A NEW PROPOSITION OF FIBONACCI NUMBER

BLACKSKYJASON

ABSTRACT. C.A.Church and Marjorie Bicknell gave a version which was exponential generating function for Fibonacci number, in 1973.

In this paper, I will give some results about the Fibonacci identities.

1. Introduction

Theorem 1.1. Suppose that m,n are any natural number, $\{F_n\}_{n=0}^{\infty}$ and $\{L_n\}_{n=0}^{\infty}$ are Fibonacci Sequence and Lucas Sequence, respectively. Then we have

$$\sum_{a+b=n} F_{ma} L_{mb} = (n+1) F_{mn} \tag{1.1}$$

and

$$\sum_{a+b=n} \binom{n}{a} F_{ma} L_{mb} = 2^n F_{mn}. \tag{1.2}$$

Proof. From Binet Formula, we know that

$$F_n = \frac{1}{\sqrt{5}} (\alpha^n - \beta^n) \tag{1.3}$$

and

$$L_n = \alpha^n + \beta^n \tag{1.4}$$

where n be arbitrary natural number,

$$\alpha = \frac{1+\sqrt{5}}{2} \qquad and \qquad \beta = \frac{1-\sqrt{5}}{2}. \tag{1.5}$$

Hnece,

$$\sum_{a+b=n} F_{ma} L_{mb} = \frac{1}{\sqrt{5}} \sum_{a+b=n} (\alpha^{mn} - \beta^{mn} + \alpha^{ma} \beta^{mb} - \alpha^{mb} \beta^{ma})$$
 (1.6)

and

$$\sum_{a+b=n} F_{mb} L_{ma} = \frac{1}{\sqrt{5}} \sum_{a+b=n} (\alpha^{mn} - \beta^{mn} + \alpha^{mb} \beta^{ma} - \alpha^{ma} \beta^{mb})$$

$$\tag{1.7}$$

Since,

$$\sum_{a+b=n} F_{ma} L_{mb} = \sum_{a+b=n} F_{mb} L_{ma}.$$
 (1.8)

We can conclude the first identity. Likely first identity, we have

$$\sum_{a+b=n} F_{ma} L_{mb} = \frac{1}{\sqrt{5}} \sum_{a+b=n} \binom{n}{a} (\alpha^{mn} - \beta^{mn} + \alpha^{ma} \beta^{mb} - \alpha^{mb} \beta^{ma})$$
 (1.9)

By the proposition,

$$\sum_{a+b=n} \binom{n}{a} F_{ma} L_{mb} = \sum_{a+b=n} \binom{n}{b} F_{mb} L_{ma}. \tag{1.10}$$

We can get

$$\sum_{a+b=n} F_{ma} L_{mb} = \frac{1}{\sqrt{5}} \sum_{a+b=n} \binom{n}{b} (\alpha^{mn} - \beta^{mn} + \alpha^{mb} \beta^{ma} - \alpha^{ma} \beta^{mb}). \tag{1.11}$$

Combining the sums, we can get the second result.

2. Some fibonacci identities

From paper which written by C.A.Church and Marjorie Bicknell, we knew that

$$g(t) = \frac{1}{\sqrt{5}} (\exp(\alpha t) - \exp(\beta t)) = \sum_{n=0}^{\infty} \frac{F_n t^n}{n!}$$
(2.1)

and

$$h(t) = \exp(\alpha t) + \exp(\beta t) = \sum_{n=0}^{\infty} \frac{L_n t^n}{n!}$$
(2.2)

for all |t| < 1. Here is giving second proof for second identity

Proof. Beginning the proving, we product q(t) and h(t).

$$g(t)h(t) = \sum_{n=0}^{\infty} \sum_{a+b=n} \frac{F_a L_b}{a!b!} t^n.$$
 (2.3)

And

$$g(t)h(t) = \sum_{n=0}^{\infty} \frac{2^n F_n t^n}{n!}.$$
 (2.4)

Comparing the coefficient of t^n , conclude the result.

Theorem 2.1. Suppose that n be arbitrary natural number, then

$$\sum_{a+b=n} {2n \choose 2a} F_{2a} L_{2b} = 2^{2n-1} F_{2n}$$
 (2.5)

Proof. Letting the generating functions are

$$g(t) = \sum_{n=0}^{\infty} \frac{F_{2n}t^{2n}}{(2n)!} = \frac{1}{\sqrt{5}}(\cosh(\alpha t) - \cosh(\beta t))$$
 (2.6)

and

$$h(t) = \sum_{n=0}^{\infty} \frac{L_{2n}t^{2n}}{(2n)!} = (\cosh(\alpha t) + \cosh(\beta t)).$$
 (2.7)

Making a convolution, then we have

$$g(t)h(t) = \sum_{n=0}^{\infty} \left(\sum_{a+b=n} \frac{F_{2a}L_{2b}}{(2a)!(2b)!}\right) t^{2n}.$$
 (2.8)

In the other hand,

$$g(t)h(t) = \frac{1}{\sqrt{5}}(\cosh^2(\alpha t) - \cosh^2(\beta t)) = \frac{1}{2\sqrt{5}}(\cosh(2\alpha t) - \cosh(2\beta t)). \tag{2.9}$$

In fact,

$$g(t)h(t) = \frac{1}{2\sqrt{5}}(\cosh(2\alpha t) - \cosh(2\beta t)) = \frac{1}{2}\sum_{n=0}^{\infty} \frac{2^{2n}F_{2n}t^{2n}}{(2n)!}.$$
 (2.10)

Comparing the coefficient of t^{2n} , we can conclude

$$\sum_{a+b=n} {2n \choose 2a} F_{2a} L_{2b} = 2^{2n-1} F_{2n}$$
 (2.11)

In general, the identity can be rewritten by

$$\sum_{a+b=n} {2n \choose 2a} F_{2ma} L_{2mb} = 2^{2n-1} F_{2mn}$$
 (2.12)

Next result was known with a period, and it is easily to show the result.

Corollary 2.2. Suppose that n be arbitrary natural number, then

$$\sum_{a+b=n} \binom{2n}{2a} = 2^{2n-1} \tag{2.13}$$

Proof. We are starting from

$$g(t) = \sum_{n=0}^{\infty} \frac{t^{2n}}{(2n)!} = \cosh(t)$$
 (2.14)

Likely previous proving,

$$g(t)^{2} = \sum_{n=1}^{\infty} \frac{t^{2n}}{(2a)!(2b)!} + 1 = \cosh^{2}(t) = \frac{\cosh(2t) + 1}{2}.$$
 (2.15)

And

$$g(t)^{2} = \frac{\cosh(2t) + 1}{2} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{2^{2n} t^{2n}}{(2n)!} + 1.$$
 (2.16)

Consequently, getting the result.

Lemma 2.3. Suppose that n be arbitrary natural number, then

$$\sum_{a+b=n} \frac{1}{(3a)!(3b)!} = \frac{2^{3n} + 2(-1)^n}{3(3n)!}$$
 (2.17)

Proof. It is need to prove

$$\sum_{a+b=n} {3n \choose 3a} = \frac{2^{3n} + 2(-1)^n}{3} \tag{2.18}$$

enough. First, we consider

$$(1+1)^{3n} + (1+\omega)^{3n} + (1+\omega^2)^{3n}$$
 where $\omega = \exp(\frac{2\pi i}{3}),$ (2.19)

getting the

$$\sum_{a+b=n} {3n \choose k} (1 + \omega^k + \omega^{2k}) = \sum_{a+b=n} {3n \choose k} (1 + \exp(\frac{2k\pi i}{3}) + \exp(\frac{4k\pi i}{3})). \tag{2.20}$$

Hence

$$\sum_{a+b=n} {3n \choose k} (1 + \exp(\frac{2k\pi i}{3}) + \exp(\frac{4k\pi i}{3})) = 3\sum_{a+b=n} {3n \choose 3a}.$$
 (2.21)

And

$$(1+1)^{3n} + (1+\omega)^{3n} + (1+\omega^2)^{3n} = 2^{3n} + (\frac{1+\sqrt{3}i}{2})^{3n} + (\frac{1-\sqrt{3}i}{2})^{3n}.$$
 (2.22)

In other words

$$2^{3n} + (\frac{1+\sqrt{3}i}{2})^{3n} + (\frac{1-\sqrt{3}i}{2})^{3n} = 2^{3n} + (\exp(\frac{\pi i}{3}))^{3n} + (\exp(\frac{5\pi i}{3}))^{3n} = 2^{3n} + 2(-1)^n.$$
 (2.23) So that, concluding the result.

Lemma 2.4. Assume the generating functions g(t) and h(t) are

$$g(t) = \sum_{n=0}^{\infty} \frac{1}{(3n)!} t^{3n}$$
 (2.24)

and

$$h(t) = \sum_{n=0}^{\infty} \left(\sum_{a+b-n} \frac{1}{(3a)!(3b)!}\right) t^{3n} = \sum_{n=0}^{\infty} \left(\frac{2^{3n} + 2(-1)^n}{3(3n)!}\right) t^{3n}$$
(2.25)

respectively. Then

$$g(t) = \frac{1}{3}(\exp(t) + \exp(\exp(\frac{2\pi i}{3})t) + \exp(\exp(\frac{4\pi i}{3})t))$$
 (2.26)

and

$$h(t) = g(t)^2. (2.27)$$

Proof. Since, we knew that

$$\exp(\exp(\frac{2\pi i}{3})t) = \sum_{n=0}^{\infty} \frac{\exp(\frac{2n\pi i}{3})}{(n)!} t^n,$$
(2.28)

$$\exp(\exp(\frac{4\pi i}{3})t) = \sum_{n=0}^{\infty} \frac{\exp(\frac{4n\pi i}{3})}{(n)!} t^n,$$
(2.29)

$$\exp(t) = \sum_{n=0}^{\infty} \frac{1}{(n)!} t^n.$$
 (2.30)

Combining all the infinite series, we have

$$g(t) = \frac{1}{3}(\exp(t) + \exp(\exp(\frac{2\pi i}{3})t) + \exp(\exp(\frac{4\pi i}{3})t)). \tag{2.31}$$

Similarly, making a convolution to g(t) to conclude the second result.

Theorem 2.5. Suppose that n be arbitrary natural number, then

$$\sum_{a+b=n} {3n \choose 3a} F_{3a} L_{3b} = \frac{2^{3n} + 2(-1)^n}{3} F_{3n}.$$
 (2.32)

Proof. By the previous lemma **2.4**, we have known that

$$\sum_{n=0}^{\infty} \frac{F_{3n}}{(3n)!} t^{3n} = \frac{1}{\sqrt{5}} (g(\alpha t) - g(\beta t))$$
 (2.33)

and

$$\sum_{n=0}^{\infty} \frac{L_{3n}}{(3n)!} t^{3n} = g(\alpha t) + g(\beta t). \tag{2.34}$$

Via lemma 2.4, hence

$$\sum_{n=0}^{\infty} \left(\sum_{\alpha \mid b=n} \frac{F_{3a} L_{3b}}{(3a)!(3b)!} \right) t^{3n} = \frac{1}{\sqrt{5}} (g(\alpha t)^2 - g(\beta t)^2) = \frac{1}{\sqrt{5}} (h(\alpha t) - h(\beta t)). \tag{2.35}$$

Comparing the coefficient of t^{3n} , where

$$\frac{1}{\sqrt{5}}(h(\alpha t) - h(\beta t)) = \sum_{n=0}^{\infty} \left(\frac{(2^{3n} + 2(-1)^n)F_{3n}}{3(3n)!}\right)t^{3n}.$$
 (2.36)

As a result, we have

$$\sum_{a+b=n} {3n \choose 3a} F_{3a} L_{3b} = \frac{2^{3n} + 2(-1)^n}{3} F_{3n}. \tag{2.37}$$

As before identity, we have a generalization

$$\sum_{a+b=n} {3n \choose 3a} F_{3ma} L_{3mb} = \frac{2^{3n} + 2(-1)^n}{3} F_{3mn}. \tag{2.38}$$

3. Application

Corollary 3.1. Assume that q be arbitrary prime number which satisfy

$$q = 2p + 1 \tag{3.1}$$

where p be other prime number. Then q can be represented by Fibonacci Number and Lucas Number, that is,

$$2p + 1 = \frac{1}{F_{2p}} \sum_{a+b=2p} F_a L_b \tag{3.2}$$

Proof. Taking m=1 and n=2p to first identity, get the result.

Example 3.2. Letting q = 5 which

$$5 = 2 \times 2 + 1, (3.3)$$

$$5 = \frac{1}{F_4} \sum_{a+b=4} F_a L_b = \frac{1}{3} (0 \times 7 + 1 \times 4 + 1 \times 3 + 2 \times 1 + 3 \times 2)$$
 (3.4)

Example 3.3. Letting q = 7 which

$$7 = 2 \times 3 + 1,\tag{3.5}$$

$$7 = \frac{1}{F_6} \sum_{a+b=6} F_a L_b = \frac{1}{8} (0 \times 18 + 1 \times 11 + 1 \times 7 + 2 \times 4 + 3 \times 3 + 5 \times 1 + 8 \times 2)$$
 (3.6)

A NEW PROPOSITION OF FIBONACCI NUMBER

References

- [1] Sara Maad Sasane; Amol Sasane A Friendly Approach To Complex Analysis, World Scientific, Singapore, 2014.
- [2] C.A.Church; Marjorie Bicknell, EXPONENTIAL GENERATING FUNCTIONS FOR FIBONACCI NUMBER, The Fibonacci Quarterly, 11.3 (1973), 275–281.

NO.27, JALAN ADDA 1/2, TAMAN ADDA, 81100, JOHOR BAHRU, JOHOR, MALAYSIA $\it Email~address:$ blackskyjason@hotmail.com