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Abstract 

As of today, the reason for the unique composition of the Standard Model (SM) gauge 

group (3) (2) (1)c LSU SU U   remains elusive. Taking complex-scalar field theory as 

baseline model, we argue here that the SM group unfolds sequentially from bifurcations 

driven by the Renormalization scale. Numerical estimates are found to be reasonably 

consistent with experimental data. 
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1. Introduction 

By construction, SM is a non-Abelian gauge field theory built from the 

symmetry group (3) (2) (1)c LSU SU U  . This group has 8 3 1 12+ + =  
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generators with a non-trivial commutator algebra and describes the 

electroweak (EW) coupling of leptons and quarks, as well as the strong 

interaction of quarks and gluons. [1-2]. SM contains an octet of gluons 

associated with the SU (3) color generators, and a quartet of EW gauge 

bosons W+, W−, Z0, and γ. Gluons and the photon γ are massless because the 

symmetry induced by the other three generators is spontaneously broken. 

Spontaneous symmetry breaking (SSB) takes place in the EW sector and is 

characterized by the following attributes [2] 

a) It occurs when there is a family of degenerate vacua transforming 

onto one another under the action of the gauge group. The symmetry 

is spontaneously broken as the system eventually settles in one of its 

vacua. 

b) SSB is enabled in Quantum Field Theory because the latter has an 

unbounded number of degrees of freedom prone to undergo vacuum 

tunneling.  
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c) Since gauge symmetry is local and spontaneously broken, the 

associated Goldstone bosons morph into the third polarization of the 

W+, W−, Z0 bosons, rendering them massive in the process.       

The goal of this work is to offer an alternative scenario to the standard SSB 

interpretation, approximately matching its content and predictions. Our 

scenario stems from the theory of bifurcations applied to classical scalar 

field theory. We find that, unlike the SSB paradigm, massive electroweak 

bosons do not arise from the absorption of Goldstone bosons, but from the 

geometry of the bifurcation process, along with boson condensation induced by 

the minimal fractality of spacetime above the EW scale. A prerequisite of 

this scenario is the mechanism of decoherence, which acts near the EW scale 

and drives the transition from quantum to classical behavior [3]. Appealing 

to the complex-scalar field theory as baseline model, we speculate that the 

SM group unfolds sequentially from the flow of the Renormalization scale. 

Numerical estimates are found to be reasonably consistent with 

experimental data. 
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The paper is partitioned in the following way: next section elaborates on the 

relationship between complex-scalar field theory and the global (1)U

symmetry; the cubic map representation of field dynamics is derived in 

section three, while the bifurcation analysis of the map is developed in the 

next couple of sections; Section six displays a comparison between numerical 

estimates and experimental data; Concluding remarks are detailed in the last 

section. 

The reader is urged to keep in mind that this work is strictly introductory in 

nature. It is a sequel to our previous contributions and requires independent 

validation, rebuttal, or further refinements.  

2. Free complex-scalar fields and the U (1) symmetry  

Consider a classical complex-scalar field described by the pair of 

independent components   

 1 2

1
( )

2
i =  +   (1a) 

 1 2

1
( )

2
i − =    (1b) 
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One associates to (1) the massive Lagrangian   

 2L m


 =     −    (2) 

which is invariant under the global gauge transformation  

 exp( )i→ −   (3a) 

 exp( )i  →   (3b) 

where   is a real constant. The conserved current induced by (3) is given by 

 )(J i   =   −     (4a) 

with the vanishing four-divergence  

 0J
 =  (4b) 

and conserved charge  

 0 3 3( )Q J d x i d x
t t


  

= =  −
   ;   0

dQ

dt
=  (5) 

Since )exp(i  represents a unitary “matrix” in one dimension, that is, 

 exp( )[exp( )] 1i i  +=  (6a) 
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the gauge transformation (3) amounts to a rotation in field space 

 1 1 2cos sinr   =  +  (6b) 

 2 1 2sin cosr   = − +  (6c) 

which is representative for the symmetry group (1)U . 

It follows from this analysis that gauge invariant complex-scalar field theory 

inherently carries a global (1)U  charge. Moreover, demanding invariance of 

(2) under a local gauge transformation, gives rise to the electromagnetic field 

and its conserved charge Q  [4]. The emergence of (1)U  symmetry in 

complex-scalar field theory will be revisited in section 5.   

3. Self-interacting scalar fields as cubic maps  

The goal of this section is to explore the dynamics of self-interacting field 

theory in connection to the flow of the Higgs scalar with the energy scale. To 

this end, we start from the Lagrangian  

 ( )c VL 


   − =   (7) 

in which the potential function assumes the form [2, 13]  
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2 2 21

( ) ( )
2

vV   = −  (8) 

 and where 

 
2

 =  (9) 

For simplicity, we omit below the modulus notation and write 

  →  (10) 

The flow of (10) with the normalized energy scale 0   is given by 

 
0 )][log(

d d d

d d d 

  
 

 
== =  (11) 

in which 0  is an arbitrary reference scale. One obtains 

 2 2( )
2 ( 2 )v

V 
  




= − = −


 (12) 

(12) may be rendered in a more familiar form through the substitution 

 
2

v
y =  (13) 
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Since   and v  have mass dimension v M =      = , dimensional consistency 

requires passing to the normalized control parameter 

 
2
0

2 2v
m

m


=  (14a) 

where 0m  is an arbitrary reference mass. (14a) runs with the energy scale as 

in  

 ( ); ( )m m    = = ;  0 0( )m m =      (14b) 

The tacit assumption behind the derivation of (12) - (14b) is that all 

parameters entering (14b) run at a much slower rate than ( )  . With these 

considerations in mind, one finds that (12) turns into  

 2)(1y my y= −  (15) 

By assumption A3) below, the map analog of (15) around the origin 0y =  

may be presented as (Appendix A) 

 
2

1 )( , (1 )n n nny f m y my y+ == −  (16) 
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where the ranges of the control parameter and the y  variable are set to, 

respectively,  

 0 3m  ;  1 1y−    (17) 

4. Working assumptions  

A1) The flow (16) evolves in non-equilibrium conditions and (at least in 

principle) is incompatible with the perturbative Renormalization Group, 

where quantum fluctuations are present and the flow equations 

asymptotically settle on a finite number of stationary attractors [8, 11, 14, 17-

18].  

A2) Non-equilibrium regime near or above the EW scale implies statistical 

behavior in the classical sense, as well as the onset of decoherence triggered by 

chaotic mixing and diffusion [3]. Obviously, a more realistic setup must 

account for effects that are absent from (12) and (16), such as a) random 

perturbations with short or long correlations or b), the self-interacting nature 

of electroweak bosons.  
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A3) Following the ideas of [6-8, 12], topological condensation reflects the 

confining behavior of spacetime endowed with minimal fractality. This 

condensation mechanism is similar (but not identical) to the Anderson 

localization of quantum waves in random potentials. It leads to the 

formation of weakly coupled clusters of scalar or vector bosons. A corollary 

of this assumption is that the transfinite and discrete nature of spacetime 

endowed with minimal fractality motivates replacing the differential 

equation (15) with the map (16).   

A4) The bifurcation process is associated with broken symmetries defining 

critical phenomena [14-16, 18]. In our context, symmetry breaking is a 

combined outcome of nonlinearity and fast bifurcations, commensurate in 

duration with the EW scale [10]. We posit below that the outer bifurcation 

branches contain exclusively boson condensates, whereas the inner branches 

nearly free boson states. 

5. Bifurcation analysis  

The fixed points of (16) are determined by 
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 ( , )n ny f m y =  (18) 

leading to a trivial and a pair of symmetric solutions, i.e. 

 
1

0, 1y
m

   −  (19) 

The fixed point 0y =  is attracting (stable) for 1m  and repelling (unstable) 

for 1m . It can be also shown that the fixed points 
1

1y
m

 =  −  are both 

stable for 1 2m   and unstable for 2 3m   [5]. The bifurcation diagram of 

(16) (pictured below) displays the progressive generation of its critical points 

( )my  under the flow of ( )m m = . In what follows, bifurcation vertices are 

indexed in natural progression , ( 1,2,...)i iV = . The lower and upper branches 

are denoted using different subscripts and superscripts, respectively, as in 

, 1, 2,...j
iV j = .  

As the diagram indicates, for 0 1m  , the 0y =  branch contains the (1)U  

symmetry and its conserved charge Q . In this interpretation, massless 

photons arise at the trivial fixed point 0, 0m = = .  The first bifurcation occurs 

at [5] 
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 1( ) 1m V = ;  1( ) 0y V =  (20a) 

 

Fig. 1: Bifurcation diagram of the cubic map (16) for (1) v  = +  

 

It is seen that (20a) recovers the SM Higgs mass in the form [1-2] 

 2 2

0

22 vHm m = =  (20b) 

The second bifurcation occurs at  

 2( ) 2m V = ;  1
2

1
( ) 1

2
y V = − ;  2

2

1
( ) 1

2
y V = − −      (21) 

The separation between the two branches amounts to  
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 1 2
2 2(1) ( ) ( ) 2y y V y V   = − =  (22) 

By (13), the separation between critical points at 2( ) 2m V =  in terms of the 

scalar field is given by  

 (1) v  =  (23a) 

Relation (23a) is consistent with the standard SSB mechanism, whereby 

symmetry breaking implies picking a preferential direction in (2)SU  space 

corresponding to the Higgs vacuum [1-2, 7]. By A3) and A4), the vertex 1
2V  

contains a scalar condensate that we choose to identify with a weakly coupled 

Higgs doublet. In symbolic form we write  

 ( , )v H H  (23b) 

The next bifurcation develops at [5] 

 3( ) 2.236m V =  (24) 

and generates a set of four critical points as in 

 1
3 2

1 1 1
( )

2 4
y V

m
 = + − ;  2

3 2

1 1 1
( )

2 4
y V

m
 −= −    (25a) 
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 3 2
3 3( ) ( )y V y V = − ;  4 1

3 3( ) ( )y V y V = −  (25b) 

Using again A3) and A4), we choose to identify the condensate at 1
3V  with 

the pair of vector bosons ( , )W W+ − . The separation between the two branches 

at this vertex is   

 1 2
3 3(2) ( ) ( ) 0.325y y V y V   = − =  (27) 

The ratio between (27) and (22) amounts to 

 
(2)

(1)
0.22981

y

y





=


=


   (28) 

which, by (23a), yields 

 
(2)

v





=


 (29) 

Summarizing the results of this section and on account of A3), A4), we are 

led to suggest the following mass relationships 

 2v Hm  (30a) 

 2v W Zm m +  (30b) 
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 (2) 2v W Zm m  =  −  (30c) 

6. Estimates versus existing data 

The aim of this section is to compare (30a) - (30c) against existing theoretical 

and experimental data. To this end, we choose to define the following set of 

mass errors ( E ) and normalized mass errors (e ) as in 

 2v
H HE m= −       (31a) 

 )(2vWZ W ZE m m= +−       (31b) 

 (2 ) vW ZE m m  = − −  (31c) 

 
v

i
i

SM

E
e = ;   { , , }i H WZ=    (31d) 

(31d) is built under the assumption that the SM vacuum ( vSM ) sets the natural 

scale of SSB in the EW sector.  

Results are displayed below based on the following SM input parameters (in 

GeV): 
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246vSM = ;   125.35Hm =      

80.385Wm = ;   91.1876Zm =  

He (%) 1.91 

WZe (%) 2.42  

(%)e  5.28  

 
 

Tab. 1: Mass errors normalized to the SM vacuum  

An error reduction approach applied to the entries of Tab. 1 is detailed in 

Appendix C.  

7. Conclusions and follow-up challenges 

We examined an alternative scenario to the standard Higgs paradigm of SSB, 

approximately matching its content and predictions. Working in the context 

of classical complex-scalar field theory, an alternative mass-generating 

mechanism was proposed, driven by bifurcations and boson condensation 

on spacetime having minimal fractality.  
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Despite their apparent similarity, the standard SSB mechanism and the 

proposed bifurcation model (BM) differ in many respects. In particular, 

a) Per section 1, the analysis is carried out in an entirely classical 

framework. 

b) Unlike the SSB mechanism, vector bosons do not preexist the Higgs 

field, but are generated from the dynamic instability of its vacuum.  

c) As conjectured in [23], BM can account for the hierarchy of quark and 

lepton mass ratios, as well as the hierarchy of mixing angles, via the 

Feigenbaum route to chaos in unimodal maps. It can also account for 

the triplication of fermion families and the chiral nature of the 

fermionic sector [23]. 

Notwithstanding its appeal, a rigorous completion of the BM requires 

further analysis and clarifications. Here is a partial list of open challenges: 

1) How does BM accommodate the Goldstone bosons created by global 

symmetry breaking? Are they associated with the unstable branch 0y =  

at 1V  and 1 2m  , which is unobservable in real life? 
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2) Is there an underlying connection between BM and the phase diagram 

of lattice gauge theories [14, 19-20]? Do the Coulomb, Higgs, and 

confined phases match their respective vertices of BM?  

3) How is the gluon octet generated via bifurcations at ; 2jV j  ? Do 

gluons still arise as weakly coupled condensates or do they form a 

confined strongly coupled phase, fundamentally distinct from the EW 

phase? More generally, as anticipated in [23], how do fermion vertices 

develop in BM? Moreover, how do particle interaction channels relate to 

transformations within the bifurcation diagram? 

4) How does one reconcile the scalar nature of the Higgs boson with the 

vector nature of EW bosons [7, 12]? 

5) Can the chirality of EW bosons be linked to the asymmetric properties 

of a spacetime endowed with minimal fractality [24]? 

The behavior of (16) was analyzed under the hypothesis that it represents a 

reasonable, coarse-grained description of (15) [21]. As alluded to in 

assumption A2), a more comprehensive treatment may consider placing the 
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Higgs dynamics in two or more dimensions, including the effect of self-

interaction and accounting for the non-perturbative run of particle masses with 

the Renormalization scale (Appendix B). 

It is known that unitary symmetry groups reflect rotations in field space 

leaving the Lagrangian invariant. In a broader perspective, one can 

conceivably argue that rotations preserving the Lagrangian are reducible to 

self-similarity transformations [22]. If this interpretation stands, the 

bifurcation cascade initiated at 1V  replicates the action of symmetry groups 

( )SU n  with n  in ascending order. 

It is also instructive to note that, at least in principle, supplementing (31) 

with additional constraints imposed by the “sum-of-squares” relationship 

[8-9, 13] enables the derivation of EW boson masses in closed-form. The “sum-

of-squares” relationship constrains the overall number of SM flavors [13]. 

APPENDIX A: Derivation of the cubic map 

The need to cast the potential function (8) in dimensional form arises from 

dimensional analysis. Since the time-like parameter   is dimensionless, the 
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left-hand of (12) has units of mass ( M ), whereas the right-hand side has units 

of 3M . The comply with dimensional consistency and arrive at (15), one 

needs to multiply the left-hand side with 2
0m , the square of an arbitrary mass 

parameter. Alternatively, substituting 
2 2

0

2

vm


 →  in (8) also yields (15), on 

account of (13).    

The map representation of the differential equation 

 2(1 )y my y= −  (32) 

follows from its discretization, which gives the approximation 

 2
1 0 )(1n n nny y my y+ = + −  (33) 

where 0  is the “time-like” step associated with (11) [21]. Carrying out the 

substitution 

 
2 2

0
0 2 2

0 0

2 2 'v v
m

m m

  
 = =  (34) 

recovers the cubic map (16) under the following assumed constraints 
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2

2

2
0

)
2 '

(1 1
v

ny
m


−  ;   1ny   (35) 

By (11) and assumption A1), the “time-like” step 0  amounts to setting a 

finite cutoff on the scale 0  , written as 0 0log( )  =  . If 0m  is chosen to be 

on the order of magnitude of the SM Higgs mass ( 0 Hm m ), by (11) and (30a) 

the condition (35) yields 

 
0

1
exp ( )

8



 


  (36) 

It is apparent that (36) complies with the choice 0 ( )IRO =  , with vIR   a 

deep infrared (IR) scale far lower than the EW vacuum. Moreover, since v  

fixes the SSB scale, the case can be made that setting v   provides a small 

enough step suitable for the numerical evaluation of (16). 

In summary, the validity of (16) relies on the following couple of constraints  

 0 )( vIRO =      (37) 

It is worth emphasizing that, in general, the parameterization (13) may be 

carried out in the form  
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2
)(

v
y a =  

with a  an arbitrary real number. Scale invariance of the bifurcation diagram 

in Fig.1 implies that the height of each vertex scales by a , leaving unchanged 

the numerical outcome of the analysis.  

It is also instructive to note that there is an alternative method of passing 

from (15) to (16) that circumvents the constraints (35)-(37). Performing the 

change of variables [25] 

 01r m= +  (38a) 

 n nz ky=  (38b) 

 2 0m
k

r


=  (38c) 

turns (33) into 

 2
1 )(1n nnz r z z+ = −  (39) 
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which is formally identical to (16). However, in this case, the pitchfork 

bifurcation at 1r =  corresponds to 0, 0m → → , which reflects a different 

physical setting than the one described in this work.  

APPENDIX B: Accounting for memory effects 

An interesting setting arises if (15) includes memory effects. In this case, (15) 

gets replaced with the fractional differential equation [26] 

 2)(1yD my y = −  (B1) 

where ( )   is the index of fractional differentiation. Because we are 

considering a spacetime support endowed with minimal fractality, the 

natural choice for the index is 

 ( ) 1 ( )   = −  (B2) 

in which [8] 

 
2

2

( )
( ) 1

UV

 
  = 


 (B3) 
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with UV  a large ultraviolet scale and ( )   a scale-dependent mass 

parameter.  Replacing (B1) with its approximation in the regime of low-level 

fractionality turns (15) into [26] 

 2 ]) [ ( )(1y my y  + −  (B4) 

As a result, the map (16) becomes dependent on (B3), which means that mass 

generation at each bifurcation vertex is now inherently coupled with mass 

generation at all other vertices. This counterintuitive result reflects nonlocal 

mixing and the violation of the clustering theorem, typical for the onset of 

chaos and non-integrability [27]. 

APPENDIX C: Enhancing mass estimates through error analysis 

Allowing (15) and (16) to include memory effects also implies that numerical 

uncertainties carry over from one bifurcation vertex to the next.  The object of 

this Appendix is to show that a closer match between mass predictions and 

experimental data is obtained considering error propagation among 

neighboring vertices. To this end we assume that a) the estimation error at 

, ( 1, 2,3,...)i iV =  transfers to the next vertex 1iV +  and b), the errors at 2V  (denoted 
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2V ) and 3V  (denoted 3V ) are subtracted out from their respective entries of 

Tab. 1. 

HE  4.70 

WZE  5.96  

E  13.05 

 

Tab 2: Mass errors (GeV) from (31) 

Tabulating the mass errors derived from (31) gives the entries of Tab.2 

below. Vertex errors are expected to add in quadrature and therefore, 

 2( )ji ij
E V   (C1) 

which means that, 

 2
1 1 1( )E V V  =  (C2) 

 
2 2

212 ( )jVE    (C3) 

 
4 2

213 ( )jVE    (C4) 
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If errors incurred within the same vertex are conjectured to be of equal 

magnitude ( 1,j j
i iV V j  + = ), (C1) - (C4) imply 

 2 1V E = ,  3 2V E =  (C5) 

and lead to 

 2 12E E= ,  23 2E E=  (C6) 

The corrected mass errors given by (C6) are displayed in the second and 

third row of Tab.3, 

,c HE  4.70HE =  

,c WZE  
,2 6.65c HE =  

,cE 
 

, 13.302 c WZE =  

 

Tab.3: Corrected mass errors (GeV) from (C6) 

Repeating the computation of normalized mass errors (31d) using the 

prescription (C7), yields the results displayed in Tab.4.  
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 ,
, v

ic i
c i

SM

EE
e

−
= ;  { , }i WZ=   (C7) 

,c He (%) 1.91 

,c WZe (%) 0.28  

, (%)ce   0.10  

 

Tab. 4: Corrected mass errors normalized to the SM vacuum  
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