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Abstract 

 

Quantum Field Theory, or QFT, is a well-accepted set of theories used in particle physics that involves 

Lagrangian mechanics.  An individual can generate a rich variety of Hamiltonian equation systems from 

the Lagrangian associated QFT to describe simultaneous or cofounding processes which occur in particle 

physics.  Unfortunately, the equation systems associated with QFT are relatively hard to solve.  This 

paper will show that the generating function technique (GFT) can be used to directly solve these equation 

systems while also producing renormalization results.  The usage of the latter is necessary to display the 

consistency of the solutions and equation systems.  Ultimately, an astute scientist in QFT can claim GFT 

is a valuable tool to be utilized in the field of particle physics. 

 

1.  Introduction 

 

QFT is a combination of quantum mechanics, classical field theory, and special relativity [1].  It is commonly 

applied to particle physics, thus essential and in the formation of models within the realm of subatomic and 

condensed matter physics [1].  It heavily utilizes Lagrangian mechanics to display the interaction of particles, 

which are defined as quantum fields [2].  Since its advent in the 1920s and rebirth in the 1970s, QFT has had a 

prominent role in describing contemporary physics [3]. 

 

QFT was divided into at least three branches: quantum electrodynamics (QED), quantum flavordynamics 

(QFD), and quantum chromodynamics (QCD).  QED was primarily developed by Dirac in 1927 which built 

upon the concept of canonical quantization [4].  It dealt with the interaction of fermionic and electromagnetic 

fields [5].  QFD was the study of electroweak nuclear force, such as bosons Z0 and W+ activities, while QCD 

involved strong nuclear interactions, generally mediated gluon fields [6,7].  It is not uncommon to find 

situations where certain branches, like QED and QCD, crossed over or encroached on each other. 

 

The generating function technique (GFT) is a novel method for solving [nonlinear] PDEs [8].  It assumes 

there is a general solution to the PDE of interest already exists; thus, solving the PDE requires one to 

determine the appropriate degree[s] of the solution, then (s)he computes the necessary constants to obtain 

the solution.  Even though the processes of GFT are simple to comprehend, it requires a computer to carry 

out the steps. 



 

This paper utilizes GFT in the derivation of sets of exact solutions to a set of new QFT models.  The 

study is reduced into three more sections.  Section two deals with the ascertainment of critical 

Hamiltonian equations from the Lagrangian of more extensive QFT models.  Section two also provides a 

brief description of GFT that is used to derive sets of exact solutions for the Hamiltonian equations and an 

easier way to generate renormalization results using the solutions derived from GFT.  Section three 

describes several QFT scenarios in which GFT and the new renormalization method are implemented to 

produce solutions and mass-energies for particle fields.  Finally, section five gives a synopsis of the QFT 

models and the implications of the efficiency of GFT to generate solutions and renormalization results. 

 

2. Models and Methodology 

 

2.1.   A variation of the Yukawa interaction 

 

A Yukawa interaction is a type of QCD model which involves the relationship between a gauge boson 

and fermion fields [9].  The former field can be [partially] self-interacting; in other words, the constant  

in the equation is not null.  The principle of least action for a gauge boson i which either decays into or 

generates from a fermion 𝜓𝑗  and its antiparticle 𝜓j
†
is expressed as follows: 

𝒮[𝜙𝑖, 𝜓𝑗
˙
] = ∫ 𝑑𝑥4 ∑ (−𝜙𝑖𝛿𝑗𝜓𝑗𝜓𝑗

† +
𝜆𝜙𝑖

3

3
+

1

2
𝜙𝑖

2(𝑚𝜙𝑖

2 + ∂𝜇 ∂𝛼) + 𝛿𝑗𝜓𝑗𝜓𝑗
†(𝑚𝜑

2 + ∂𝜇 ∂𝜇)) ,

𝑗

 

where mi and mj are the invariant masses of the gauge boson i and fermion j, respectively, j is not a 

Kronecker product and equals +1 depending upon whether the field occurs before or after the gauge 

boson i, and  is a coupling constant.  The above equation can be converted to a Hamiltonian: 

ℋ[𝜙𝑖, 𝜓𝑗] = ∫ 𝑑𝑥4 ∑ (𝜙
˙

𝑖
2 + 𝑖𝛿𝑗𝜓𝑗𝜓

˙

𝑗 −
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3
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3 −
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𝜙𝑖

2(𝑚𝜙𝑖

2 + ∂𝜇 ∂𝜇) − 𝛿𝑗𝜓𝑗𝜓𝑗
†(𝑚𝜓

2 + ∂𝜇 ∂𝜇)

𝑗

+ 𝜙𝛿𝑗𝜓𝑗𝜓𝑗
†). 

With Poisson brackets [10], an individual can derive time evolution equations for the gauge boson i: 

𝜙
¨

𝑖 = {𝜙
˙

𝑖 , ∫ 𝑑x4 ∑ (𝜙
˙

𝑖
2 + 𝑖𝜓

˙

𝑗𝜓𝑗
† + 𝜙𝑖𝛿𝑗𝜓𝑗𝜓𝑗

† −
1
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𝜆𝜙𝑖

3 −
1

2
𝜙𝑖

2(𝑚𝜙𝑖

2 + ∂𝜇 ∂𝜇)

𝑗

− 𝜓𝛿𝑗𝜓𝑗
† (𝑚𝜓𝑗

2 + ∂𝜇 ∂𝜇))}, 

or 



𝜙
¨

𝑖 = −𝜆𝜙𝑖
2 − 𝜙𝑖 (𝑚𝜙

2 − Δ) + ∑ 𝛿𝑗𝜓𝑗𝜓𝑗
†

𝑗
. 

By placing all terms on the left side of the equation, the individual yields: 

𝜙
¨

𝑖 − Δ𝜙𝑖 + 𝜆𝜙𝑖
2 + 𝜙𝑖𝑚𝜙𝑖

2 − ∑ 𝛿𝑗𝜓𝑗𝜓𝑗
†

𝑗

= 0. 

To obtain a comparable equation for fermion field j, the same individual again must use Poisson 

brackets: 

𝛿𝑙𝜓
¨

𝑙 = {𝛿𝑙𝜓
˙

𝑙
†, ∫ 𝑑x4 (𝜙

˙

𝑖
2 + 𝑖𝛿𝑗𝜓

˙

𝑗𝜓𝑗
† − 𝜙𝑖𝛿𝑗𝜓𝑗 𝜓𝑗

† −
1

3
𝜆𝜙𝑖

3 −
1

2
𝜙𝑖

2(𝑚𝜙𝑖

2 + ∂𝜇 ∂𝜇)

− 𝛿𝑗𝜓𝑗𝜓𝑗
† (𝑚𝜓𝑗

2 + ∂𝜇 ∂𝜇))}, 

 

or 

𝜓
¨

𝑙 = 𝑖𝜓
˙

𝑙 − 𝜙𝑖𝜓𝑙 − 𝜓𝑙(𝑚𝜓𝑙

2 − Δ), 

where l is an element of the j-th fermion field pair.  Note:  fermion fields in a j-th pair do not have to be 

the same entity.  By placing all terms on the right side of the equation, the individual obtains: 

𝑖𝜓
˙

𝑙 − 𝜓
¨

𝑙 − 𝜙𝑖𝜓𝑙 + Δ𝜓𝑙 − 𝜓𝑙𝑚𝜓𝑙

2 = 0. 

The above equation is a variation of the Schrodinger equation. 

 

2.2.   A more extensive QCD model 

 

The principle of least action for a gauge boson i which decays into or produces from another gauge 

boson j and its antiparticle  is expressed as follows: 

𝒮[𝜙𝑖, 𝜙𝑗] = ∫ 𝑑𝑥4 ∑ (−𝜙𝑖𝛿𝑗𝜙𝑗𝜙𝑗 + 𝛿𝑗𝜙𝑗𝜙𝑗 (𝑚𝜙𝑗

2 + ∂𝜇 ∂𝜇) +
𝜆𝜙𝑖

3

3
+

1

2
𝜙𝑖

2(𝑚𝜙𝑖

2 + ∂𝜇 ∂𝜇)) ,

𝑗

 

where mi and mj are the invariant masses of the gauge boson i and j, respectively, j again is not a 

Kronecker product and is equal to +1 depending upon whether the field occurs before or after the gauge 

boson i, and  is a coupling constant.  The above equation can be converted to a Hamiltonian: 



ℋ[𝜙i, 𝜙𝑗] = ∫ 𝑑x4 ∑ (𝛿𝑖𝜙
𝑗
𝜙
˙

𝑗 + 𝜙𝑖𝛿𝑗𝜙𝑗𝜙𝑗 − 𝛿𝑗𝜙𝑗𝜙𝑗 (𝑚𝜙𝑗

2 + ∂𝜇 ∂𝜇) −
1

3
𝜆𝜙𝑖

3

𝑗

−
1

2
𝜙𝑖

2(𝑚𝜙𝑖

2 + ∂𝜇 ∂𝜇)) . 

 

With Poisson brackets, an individual can derive time evolution equations for the gauge bosons i and j: 

𝜙
¨

𝑖 = {𝜙𝑖 , ∫ 𝑑x4 ∑ (𝜙𝑖𝛿𝑗𝜙𝑗 𝜙𝑗 − 𝛿𝑗𝜙𝑗𝜙𝑗 (𝑚𝜙𝑗

2 + ∂𝜇 ∂𝜇) + 𝑖𝜙
˙

𝑖
2 + 𝜙𝑗 𝜙

˙

𝑗 −
1

3
𝜆𝜙𝑖

3

𝑗

−
1

2
𝜙𝑖

2(𝑚𝜙𝑖

2 + ∂𝜇 ∂𝜇))}, 

or 

𝜙
¨

𝑖 = − ∑ (−𝛿𝑗𝜙𝑗𝜙𝑗 + 𝜆𝜙𝑖
2 + 𝜙𝑖(𝑚𝜙𝑖

2 − Δ))

𝑗

. 

By placing all terms on the left side of the equation, the individual generates: 

− ∑ 𝛿𝑗𝜙𝑗𝜙𝑗

𝑗

+ 𝜙
¨

𝑖 − Δ𝜙𝑖 + 𝜆𝜙𝑖
2 + 𝜙𝑖𝑚𝜙𝑖

2 = 0. 

To obtain an equation for gauge boson j, the same individual again must use Poisson brackets: 

𝛿𝑙𝜙
𝑙

= {𝜙
˙

𝑗 , ∫ 𝑑x4 ∑ (𝜙𝑖𝛿𝑗𝜙𝑗𝜙𝑗 − 𝛿𝑗𝜙𝑗𝜙𝑗 (𝑚𝜙𝑗

2 + ∂𝜇 ∂𝜇) + 𝑖𝜙
˙

𝑖
2 + 𝜙𝑗𝜙

˙

𝑗 −
1

3
𝜆𝜙𝑖

3

𝑗

−
1

2
𝜙𝑖

2(𝑚𝜙𝑖

2 + ∂𝜇 ∂𝜇))}, 

or 

−𝜙
˙

𝑙 + 𝜙
¨

𝑙 − 𝜙𝑖𝜙𝑙 + 𝜙𝑙(𝑚𝜙𝑙

2 − Δ) = 0, 

where l is an element of the j-th gauge boson field pair.  Note:  gauge boson fields in a j-th pair do not 

have to be the same entity.  By placing all terms on the right side of the equation, the individual derives: 

−𝜙
˙

𝑙 + 𝜙
¨

𝑙 + 𝜙𝑖𝜙𝑙 − Δ𝜙𝑙 + 𝜙𝑙𝑚𝜙𝑙

2 = 0. 

The above equation is a telegraph equation. 

 



2.3.   GFT 

 

GFT is a method for solving [non]linear PDEs via the utilization of a general solution ug that comprises 

Laurent series sets of combinatorial number or trigonometric-based generating functions [16].  An 

individual determines the maximal and minimal power degree, or ps, through which the Laurent series is 

eventually truncated.  Then, one solves a linear auxiliary/characteristic ordinary differential equation to 

yield a function f is plugged into the transformed general solution Ug, or: 

𝑈(𝜉) = ∑ ∑(𝑎𝑖𝑗(∑ 2𝑓(𝜉)𝑘𝑆𝑘(0)𝑖

∞

𝑘=0

)𝑗 + 𝑏𝑖𝑗(∑ 2𝐶𝑘(0)𝑖𝑓(𝜉)𝑘

∞

𝑘=0

)𝑗)

𝑝𝑠

𝑗=−𝑝𝑠

,

2

𝑖=1

 

or 

𝑈(𝜉) = ∑ ∑(dlij(∑ 2C𝑘(0)𝑖𝑓(𝜉)𝑘

∞

𝑘=0

)𝑗 + clij(∑ 2𝑓(𝜉)𝑘𝑆𝑘(0)𝑖

∞

𝑘=0

)𝑗)

𝑝𝑠

𝑗=−𝑝𝑠

,

2

𝑖=1

 

where the expression Sk(0) is the square root of the k-th Fibonacci number at/about zero, or 

𝑆𝑘(0) = sin (
𝜋𝑘

2
), 

the expression Ck(0) is the k-th Chebyshev U number at/about zero, or 

𝐶𝑘(0) = cos (
𝜋𝑘

2
), 

and the transformed variable  for a (3+1) system is defined as: 

𝜉 = 𝛼𝑡 + 𝛽𝑙𝑥 + 𝛽2𝑦 + 𝛽3𝑧. 

For this article, the arbitrary constants aij and bij are used for the primary gauge boson field while the 

arbitrary constants clij and dlij are used for secondary gauge boson and or fermion fields where l = 1, 2, 

…, n and n is the total number of secondary items.  

 

2.4.   The generation of renormalization results 

 

The basic formula for renormalization is defined as [17]: 

𝑚𝑝 =
1

2
∫ 𝑑V𝑝(𝑥)𝑝∗(𝑥), 



where mp is the mass-energy of particle field p, p* is the conjugate of particle field p, and V is the volume 

that contains the particle field p.  If the volume for particle field f is equivalent to the following expression 

[18]: 

𝑉 =
𝜋𝑥3

6
, 

then the formula for renormalization becomes: 

𝑚𝑝 = ∫
1

4
𝜋𝑥2𝑝(𝑥)𝑝∗(𝑥)𝑑𝑥

∞

0

. 

The above expression can be simply redefined as: 

𝑚𝑝 =
1

2
∫

1

4
𝜋𝑥2𝑝(𝑥)𝑝∗(𝑥)𝑑𝑥 

∞

−∞

. 

In terms of cross distance [19], the mass-energy of particle field p can also be expressed as: 

𝑚𝑝 =
1

8
𝜋⟨𝑥𝑝(𝑥), 𝑥𝑝(𝑥)⟩. 

 

3. Examples 

 

The supplementary materials contain Mathematica (R) spreadsheets that pertain to the QFT models 

described in this paper. 

 

3.1. Mesonic decay and photoproduction 

 

Assume one is dealing with a simple Feynman diagram where a meson decays and gives rise to an 

electron and position pair: 

. 

The principle of least action for this system is given by the following equation: 

. 



𝒮[𝜙, 𝜓] = ∫ 𝑑x4 (
𝜆𝜙3

3
+ 𝜓𝜓†(𝑚𝜓

2 + ∂𝜇 ∂𝜇) +
1

2
𝜙2(𝑚𝜙

2 + ∂𝜇 ∂𝜇) + 𝜓𝜙𝜓†). 

The above expression can be used to derive the Hamiltonians for all particles of interest: 

𝜙
¨

− Δ𝜙 + 𝜆𝜙2 + 𝜙𝑚𝜙
2 + 𝜓𝜓† = 0, 

and 

𝑖𝜓
˙

− 𝜓
¨

+ Δ𝜓 − 𝜓𝑚𝜓
2 − 𝜓𝜙 = 0. 

Next, GFT and renormalization are to generate solutions and mass-energies of particles.  GFT is used to 

generate the solutions to the Hamiltonians: 

𝜙(𝑡, 𝑥, 𝑦, 𝑧) = −

12𝑚2exp (
2𝑖𝑚2𝑡

3𝜆+1
+

𝑧√−4(𝛽12+𝛽22)(3𝑐𝜆+𝑐)2−4𝑚4+2𝑐2(3𝜆+1)𝑚2

√(3𝑐𝜆+𝑐)2
+2𝛽1𝑥+2𝛽2𝑦)

(3𝜆+1)(1+exp (
2𝑖𝑚2𝑡

3𝜆+1
+

𝑧√−4(𝛽12+𝛽22)(3𝑐𝜆+𝑐)2−4𝑛𝑡4+2𝑐2(3𝜆+1)𝑚2

√(3𝑐𝜆+𝑐)2
+2𝛽1𝑥+2𝛽2𝑦))2

, 

and 

𝜓𝑒(𝑡, 𝑥, 𝑦, 𝑧) =

−((6√(𝜆 + 1)𝑚4exp (
2𝑖𝑚2𝑡

3𝜆 + 1
+

𝑧√−4(𝛽12 + 𝛽22)(3𝑐𝜆 + 𝑐)2 − 4𝑚4 + 2𝑐2(3𝜆 + 1)𝑚2

√(3𝑐𝜆 + 𝑐)2
+ 2𝛽1𝑥 + 2𝛽2𝑦)

(−1 + exp (
2𝑖𝑚2𝑡

3𝜆 + 1
+

𝑧√−4(𝛽12 + 𝛽22)(3𝑐𝜆 + 𝑐)2 − 4𝑚4 + 2𝑐2(3𝜆 + 1)𝑚2

√(3𝑐𝜆 + 𝑐)2
+ 2𝛽1𝑥 + 2𝛽2𝑦)))/

(√(3𝜆 + 1)2

(1 + exp (
2𝑖𝑚2𝑡

3𝜆 + 1
+

𝑧√−4(𝛽12 + 𝛽22)(3𝑐𝜆 + 𝑐)2 − 4𝑚4 + 2𝑐2(3𝜆 + 1)𝑚2

√(3𝑐𝜆 + 𝑐)2
+ 2𝛽1𝑥 + 2𝛽2𝑦))2)),

 

while the results of renormalization of the same particles can be expressed as the following if one sets the 

constant  to null and the speed of light c to unity: 

𝑚𝜙 = 0.0949744|𝑚|4, 

and 

𝑚𝜓𝑒
= 0.536761|𝑚|4. 

 

Using the above results, one can calculate the needed center-of-mass, or√𝑠, for electron-positron collision 

to produce a particular meson.  For instance, (s)he first must set m to well-known mass-energy and solve 

for m, then (s)he can calculate the √𝑠 for the particle by plugging m into me.  The following table shows 

the predicted √𝑠 for various mesons: 

 



 meson 

mass-energy 

(eV) 

center-of-mass 

(eV)  

 neutral pion 1.34*10^8 7.57*10^8  

 neutral kaon 4.98*10^8 2.81*10^9  

 
neutral D 

meson 1.86*10^9 1.05*10^10   

 neutral B meson 5.28*10^9 2.98*10^10 . 

     
 

3.2. Lepton pair decay and production 

 

Assume one is dealing with a simple Feynman diagram where [anti]muon pair decay into a photon and 

the photon gives rise to an electron and position pair: 

. 

The principle of least action for this system is given by the following equation: 

𝒮[𝜙, 𝜓] = ∫ 𝑑x4 (
𝜆𝜙3

3
− 𝜓1𝜓1

†(𝑚𝜓1

2 + ∂𝜇 ∂𝜇) + 𝜓2𝜓2
†(𝑚𝜓2

2 + ∂𝜇 ∂𝛼) +
1

2
𝜙2(𝑚𝜙

2 + ∂𝜇 ∂𝜇) − 𝜓1𝜙𝜓1
†

+ 𝜓2𝜙𝜓2
†). 

The above expression can be used to derive the Hamiltonians for all particles of interest: 

𝜙
¨

− Δ𝜙 + 𝜆𝜙2 + 𝜙𝑚𝜙
2 − 𝜓1𝜓1

† + 𝜓2𝜓2
† = 0, 

𝑖𝜓
˙

1 − 𝜓
¨

1 + Δ𝜓1 − 𝜓1𝑚𝜓1

2 − 𝜓1𝜙 = 0, 

and 

𝑖𝜓
˙

2 − 𝜓
¨

2 + Δ𝜓2 − 𝜓2𝑚𝜓2

2 − 𝜓2𝜙 = 0, 

where the gauge boson  is equal to photon .   

 



Next, GFT and renormalization are to generate solutions and mass-energies of particles.  GFT is used to 

generate the solutions to the Hamiltonians: 

𝛾(𝑡, 𝑥, 𝑦, 𝑧) = −
3

2
𝑐2𝑚2 sec2 (𝑐2𝑚2𝑡 +

1

2
𝑖 (𝑧√−4(𝛽12 + 𝛽22) − 4𝑐2𝑚4 − 𝑐2𝑚2 + 2𝛽1𝑥 + 2𝛽2𝑦)), 

𝜓1(𝑡, 𝑥, 𝑦, 𝑧) = −d1(1,4) (tan (𝑐2𝑚2𝑡 +
1

2
𝑖𝑧√𝑐2(−𝑚2)(4𝑚2 + 1) − 4(𝛽12 + 𝛽22) + 𝑖𝛽1𝑥 + 𝑖𝛽2𝑦)

+ 𝑖)
2

, 

and 

𝜓2(𝑡, 𝑥, 𝑦, 𝑧) =
1

2
√4d1(1,4)2 − 9𝑐4(𝜆 − 1)𝑚4(tan (𝑐2𝑚2𝑡 +

1

2
𝑖𝑧√𝑐2(−𝑚2)(4𝑚2 + 1) − 4(𝛽12 + 𝛽22) + 𝑖𝛽1𝑥 + 𝑖𝛽2𝑦) + 𝑖)2,

 

while the results of renormalization of the same particles can be defined as the following if one sets the 

constant  to null and the speed of light c to unity: 

𝑚𝛾 = 0.379898|𝑚|4, 

𝑚𝑒 = 0.168843|d1(1,4)|2, 

and 

𝑚𝜇 = 0.0422108|9𝑚4 − 4. d1(1,4)2|. 

Finally, an individual would use the results from renormalization to obtain the value of constants m and 

d114 and prove the consistency of the results.  By setting m and me to 1.05*108 and 5.11*105 eV, 

respectively, (s)he produces an m and d114 equal to –128.781 and 24937.5, also respectively.  The mass-

energy m equals 104.489 MeV, which is consistent with the difference between m and me. 

 

3.3. Mesonic decay into other mesons 

 

Assume one is dealing with a simple Feynman diagram where a B meson decays into a [anti]muon pair 

and kaon: 

. 

The principle of least action for this system is given by the following equation: 



𝒮[𝜙, 𝜓] = ∫ 𝑑x4(
𝜆𝜙3

3
+ 𝜓1𝜓3

†(𝑚𝜓
2 + ∂𝜇 ∂𝜇) − 𝜓2𝜓3

†(𝑚𝜑
2 + ∂𝜇 ∂𝜇) −

𝜓4𝜓4
†(𝑚𝜓

2 + ∂𝜇 ∂𝜇) +
1

2
𝜙2(𝑚𝜙

2 + ∂𝜇 ∂𝜇) − 𝜓1𝜙𝜓3
† + 𝜓2𝜙𝜓3

† + 𝜓4𝜙𝜓4
†)

. 

The above expression can be used to derive the Hamiltonians for all particles of interest: 

𝜙
¨

− Δ𝜙 + 𝜆𝜙2 + 𝜙𝑚𝜙
2 − 𝜓1𝜓3

† + 𝜓2𝜓3
† + 𝜓4𝜓4

† = 0, 

𝑖𝜓
˙

1 − 𝜓
¨

1 + Δ𝜓1 − 𝜓1𝑚𝜓1

2 − 𝜓1𝜙 = 0, 

𝑖𝜓
˙

2 − 𝜓
¨

2 + Δ𝜓2 − 𝜓2𝑚𝜓2

2 − 𝜓2𝜙 = 0, 

𝑖𝜓
˙

3 − 𝜓
¨

3 + Δ𝜓3 − 𝜓3𝑚𝜓3

2 − 𝜓3𝜙 = 0, 

and 

𝑖𝜓
˙

4 − 𝜓
¨

4 + Δ𝜓4 − 𝜓4𝑚𝜓4

2 − 𝜓4𝜙 = 0. 

where gauge boson  is /Z, fermion 1 is a beauty quark, fermion 2 is a strange quark, fermion 3 is an 

antidown quark, and fermion 4 is the [anti]muon particle. 

 

Next, GFT and renormalization are to generate solutions and mass-energies of particles.  GFT is used to 

generate the solutions to the Hamiltonians: 

𝛾/𝑍(𝑡, 𝑥, 𝑦, 𝑧) =
3

2
𝑚2 sec2 (𝑚2𝑡 +

𝑖(𝑧√−4𝑐2(𝛽12 + 𝛽22) − 4𝑚4 − 𝑐2𝑚2 + 2𝛽1𝑐𝑥 + 2𝛽2𝑐𝑦)

2𝑐
), 

𝜓1(𝑡, 𝑥, 𝑦, 𝑧) = −d1(1,4) (tan (𝑚2𝑡 +
𝑖𝑧√−4𝑐2(𝛽12 + 𝛽22) − 4𝑚4 − 𝑐2𝑚2

2𝑐
+ 𝑖𝛽1𝑥 + 𝑖𝛽2𝑦) + 𝑖)

2

, 

𝜓2(𝑡, 𝑥, 𝑦, 𝑧) =

−((d1(1,4) −
4d4(1,4)2+9(𝜆+1)𝑚4

4d3(1,4)
)(tan (𝑚2𝑡 +

𝑖𝑧√−4𝑐2(𝛽12+𝛽22)−4𝑚4−𝑐2𝑚2

2𝑐
+ 𝑖𝛽1𝑥 + 𝑖𝛽2𝑦) + 𝑖)2)

, 

𝜓3(𝑡, 𝑥, 𝑦, 𝑧) = −d3(1,4) (tan (𝑚2𝑡 +
𝑖𝑧√−4𝑐2(𝛽12 + 𝛽22) − 4𝑚4 − 𝑐2𝑚2

2𝑐
+ 𝑖𝛽1𝑥 + 𝑖𝛽2𝑦) + 𝑖)

2

, 

and 

𝜓4(𝑡, 𝑥, 𝑦, 𝑧) = −d4(1,4) (tan (𝑚2𝑡 +
𝑖𝑧√−4𝑐2(𝛽12 + 𝛽22) − 4𝑚4 − 𝑐2𝑚2

2𝑐
+ 𝑖𝛽1𝑥 + 𝑖𝛽2𝑦) + 𝑖)

2

, 

while the results of renormalization of the same particles can be expressed as the following if one sets the 

constant  to null and the speed of light c to unity: 



𝑚𝛾/𝑍 = 0.379898|𝑚|4, 

𝑚𝑏 = 0.168843|d1(1,4)|2, 

𝑚𝑠 = 0.0105527 |
(9𝑚4 + 4d4(1,4)2 − 4d1(1,4)d3(1,4))2

d3(1,4)2
|, 

𝑚𝑑 = 0.168843|d3(1,4)|2, 

and 

𝑚𝜇 = 0.168843|d4(1,4)|2. 

 

Finally, an individual would use the results from renormalization to obtain the value of constants m, d114, 

d314, and d414 and prove the consistency of the results.  By setting mb, ms, md, and m to 4.18*109, 

9.60*107, 4.70*106, and 1.05*108 eV, respectively, (s)he obtains the value of constants m, d114, d314, and 

d414 equal to 76.9, 1.57*105, 5.25*103, and 2.49*105, also respectively.  The mass-energy m equals 

13.289 MeV for the system to be consistent. 

 

3.4.) Glueball prediction 

 

Assume one is dealing with the following Feynman diagram: 

, 

The principle of least action for this system is given by the following equation: 

𝑆[g, 𝜙1, 𝜙2] = ∫ 𝑑x4 (2g𝜙1𝜙1 − 2𝑔𝜙2𝜙2 + 𝜙1𝜙1(𝑚𝜙1

2 + ∂𝜇 ∂𝜇) − 𝜙2𝜙2(𝑚𝜙2

2 + ∂𝜇 ∂𝜇) +
𝑔3𝜆

3

+
1

2
𝑔2(𝑚𝑔

2 + ∂𝜇 ∂𝜇)). 

The above expression can be used to derive the Hamiltonians for all particles of interest: 

−2𝜙1𝜙1 + 2𝜙2𝜙2 + 𝑔
¨

+ 𝑔2𝜆 − Δ𝑔 + 𝑔𝑚𝑔
2 = 0, 



−𝜙
˙

1 + 𝜙
¨

1 − Δ𝜙1 − 𝑔𝜙1 + 𝜙1𝑚𝜙1

2 = 0, 

and 

−𝜙
˙

2 + 𝜙
¨

2 − Δ𝜙2 − 𝑔𝜙2 + 𝜙2𝑚𝜙2

2 = 0. 

where gauge boson g is glueball based upon gluons, gauge boson  is a vector kaon, and gauge boson  

is a  meson. 

 

Next, GFT and renormalization are to generate solutions and mass-energies of particles.  GFT is used to 

generate the solutions to the Hamiltonians: 

𝑔(𝑡, 𝑥, 𝑦, 𝑧) = −
3

2
𝑚2 sech2 (𝑚2𝑡 +

𝑖𝑧√4𝑐2(𝛽12 + 𝛽22) − 4𝑚4 + 𝑐2𝑚2

2𝑐
− 𝛽1𝑥 − 𝛽2𝑦), 

𝜙1(𝑡, 𝑥, 𝑦, 𝑧) = d1(1,4) (−1 + tanh (𝑚2𝑡 +
𝑖𝑧√4𝑐2(𝛽12 + 𝛽22) − 4𝑚4 + 𝑐2𝑚2

2𝑐
− 𝛽1𝑥 − 𝛽2𝑦))

2

, 

and 

𝜙2(𝑡, 𝑥, 𝑦, 𝑧) =
1

2
√4d1(1,4)2 −

9

2
(𝜆 − 1)𝑚4 (−1

+ tanh (𝑚2𝑡 +
𝑖𝑧√4𝑐2(𝛽12 + 𝛽22) − 4𝑚4 + 𝑐2𝑚2

2𝑐
− 𝛽1𝑥 − 𝛽2𝑦))

2

. 

while the results of renormalization of the same particles can be expressed as the following if one sets the 

constant  to null and the speed of light c to unity: 

𝑚𝑔 = 0.379898|𝑚|4, 

𝑚𝜙1
= 0.168843|d1(1,4)|2, 

and 

𝑚𝜙2
= 0.0211054|9𝑚4 + 8. d1(1,4)2|. 

Finally, an individual can use the results from renormalization to obtain the value of constants m and d114 

and prove the consistency of the results.  By setting m and m to 8.91*108 and 1.40*108 eV, 

respectively, (s)he produces a m and d114 equal to -177.375+177.375i and 7.27*104, also respectively.  

The mass-energy mg equals 1.50 GeV, which shows mass-energy conservation for the particles inside the 

system.  If m is a  or a  meson, then mg equals 1.27 or 1.76 GeV, respectively. 

 

4. Conclusion 

 



4.1. QFT can be used to generate a large variety of equation systems describing particle 

physics. 

 

Section three provides several examples which implemented some variation of the QFT models provided 

by section two.  The equation systems produced by the Lagrangian for the examples are novel, wide-

ranging, and highly descriptive.  In other words, there is practically no limit to the Lagrangian or equation 

systems one can contemplate in QFT. 

 

4.2. GFT can easily derive solutions and renormalization results to many equation systems in 

 QFT. 

 

Section three and supplementary material also showed relative ease of solving particle fields and 

generating renormalization results from the solution via GFT.  In other words, only a few steps are needed 

to produce solutions to both fermion and gauge boson fields involved in each QFT model.  Ultimately, 

GFT is an ideal tool for solving QFT models. 
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