 𝑍 = 𝑦 = 1 
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When K ≠{1,2,3,4,6} they also have combinations where z = 1 but not for all cases. 

 
Example k=12, form a pattern of 12 remains 
 

𝒂𝒙 + 𝒃𝒚 = 𝑮𝑪𝑫(𝒂, 𝒃) 

𝑎 Ʌ 𝑏 ≡ 𝒓(𝑚𝑜𝑑 𝑘) 
 

a b GCD residue + residue - result 

1 13 1 1 11 Z=1 

2 14 2 2 10 Z=1 

3 15 3 3 9 Z=1 

4 16 4 4 8 Z=1 

5 17 1 5 7 Z≠1 

6 18 6 6 6 Z=1 

7 19 1 7 5 Z≠1 

8 20 4 8 4 Z=1 

9 21 3 9 3 Z=1 

10 22 2 10 2 Z=1 

11 23 1 11 1 Z=1 

12 24 12 0 12 Z=1 

 
In the cases where z = 1 it is precisely where the GCF = |r|, for which |r| is a divisor of K. 

Then for the cases where |r| does not divide K, z ≠1 
 
 

Where K is a prime number greater than 2 this only has 3 combinations where z = 1 
 

𝑎 Ʌ 𝑏 ≡ 𝟏(𝑚𝑜𝑑 𝑃) → 𝑧 = 1 
𝑎 Ʌ 𝑏 ≡ −𝟏(𝑚𝑜𝑑 𝑃) → 𝑧 = 1 
𝑎 Ʌ 𝑏 ≡ 𝟎 (𝑚𝑜𝑑 𝑃) → 𝑧 = 1 

 
We can previously know which algorithm variable to use? 

Yes, for the cases where 𝑟 𝑖𝑠 1 𝑜𝑟 − 1 it is possible to know the variable and to know if the result has a 
solution for the integers numbers or for the natural numbers.  

 
𝑊ℎ𝑒𝑛 𝑟 =  1 𝑢𝑠𝑒 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚. 

𝑊ℎ𝑒𝑛 𝑟 =  −1 𝑢𝑠𝑒 𝑡ℎ𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚. 
 

𝑊ℎ𝑒𝑛 𝑘 = 𝑎 Ʌ 𝑟 = 0 𝑢𝑠𝑒 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 
𝑊ℎ𝑒𝑛 𝑘 ≠ 𝑎 Ʌ 𝑟 = 0 𝑢𝑠𝑒 𝑡ℎ𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 

 
*********************************************************************************** 
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Conclution  
The algorithm works correctly and it is a great novelty since this method is totally unknown. 
There are many ways to solve a diophantic equation, this is another different way that comes to 
contribute and provides a greater understanding of the subject. 
Without a doubt, it is very easy to solve equations using this algorithm. 
Solving diophantic equations for the special cases of K is just a matter of replacing numbers, to find the 
result. 
This algorithm allows to anticipate if the result belongs to the integers numbers or to the natural 
numbers. 
I think it is a practical and interesting method for the student. 

 
 

Professor Zeolla Gabriel Martín 
11/11/2021 
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