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Abstract

Quantum Field Theory, or QFT, is a well-accepted set of theories used in particle physics that involves Lagrangian
mechanics. An individual can generate a rich variety of Hamiltonian equation systems from the Lagrangian associated
QFT to describe simultaneous or cofounding processes which occur in particle physics. Unfortunately, the equation
systems associated with QFT are relatively hard to solve. This paper will show that the generating function technique
(GFT) can be used to directly solve these equation systems while also producing renormalization results. The usage of
the latter is necessary to display the consistency of the solutions and equation systems. Ultimately, an astute scientist
in QFT can claim GFT is a valuable tool to be utilized in the field of particle physics.

1. Introduction

QFT is a combination of quantum mechanics, classical field theory, and special relativity [1]. It is commonly
applied to particle physics, thus essential and in the formation of models within the realm of subatomic and
condensed matter physics [1]. It heavily utilizes Lagrangian mechanics to display the interaction of particles,
which are defined as quantum fields [2]. Since its advent in the 1920s and rebirth in the 1970s, QFT has had a
prominent role in describing contemporary physics [3].

QFT was divided into at least three branches: quantum electrodynamics (QED), quantum flavordynamics
(QFD), and quantum chromodynamics (QCD). QED was primarily developed by Dirac in 1927 which built
upon the concept of canonical quantization [4]. It dealt with the interaction of fermionic and electromagnetic
fields [5]. QFD was the study of electroweak nuclear force, such as bosons Z0 and W+ activities, while QCD
involved strong nuclear interactions, generally mediated gluon fields [6,7]. It is not uncommon to find situations
where certain branches, like QED and QCD, crossed over or encroached on each other.

The generating function technique (GFT) is a novel method for solving [nonlinear] PDEs [8]. It assumes there
is a general solution to the PDE of interest already exists; thus, solving the PDE requires one to determine the
appropriate degree[s] of the solution, then (s)he computes the necessary constants to obtain the solution. Even
though the processes of GFT are simple to comprehend, it requires a computer to carry out the steps.

This paper utilizes GFT in the derivation of sets of exact solutions to a set of new QFT models. The study is
reduced into three more sections. Section two deals with the ascertainment of critical Hamiltonian equations
from the Lagrangian of more extensive QFT models. Section two also provides a brief description of GFT that is
used to derive sets of exact solutions for the Hamiltonian equations and an easier way to generate renormalization
results using the solutions derived from GFT. Section three describes several QFT scenarios in which GFT and
the new renormalization method are implemented to produce solutions and mass-energies for particle fields.
Finally, section five gives a synopsis of the QFT models and the implications of the efficiency of GFT to generate
solutions and renormalization results.
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2. Models and Methodology

2.1. A variation of the Yukawa interaction

A Yukawa interaction is a type of QCD model which involves the relationship between a gauge boson and
fermion fields [9]. The former field can be [partially] self-interacting; in other words, the constant λ in the
equation is not null. The principle of least action for a gauge boson φi which either decays into or generates
from a fermion ψ j and its antiparticle ψ jis expressed as follows:

S[φi, ψ j] =

∫
dx4

∑
j

−φiδ jψ jψ
∗
j +

λφ3
i

3
+

1
2
φ2

i

(
m2
φi

+ ∂µ∂
α
)

+ δ jψ jψ
∗
j

(
m2
ψ + ∂µ∂

µ
) ,

where mfi and myj are the invariant masses of the gauge boson fi and fermion yj, respectively, dj is not a Kronecker
product and equals +1 depending upon whether the field occurs before or after the gauge boson fi, and l is a
coupling constant. The above equation can be converted to a Hamiltonian:

H
[
φi, ψ j

]
=

∫
dx4

∑
j

∂φi

∂t

2

+ iδ jψ
∗
j
∂ψ j

∂t
+ iδ j

∂ψ∗j

∂t
ψ j −

1
3
λφ3

i −
1
2
φ2

i

(
m2
φi

+ ∂µ∂
µ
)
− δ jψ

∗
jψ j

(
m2
ψ + ∂µ∂

µ
)

+ φδ jψ jψ j

 .
With Poisson brackets [10], an individual can derive time evolution equations for the gauge boson :

∂2φi

∂t2 =

∂φi

∂t
,

∫
dx4

∑
j

∂φi

∂t

2

+ iδ jψ
∗
j
∂ψ j

∂t
+ iδ j

∂ψ∗j

∂t
ψ j −

1
3
λφ3

i −
1
2
φ2

i

(
m2
φi

+ ∂µ∂
µ
)
− δ jψ

∗
jψ j

(
m2
ψ j

+ ∂µ∂
µ
)
 ,

or

∂2φi
∂t2 = −λφ2

i − φi(m2
φ − ∆) +

∑
j δ jψ jψ

∗
j .

By placing all terms on the left side of the equation, the individual yields:

∂2φi

∂t2 − ∆φi + λφ2
i + φim2

φi
−

∑
j

δ jψ jψ
∗
j = 0.

To obtain a comparable equation for fermion field ψ j, the same individual again must use Poisson brackets:

δl
∂2ψl

∂t2 =

δl

∂ψ∗j

∂t
,

∫
dx4

∑
j

∂φi

∂t

2

+ iδ jψ
∗
j
∂ψ j

∂t
+ iδ j

∂ψ∗j

∂t
ψ j −

1
3
λφ3

i −
1
2
φ2

i

(
m2
φi

+ ∂µ∂
µ
)
− δ jψ

∗
jψ j

(
m2
ψ j

+ ∂µ∂
µ
)
 ,

or

∂2ψl

∂t2 = i
∂ψl

∂t
− φiψl − ψl

(
m2
ψl
− ∆

)
,

where l is an element of the j-th fermion field. Note: fermion fields in a j-th pair do not have to be the same
entity. By placing all terms on the right side of the equation, the individual obtains:

i
∂ψl

∂t
−
∂2ψl

∂t2 − φiψl + ∆ψl − ψlm2
ψl

= 0.
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The above equation is a variation of the Schrodinger equation. It is highly similar to the equation derived by
Arbab and Yassein (et al., 2011). In future analysis, mφi is set to m while mψ j is set to null or 0.0.

2.2. GFT

GFT is a method for solving [non]linear PDEs via the utilization of a general solution ug that comprises Laurent
series sets of combinatorial number or trigonometric-based generating functions [8]. An individual determines
the maximal and minimal power degree, or ps, through which the Laurent series is eventually truncated. Then,
one solves a linear auxiliary/characteristic ordinary differential equation to yield a function f is plugged into the
transformed general solution Ug, or:

U(ξ) =

2∑
i=1

ps∑
j=−ps

(ai j(
∞∑

k=0

2 f (ξ)kS k(0)i) j + bi j(
∞∑

k=0

2Ck(0)i f (ξ)k) j),

or

U(ξ) =

2∑
i=1

ps∑
j=−ps

(dli j(
∞∑

k=0

2Ck(0)i f (ξ)k) j + cli j(
∞∑

k=0

2 f (ξ)kS k(0)i) j),

where the expression Sk(0) is the square root of the k-th Fibonacci number at/about zero, or

S k (0) = sin
(
πk
2

)
,

the expression Ck(0) is the k-th Chebyshev U number at/about zero, or

Ck (0) = cos
(
πk
2

)
,

and the transformed variable x for a (3+1) system is defined as:

ξ = αt + β1x + β2y + β3z.

For this article, the arbitrary constants aij and bij are used for the primary gauge boson field while the arbitrary
constants clij and dlij are used for secondary gauge boson and or fermion fields where l = 1, 2, . . ., n and n is the
total number of secondary items.

2.3. The generation of renormalization results

The basic formula for “self-interacting" renormalization is defined as:

mp =
1
2

∫
dV p (x) p∗ (x) ,

where mp is the mass-energy of particle field p, p∗ is the conjugate of particle field p, and V is the volume that
contains the particle field p. If the spherical volume for particle field p is equivalent to the following expression,
assuming one is working with Manhattan/taxicab-like distance ξ [11]:

V =
πξ3

6
,

then the formula for renormalization becomes:
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mp =

∫ ∞

0

1
4
πξ2 p (ξ) p∗ (ξ) dξ.

The above expression can be simply redefined as:

mp =
1
2

∫ ∞

−∞

1
4
πξ2 p (ξ) p∗ (ξ) dξ.

In terms of the inner product, the mass-energy of particle field p can also be expressed as:

mp =
1
8
π 〈ξp (ξ) , ξp (ξ)〉 .

For renormalization that is based on mixing interactions, consider the following expression:

mp1−2 =

∫ ∞

0

1
4
πξ2 p1 (ξ) p∗2 (ξ) dξ =

1
8
π 〈ξp1 (ξ) , ξp2 (ξ)〉 ,

where particles p1 and p2 are different quantum fields.

3. Examples

The supplementary materials contain Mathematica (R) spreadsheets that pertain to the QFT models described
in this paper.

3.1. Mesonic decay and photoproduction

Assume one is dealing with a simple Feynman diagram where a meson decays and gives rise to an electron and
position pair:

.

The principle of least action for this system is given by the following equation:

.

S
[
φ, ψ

]
=

∫
dx4

(
λφ3

3
+ ψψ∗

(
m2
ψ + ∂µ∂

µ
)

+
1
2
φ2

(
m2
φ + ∂µ∂

µ
)

+ ψφψ∗
)
.

The above expression can be used to derive the Hamiltonians for all particles of interest:
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∂2φ

∂t2 − ∆φ + λφ2 + φm2
φ + ψψ∗ = 0,

and

i
∂ψ

∂t
−
∂2ψ

∂t2 + ∆ψ − ψm2
ψ − ψφ = 0.

Next, GFT and renormalization are to generate solutions and mass-energies of particles. GFT is used to generate
the solutions to the Hamiltonians:

φ(t, x, y, z) = −
12m2 exp( 2im2 t

3λ+1 +
z
√
−4(β2

1+β2
2)(3cλ+c)2−4m4+2c2(3λ+1)m2
√

(3cλ+c)2
+2β1 x+2β2y)

(3λ+1)(1+exp( 2im2 t
3λ+1 +

z
√
−4(β2

1+β2
2)(3cλ+c)2−4nt4+2c2(3λ+1)m2
√

(3cλ+c)2
+2β1 x+2β2y))2

,

and

ψe(t, x, y, z) =

−((6
√

(λ + 1)m4 exp( 2im2t
3λ+1 +

z
√
−4(β12+β22)(3cλ+c)2−4m4+2c2(3λ+1)m2

√
(3cλ+c)2

+ 2β1x + 2β2y)

(−1 + exp( 2im2t
3λ+1 +

z
√
−4(β2

1+β2
2)(3cλ+c)2−4m4+2c2(3λ+1)m2

√
(3cλ+c)2

+ 2β1x + 2β2y)))/

(
√

(3λ + 1)2

(1 + exp( 2im2t
3λ+1 +

z
√
−4(β2

1+β2
2)(3cλ+c)2−4m4+2c2(3λ+1)m2

√
(3cλ+c)2

+ 2β1x + 2β2y))2)),

while the results of renormalization of the same particles can be expressed as the following if one sets the
constant λ to null and the speed of light c to unity:

mφ = 0.0949744|m|4,

and

mψe = 0.536761|m|4.

Using the above results, one can calculate the needed center-of-mass, or
√

s, for electron-positron collision to
produce a particular meson. For instance, (s)he first must set mφ to well-known mass-energy and solve for m,
then (s)he can calculate the

√
s for the particle by plugging m into mψe . The following table shows the predicted

√
s for various mesons:

meson mass-energy (eV) center-of-mass (eV)
neutral pion 1.34∗10ˆ8 7.57∗10ˆ8

neutral kaon 4.98∗10ˆ8 2.81∗10ˆ9

neutral D meson 1.86∗10ˆ9 1.05∗10ˆ10

neutral B meson 5.28∗10ˆ9 2.98∗10ˆ10

.

3.2. Lepton pair decay and production

Assume one is dealing with a simple Feynman diagram where [anti]muon pair decay into a photon and the
photon gives rise to an electron and position pair:
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.

The principle of least action for this system is given by the following equation:

S
[
φ, ψ1, ψ2

]
=

∫
dx4

(
λφ3

3
− ψ1ψ

∗
1

(
m2
ψ1

+ ∂µ∂
µ
)

+ ψ2ψ
∗
2

(
m2
ψ2

+ ∂µ∂
α
)

+
1
2
φ2

(
m2
φ + ∂µ∂

µ
)
− ψ1φψ

∗
1 + ψ2φψ

∗
2

)
.

The above expression can be used to derive the Hamiltonians for all particles of interest:

∂2φ

∂t2 − ∆φ + λφ2 + φm2
φ − ψ1ψ

∗
1 + ψ2ψ

∗
2 = 0,

i
∂ψ1

∂t
−
∂2ψ1

∂t2 + ∆ψ1 − ψ1m2
ψ1
− ψ1φ = 0,

and

i
∂ψ2

∂t
−
∂2ψ2

∂t2 + ∆ψ2 − ψ2m2
ψ2
− ψ2φ = 0,

where the gauge boson φ is equal to photon γ.

Next, GFT and renormalization are to generate solutions and mass-energies of particles. GFT is used to generate
the solutions to the Hamiltonians after setting the masses of the spin-½ fermions to null:

γ (t, x, y, z) = −
3
2

c2m2 sec2
(
c2m2t +

1
2

i
(
z
√
−4

(
β2

1 + β2
2

)
− 4c2m4 − c2m2 + 2β1x + 2β2y

))
,

ψ1 (t, x, y, z) = −d1 (1, 4)
(
tan

(
c2m2t +

1
2

iz
√

c2 (
−m2) (4m2 + 1

)
− 4

(
β2

1 + β2
2

)
+ iβ1x + iβ2y

)
+ i

)2

,

and

ψ2(t, x, y, z) =

1
2

√
4d1(1, 4)2 − 9c4(λ − 1)m4(tan(c2m2t + 1

2 iz
√

c2(−m2)(4m2 + 1) − 4(β12 + β22) + iβ1x + iβ2y) + i)2,

while the results of renormalization of the same particles can be defined as the following if one sets the constant
l to 2 and the speed of light c to unity:

mγ = 0.379898|m|4,
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mψe = 0.168843|d1 (1, 4) |2,

and

mψµ = 0.0422108|9m4 − 4.d1(1, 4)2|.

Finally, an individual would use the results from renormalization to obtain the value of constants m and d114 and
prove the consistency of the results. By setting mψµand mψe to 1.05∗10ˆ8 and 5.11∗10ˆ5 eV, respectively, (s)he
produces an m and d114 equal to –128.781 and 24937.5, also respectively. The mass-energy mγ equals 104.489
MeV, which is consistent with the difference between mψµand mψe .

3.3. Glueball prediction via possible spin-½ Majorana fermions model

Assume the following principle of least action is true:

S[φi, ψ j,{1,2}, χ j] =
∫

dx4 ∑
j

(
φiδ jψ j,1χ

H
j + δ jψ j,1χ

H
j

(
M2
ψ2

j,1−χ j
+ ∂µ∂

µ
)
+

φiδ jχ jψ
∗
j,2 +

λφ3
i

3 + 1
2φ

2
i

(
m2
φi

+ ∂µ∂
µ
)

+ δ jχ jψ
∗
j,2

(
M2
ψ j,2−χ j

+ ∂µ∂
µ
)),

where χ is Majorana fermion and M is some association of the fermion ψ and χ invariant masses. Like typical
Dirac fermions, some Majorana particles are spin-½ particles. The Hamiltonian equations for the above equation
are defined as:

∂2φi
∂t2 + δ jψ j,1χ

H
j − ∆φi + λφ2

i + φim2
φi

+ δ jχ jψ j,2 = 0,

−
∂ψ j,{1,2}

∂t +
∂2ψ j,{1,2}

∂t2 − φiψ j,{1,2} + ψ j,{1,2}M2
ψ j,{1,2}−χ j

− ∆ψ j,{1,2} = 0,

and

−
∂χ j

∂t +
∂2χ j

∂t2 − φiχ j − ∆χ j + χ jM2
ψ j,{1,2}−χ j

= 0,

where ψ j,{1,2}is either the Dirac fermion particle ψ j,1 or ψ j,2 while χ is a Majorana fermion, which is equal to its
Hermitian χH . Setting λ and the association M to null, the solutions for the particles via GFT are the following:

φ(t, x, y, z) = − 3
2 c2m2 sec2

(
c2m2t + 1

2 i
(
z
√
−4

(
β2

1 + β2
2

)
− 4c2m4 − c2m2 + 2β1x + 2β2y

))
,

ψ1(t, x, y, z) = −d1(1, 4)
(
tan

(
c2m2t + 1

2 iz
√

c2 (
−m2) (4m2 + 1

)
− 4

(
β2

1 + β2
2

)
+ iβ1x + iβ2y

)
+ i

)2
,

ψ2(t, x, y, z) =

−

((
9c4(λ−1)m4

4 d3(1,4) − d1(1, 4)
) (

tan
(
c2m2t + 1

2 iz
√

c2 (
−m2) (4m2 + 1

)
− 4

(
β2

1 + β2
2

)
+ iβ1x + iβ2y

)
+ i

)2)
,

and

χ(t, x, y, z) = −d3(1, 4)
(
tan

(
c2m2t + 1

2 iz
√

c2 (
−m2) (4m2 + 1

)
− 4

(
β2

1 + β2
2

)
+ iβ1x + iβ2y

)
+ i

)2
.
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Using the mass-energy equation, one can derive the following solutions:

mφ = 1.5|m|4,

mψ1 = 0.667| d1(1., 4.)|2,

mψ2 = 0.0417
∣∣∣∣∣ (9.m4+4.d1(1.,4.)d3(1.,4.))2

d3(1.,4.)2

∣∣∣∣∣,
and

mχ = 0.667| d3(1., 4.)|2.

One may also assume that the interaction between two Majorana fermions could form a glueball. Some scientists
claim the interaction of spin-½ Majorana fermions can generate spin-1 liquid, thus the following diagram may
be correct:

.

The Feynman aspect of the picture is the gluon interaction formed between the purposed Majorana fermions. In
other words, the mass of a glueball would constitute the mass-energy of Majorana spin-½ fermion. A table of
predicted glueball masses derived from various meson decays is featured below:

meson mφ (eV) mψ1 (eV) mψ2 (eV) mχ/glueball(eV)
charged pion 1.40∗10ˆ8 2.20∗10ˆ6 4.70∗10ˆ6 1.47∗10ˆ9

neutral kaon 4.98∗10ˆ8 4.70∗10ˆ6 9.60∗10ˆ7 1.73∗10ˆ9

charmed eta 2.98∗10ˆ9 1.28∗10ˆ9 1.28∗10ˆ9 1.73∗10ˆ9

bottom eta 9.30∗10ˆ9 4.18∗10ˆ9 4.18∗10ˆ9 5.17∗10ˆ9

J/psi 3.10∗10ˆ9 1.28∗10ˆ9 1.28∗10ˆ9 1.88∗10ˆ9 [15]

.

3.4 New Physics analysis

Assume one is dealing with the following Feynman diagram:
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,

The principle of least action for this system is given by the following equation:

S[φi, ψ j,{1,2}, χ j] =

∫
dx4

∑
j

(
φiδ1ψ1,1χ

H
1 + φiδ2ψ2,1χ

H
2 + δ1ψ1,1χ

H
1

(
M2
ψ1,1−χ1

+ ∂µ∂
µ
)
+

δ2ψ2,1χ
H
2

(
M2
ψ2,1−χ2

+ ∂µ∂
µ
)

+ φiδ1χ1ψ
∗
1,2 + φiδ2χ2ψ

∗
2,2 +

λφ3
i

3
+

1
2
φ2

i

(
m2
φi

+ ∂µ∂
µ
)

+δ1χ1ψ
∗
1,2

(
M2
ψ1,2−χ1

+ ∂µ∂
µ
)

+ δ2χ2ψ
∗
2,2

(
M2
ψ2,2−χ2

+ ∂µ∂
µ
)

+ φiδ3ψ
∗
3ψ3 + δ3ψ

∗
3ψ3

(
m2
ψ3

+ ∂µ∂
µ
)
).

The above expression can be used to derive the Hamiltonians for all particles of interest:

∂2φi
∂t2 + δ1ψ1,1χ

H
1 + δ2ψ2,1χ

H
2 − ∆φi + λφ2

i + φim2
φi

+ δ1χ1ψ1,2 + δ2χ2ψ2,2 = 0,

−
∂ψ j,{1,2}

∂t +
∂2ψ j,{1,2}

∂t2 − φiψ j,{1,2} + ψ j,{1,2}M2
ψ j,{1,2}−χ j

− ∆ψ j,{1,2} = 0,

and

−
∂χ j

∂t +
∂2χ j

∂t2 − φiχ j − ∆χ j + χ jM2
ψ j,{1,2}−χ j

= 0,

Next, GFT and renormalization are to generate solutions and mass-energies of particles. GFT is used to generate
the solutions to the Hamiltonians after setting the association M to null and λ to -1.0:

φ(t, x, y, z) = − 3
2 m2 sec2

(
m2t −

iz
√
−4c2(β2

1+β2
2)−4m4−c2m2

2c + iβ1x + iβ2y
)
,

ψ1,1(t, x, y, z) = −d1(1, 4)
(
tan

(
m2t −

iz
√
−4c2(β2

1+β2
2)−4m4−c2m2

2c + iβ1x + iβ2y
)

+ i
)2

,

ψ1,2(t, x, y, z) = −d2(1, 4)
(
tan

(
m2t −

iz
√
−4c2(β2

1+β2
2)−4m4−c2m2

2c + iβ1x + iβ2y
)

+ i
)2

,

ψ2,1(t, x, y, z) = −d4(1, 4)
(
tan

(
m2t −

iz
√
−4c2(β2

1+β2
2)−4m4−c2m2

2c + iβ1x + iβ2y
)

+ i
)2

,
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ψ2,2(t, x, y, z) = −
1

4 d6(1, 4)

(
4 d3(1, 4)(d1(1, 4) + d2(1, 4)) − 4

(
d4(1, 4)d6(1, 4) + d7(1, 4)2

)
− 9(λ − 1)m4

)

tan
(
m2t −

iz
√
−4c2(β2

1+β2
2)−4m4−c2m2

2c + iβ1x + iβ2y
)

+ i,

ψ3(t, x, y, z) = −d7(1, 4)
(
tan

(
m2t −

iz
√
−4c2(β2

1+β2
2)−4m4−c2m2

2c + iβ1x + iβ2y
)

+ i
)2

,

χ1(t, x, y, z) = −d3(1, 4)

tan
(
m2t −

iz
√
−4c2(β2

1+β2
2)−4m4−c2m2

2c + iβ1x + iβ2y
)2

+ i

,
and

χ2(t, x, y, z) = −d6(1, 4)
(
tan

(
m2t −

iz
√
−4c2(β2

1+β2
2)−4m4−c2m2

2c + iβ1x + iβ2y
)

+ i
)2

.

while the results of renormalization of the same particles can be expressed as the following if one sets the
constant λ to unity and the speed of light c to unity:

mφ = 0.38|m|4,

mψ1,1 = 0.169| d1(1., 4.)|2,

mψ1,2 = 0.169| d2(1., 4.)|2,

mψ2,1 = 0.169| d4(1., 4.)|2,

mψ2,2 = 0.0422
∣∣∣∣∣ (9.m4−2.d7(1.,4.)2+2.d1(1.,4.)d3(1.,4.)+2.d2(1.,4.)d3(1.,4.)−2.d4(1.,4.)d6(1.,4.))2

d6(1.,4.)2

∣∣∣∣∣,
mψ3 = 0.169| d7(1., 4.)|2,

mχ1 = 0.169| d3(1., 4.)|2,

and

mχ2 = 0.169| d6(1., 4.)|2.

If mψ1,1 , mψ1,2 , and the sum of the mixing interaction mass-energies mψ1,1 -mχ1 and mψ1,2 -mχ1 are equal to 4.18∗10ˆ9,
4.70∗10ˆ6, and 5.28∗10ˆ9 eV, respectively, then the mass-energy of Majorana particle c1 is 6.24∗10ˆ9 eV. On
the other hand, if mψ2,1 , mψ2,2 , and the sum of the mixing interaction mass-energies mψ2,1 -mχ2 and mψ2,2 -mχ2 are
equal to 9.60∗10ˆ7, 4.70∗10ˆ6, and 4.98∗10ˆ8 eV, respectively, then the mass-energy of Majorana particle c2
is 1.73∗10ˆ9 eV. Next, one would find the mass-energy of particle f is 2.34∗10ˆ9 eV. Note: this is the value
produced if an individual takes the geometric mean of the mass-energies of the prospective (Nambu partner to
the) Higgs boson (3.25∗10ˆ11 eV) and particle X17 (1.68∗10ˆ7 eV) [12,13].
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4. Conclusion

4.1. QFT can be used to generate a large variety of equation systems describing particle physics.

Section three provides several examples which implemented some variation of the QFT models provided by section
two. The equation systems produced by the Lagrangian for the examples are novel, wide-ranging, and highly de-
scriptive. In other words, there is practically no limit to the Lagrangian or equation systems one can contemplate in
QFT.

4.2. GFT can easily derive solutions and renormalization results to many equation systems in QFT.

Section three and supplementary material also showed relative ease of solving particle fields and generating renormal-
ization results from the solution via GFT. In other words, only a few steps are needed to produce solutions to both
fermion and gauge boson fields involved in each QFT model. Ultimately, GFT is an ideal tool for solving QFT models.
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