
 

The vacuum energy, compact dimensions and consequences of a 

fractal hypothesis  

 

Abstract 

The fractal hypothesis of vacuum energy allows to investigate the theoretical compact dimensions 

of string theory, and its relationship with the nature of the quantum of action. 
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1. Mathematical approach 

 

 

The mathematical approach will be very simple, treat the vacuum energy in a 

similar way to how we treat fractal lines. These form curves while the vacuum 

energy determines the geometric structure of the vacuum. In the absence of such 

energy, the vacuum would be completely "flat", and the particles would follow true 

classical trajectories instead of pseudo trajectories that are fractals of dimension 

2 [1]. In fractal lines we work with scalars that represent one-dimensional 

segments, in quantum fluctuations with scalars representing the energy of the 

vacuum. 
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2. Relative fractal dimension and distance dependence  

 

Suppose a fractal surface with dimension D = 2.356. The value of the dimension 

that exceeds 2 gives us a measure of the irregularity of the fractal and we will call 

it ε. Then, the fractal dimension  D= δ + ε  (topological or apparent dimension 

plus dimensional coefficient ε). The dimensional coefficient ε, in a way, offers us 

an idea of the fractal's ability to occupy part of the third dimension and, therefore, 

of space. We can have another fractal with the same dimensional value and yet 

be much more irregular than the first: for example, a curve that almost fills the 

space. It can have the same dimension, but it is much more irregular because its 

topological dimension is 1, unlike the fractal surface whose topological dimension 

is 2. Thus, we see that the dimension of a fractal does not give a real idea of its 

irregularity if it does not we compare with its topological dimension. 

  

For variables with a topological dimension greater than unity, it is convenient to 

speak of the quotient D / δ, which we will call the relative fractal dimension, and 

not its fractal dimension [2]. We reduce the dispersion of results and can compare 

them with simple examples such as one-dimensional trajectories. We will have: 

 

 The relative fractal dimension = D/ δ = (δ + ε )/ δ.  (1) 

 

This expression helps us understand how the characteristics of a fractal are 

modulated by modifying the geometry of space. 

  

There is a very interesting property that continuous fractal curves exhibit as the 

Koch curve or the Brownian motion. In the case of Brownian motion, its dimension 

is 2 because it can cover a surface: this indicates that this motion to move away 

N effective steps from any point needs to travel N2 total steps. This ability to 

"wander" is closely related to the fractal dimension [3]. Generalizing: 

 

 (Effective distance) fractal dimension   = total distance over the fractal (2)  



 

        

The relative fractal dimension reduces any continuous fractal of topological 

dimension greater than unity to an equivalent fractal curve. The more isotropic 

the fractal, the more faithful the conversion will be, because it does not retain the 

directional properties of the original fractal. Once the conversion is done, we can 

apply expression (2), with care, according to the characteristics of the fractal. We 

will substitute in expression (2) the fractal dimension for the relative fractal 

dimension. 

 

  

3. Add or subtract dimensions 

The dimensional coefficient ε is added to the topological dimension. We can ask 

the following question: Is there a phenomenon that represents a subtraction of 

dimensions?[4] Of course, if we roll up a surface along one of its dimensions until 

it becomes a line, we will have passed from a 2-dimensional object to a 1-

dimensional one, we will have subtracted one dimension. This geometric 

operation represents a subtraction of dimensions while the irregularity of a fractal, 

expressed by the dimensional coefficient ε, represents an addition to the 

topological dimension of the object. We do opposite geometric operations. 

 

  

4. Inverse dependence on distance 

If the dimension of a fractal is δ + ε, its relative fractal dimension will be: 

 

Relative fractal dimension = (δ + ε) / δ.          (3) 

 

If we subtract a value equal to ε from the number of topological dimensions, the 

new value of significant dimensions will be (− ), and: 

 

The new value of the relative fractal dimension = δ /(δ−ε)  (4) 



 

There is a significant difference between expression (3) and expression (4). The 

first can only be positive, but the second can also be negative. We are interested 

that its value is (-1), that is, the inverse dependence of the fractal with the 

distance. In that case: δ / (δ − ε) = −1 which is satisfied for the value of the new 

significant dimensions equal to  / 2. 

 

5. Application to vacuum energy 

The vacuum energy depends on the inverse of the distance, applying the 

expression δ / (δ − ε) = −1 and substituting the value δ for 3, which are the spatial 

dimensions of our universe, we obtain a value of 6 for the dimensional coefficient 

ε and for compact dimensions. 

 

In our universe there would be 6 compact dimensions and the 3 dimensions that 

we recognize. The vacuum energy would have a fractal dimension 9 (topological 

dimension 3, plus a dimensional coefficient ε = 6). 

 

Just as a fractal curve of dimension 3 (with topological dimension 1 and 

dimensional coefficient ε = 2) can cover a 3-dimensional space, the vacuum 

energy with a topological dimension 3 and a dimensional coefficient ε = 6 would 

cover all nine dimensions of our universe, six of them compact. 

 

6. Generalization  

 

In the fractal called Koch curve, or Koch snowflake, its fractal dimension is equal 

to (log 4) / log 3 because in the first iteration a segment of value 3 is replaced by 

4 segments of value 1. In the case of the vacuum energy, we have a similar 

quotient in this case between the logarithms of two energies, where n is the 

distance: 

 

Relative fractal dimension of vacuum energy = (log x)/log n-1 = -1 

 



 

To achieve equality the value of x = n, then the energy represented in the 

numerator must be proportional to the distance. In the Kock curve the rectilinear 

segment of value 3 is defined in one dimension, but the four segments that 

replace it are defined in the plane. Similarly, the energy of the numerator is 

defined in 9 dimensions and that of the denominator, linked to the quantum of 

action, is defined in the ordinary 3 dimensions. 

 

The energy of the vacuum depends on the inverse of the distance due to the very 

nature of the quantum of action: Suppose that we introduce a fictitious factor  f to 

the expression of the quantum of action: 

 

ΔE Δ t f = constant             (5) 

 

Now the energy does not depend on the inverse of the distance, it depends on 

the inverse of the distance raised to f, since the expression of the relative 

dimension would be (log n) / log 1 / nf. Then we could set the expression (4) equal 

to the value - (1 / f), that is: 

 

δ /(δ−ε) = - (1/f)     (in our universe f = 1, logically) 

 

It can be expressed more simply: 

 

 (ε − δ) / δ = f                   (6) 

 

This simple expression relates the number of ordinary dimensions, the number  

of compact dimensions, and the fictitious weight factor f, linked to the nature of  

the quantum. 

. 

 

 

 



 

 

 

Note added. The approach is more particular than the one represented by the 

Nottale [5] scale relativity. We study the vacuum energy as an isotropic fractal 

and (with the relative fractal dimension) we analyze its simplified behavior as a 

fractal trajectory. 
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