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Abstract 

As of today, the reason for the unique composition of the Standard Model (SM) gauge 

group (3) (2) (1)c LSU SU U   remains an open question. Taking complex-scalar field 

theory as benchmark model, we argue here that the SM group unfolds sequentially from 

the flow of the self-interaction coupling. Numerical estimates are found to be reasonably 

consistent with experimental data. 
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1. Introduction 

By construction, SM is a non-Abelian gauge field theory built from the 

symmetry group (3) (2) (1)c LSU SU U  . This group has 8 3 1 12+ + =  
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generators with a non-trivial commutator algebra and describes the 

electroweak (EW) coupling of leptons and quarks, as well as the strong 

interaction of quarks and gluons. [1-2]. SM contains an octet of gluons 

associated with the SU (3) color generators, and a quartet of EW gauge 

bosons W+, W−, Z0, and γ. Gluons and the photon γ are massless because the 

symmetry induced by the other three generators is spontaneously broken. 

Spontaneous symmetry breaking (SSB) takes place in the EW sector and is 

characterized by the following attributes [2] 

a) It occurs when there is a family of degenerate vacua transforming 

onto one another under the action of the gauge group. The symmetry 

is spontaneously broken as the system eventually settles in one of its 

vacua. 

b) SSB is enabled in Quantum Field Theory because the latter has an 

unbounded number of degrees of freedom prone to undergo vacuum 

tunneling.  
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c) Since gauge symmetry is local and spontaneously broken, the 

associated Goldstone bosons morph into the third polarization of the 

W+, W−, Z0 bosons, rendering them massive in the process.       

The goal of this work is to offer an alternative scenario to the standard SSB 

interpretation, approximately matching its content and predictions. Our 

scenario stems from the theory of bifurcations applied to classical scalar 

field theory. We find that, unlike the SSB model, massive electroweak 

bosons do not arise from the absorption of Goldstone bosons, but from the 

geometry of the bifurcation process, along with boson condensation induced by 

the minimal fractality of spacetime above the EW scale. A prerequisite of 

this scenario is the mechanism of decoherence, which acts near the EW scale 

and drives the transition from quantum to classical behavior [3]. Appealing 

to the complex-scalar field theory as benchmark model, we speculate that 

the SM group unfolds sequentially from the flow of the self-interaction 

coupling. Numerical estimates are found to be reasonably consistent with 

experimental data. 
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The paper is partitioned in the following way: next section elaborates on the 

relationship between complex-scalar field theory and the global (1)U

symmetry; the cubic map representation of field dynamics is derived in 

section three, while the bifurcation analysis of the map is developed in the 

next couple of sections; Section six displays a comparison between numerical 

estimates and experimental data; Concluding remarks are detailed in the last 

section. 

The reader is urged to keep in mind that this work is strictly introductory in 

nature. It is a sequel to our previous contributions and requires independent 

validation, rebuttal, or further refinements.          

2. Free complex-scalar fields and the U (1) symmetry  

Consider a classical complex-scalar field described by the pair of 

independent components   

 1 2

1
( )

2
i =  +   (1a) 

 1 2

1
( )

2
i − =    (1b) 
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One associates to (1) the massive Lagrangian   

 2L m


 =     −    (2) 

which is invariant under the global gauge transformation  

 exp( )i→ −   (3a) 

 exp( )i  →   (3b) 

where   is a real constant. The conserved current induced by (3) is given by 

 )(J i   =   −     (4a) 

with the vanishing four-divergence  

 0J
 =  (4b) 

and conserved charge  

 0 3 3( )Q J d x i d x
t t


  

= =  −
   ;   0

dQ

dt
=  (5) 

Since )exp(i  represents a unitary “matrix” in one dimension, that is, 

 exp( )[exp( )] 1i i  +=  (6a) 
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the gauge transformation (3) amounts to a rotation in field space 

 1 1 2cos sinr   =  +  (6b) 

 2 1 2sin cosr   = − +  (6c) 

which is representative for the symmetry group (1)U . 

It follows from this analysis that gauge invariant complex-scalar field theory 

inherently carries a global (1)U  charge. Moreover, demanding invariance of 

(2) under a local gauge transformation, gives rise to the electromagnetic field 

and its conserved charge Q  [4].   

3. Self-interacting scalar fields as cubic maps  

The goal of this section is to explore the dynamics of self-interacting field 

theory in connection to the flow of the Higgs scalar with the energy scale. To 

this end, we start from the Lagrangian  

 ( )c VL 


   − =   (7) 

in which the potential function assumes the form [1-2]  
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2 21

( ) ( )
2

vV   = −  (8) 

 and where 

 
2

 =  (9) 

For simplicity, we omit below the modulus notation and write 

  →  (10) 

The flow of (10) with the energy scale   is given by 

 
(log )

d d d

d d d

  
 

  
= = =  (11) 

which yields 

 2 3( )
2 ( 2 )v

V 
  




= − = −


 (12) 

(12) may be rendered in a more familiar form through the substitution 

 
2

v
y =  (13) 
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Since   and v  have mass dimension v M =      = , dimensional consistency 

requires passing to the normalized control parameter 

 
2
0

2 2v
m

m


=  (14a) 

where 0m  is an arbitrary reference mass. (14a) runs with the energy scale as 

in  

 ( ); ( )m m    = = ;  0 0( )m m =      (14b) 

One finds that (12) reduces to the equation of a classical cubic oscillator  

 2)(1y my y= −  (15) 

The map analog of (15) around the origin 0y =  may be presented as 

(Appendix A) 

 
2

1 )( , (1 )n n nny f m y my y+ == −  (16) 

where the ranges of the control parameter and the y  variable are set to, 

respectively,  
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 0 3m  ;  1 1y−    (17) 

4. Working assumptions  

A1) The flow (16) evolves in non-equilibrium conditions and (at least in 

principle) is incompatible with the perturbative Renormalization Group, 

where quantum fluctuations are present and the flow equations 

asymptotically settle on fixed points [8, 11, 14].   

A2) Non-equilibrium regime near or above the EW scale implies statistical 

behavior in the classical sense, as well as the onset of decoherence triggered by 

chaotic mixing and diffusion [3]. Obviously, a more realistic setup must 

account for effects that are absent from (16), such as, a) random 

perturbations with short or long correlations, and b) the self-interacting 

nature of electroweak bosons.  

A3) Following the ideas of [6-8, 12], topological condensation reflects the 

confining behavior of spacetime endowed with minimal fractality. This 

condensation mechanism is similar (but not identical) to the Anderson 
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localization of quantum waves in random potentials. It leads to the 

formation of weakly coupled clusters of scalar or vector bosons.  

A4) The bifurcation process is associated with broken symmetries defining 

critical phenomena [15-16]. In our context, symmetry breaking is a combined 

outcome of nonlinearity and fast bifurcations, commensurate in duration 

with the EW scale [10]. We posit below that the upper bifurcation branches 

contain exclusively boson condensates, whereas lower branches nearly free 

boson states. 

A5) For simplicity, we assume that ( )   runs much faster than 0( )m  , that is, 

0m  . While this assumption is unwarranted in real life, it serves here as a 

convenient approximation. 

5. Bifurcation analysis  

The fixed points of (16) are determined by 

 ( , )n ny f m y =  (18) 

leading to a trivial and a pair of symmetric solutions, i.e. 
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1

0, 1y
m

   −  (19) 

The fixed point 0y =  is attracting (stable) for 1m  and repelling (unstable) 

for 1m . It can be also shown that the fixed points 
1

1y
m

 =  −  are both 

stable for 1 2m   and unstable for 2 3m   [5]. The bifurcation diagram of 

(16) (pictured below) displays the progressive generation of its critical points 

( )my  under the flow of ( )m m = .  

 

 

Fig. 1: Bifurcation diagram of the cubic map (16) 



12 | P a g e  

 

In what follows, bifurcation vertices are indexed in natural progression 

, ( 1,2,...)i iV = . The lower and upper branches are denoted using different 

superscripts, respectively, as in , 1, 2,...j
iV j = .  

As the diagram indicates, the first bifurcation occurs at 

 1( ) 1m V = ;  1( ) 0y V =  (20a) 

It is seen that (20a) recovers the SM Higgs mass in the form [1-2] 

 2 2

0

22 vHm m = =  (20b) 

The second bifurcation occurs at  

 2( ) 2m V = ;  1
2

1
( ) 1

2
y V = − ;  2

2

1
( ) 1

2
y V = − −      (21) 

The separation between the two branches amounts to  

 1 2
2 2(1) ( ) ( ) 2y y V y V   = − =  (22) 

By (13), the critical point at 2( ) 2m V =  expressed in terms of the scalar field is 

given by  
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 (1) v  =  (23a) 

Relation (23) is consistent with the standard SSB mechanism, whereby 

symmetry breaking implies picking a preferential direction in (2)SU  space 

corresponding to the Higgs vacuum [1-2, 7]. By A3) and A4), the vertex 1
2V  

contains a scalar condensate that we choose to identify with a weakly coupled 

Higgs doublet. In symbolic form we write  

 ( , )v H H  (23b) 

The next bifurcation develops at [5] 

 3( ) 2.236m V =  (24) 

and generates a set of four critical points as in 

 1
3 2

1 1 1
( )

2 4
y V

m
 = + − ;  2

3 2

1 1 1
( )

2 4
y V

m
 −= −    (25a) 

 3 2
3 3( ) ( )y V y V = − ;  4 1

3 3( ) ( )y V y V = −  (25b) 
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Using again A3) and A4), we choose to identify the condensate at 1
3V  with 

the pair of vector bosons ( , )W W+ − . The separation between the two branches 

at this vertex is   

 1 2
3 3(2) ( ) ( ) 0.325y y V y V   = − =  (27) 

The ratio between (22) and (27) amounts to 

 
(2)

(1)
0.22981

y

y





=


=


   (28) 

which, by (23a), yields 

 
(2)

v





=  (29) 

Summarizing the results of this section and on account of A3) and A4), we 

are led to suggest the following mass relationships 

 2v Hm  (30a) 

 2v W Zm m +  (30b) 

 (2) 2v W Zm m  =  −  (30c) 
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6. Estimates versus existing data 

The aim of this section is to compare (30a) - (30c) against existing theoretical 

and experimental data. To this end, we choose to define the following set of 

mass errors ( E ) and normalized mass errors (e ) as in 

 2vH HE m= −       (31a) 

 )(2vWZ W ZE m m= +−       (31b) 

 (2 ) vW ZE m m  = − −  (31c) 

 
v

i
i

SM

E
e = ;   { , , }i H WZ=    (31d) 

(31d) is built under the assumption that the SM vacuum (vSM ) sets the natural 

scale of SSB in the EW sector. Results are displayed below based on the 

following SM input parameters (in GeV): 

246vSM =      

80.385Wm = ;   91.1876Zm =  

125.35Hm =  
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He (%) 1.91 

WZe (%) 2.42  

(%)e  5.28  

 

Tab. 1: Mass errors normalized to the SM vacuum  

7. Conclusions and follow-up challenges 

…Text to follow… 

APPENDIX A: Derivation of the cubic map 

The map representation of the cubic oscillator equation 

 2(1 )y my y= −  (A1) 

is obtained from discretization of (A1), which gives  

 2
1 0 )(1n n nny y my y+ = + −  (A2) 

where 0  is the “time-like” step associated with (11). Carrying out the 

substitution 
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2 2

0
0 2 2

0 0

2 2 'v v
m

m m

  
 = =  (A3) 

leads to the cubic map (16) under the following assumed constraints 

 
2

2

2
0

)
2 '

(1 1
v

ny
m


−  ;   1ny   (A4) 
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