
1

The application of   2f R = R gravity in Gravitational Waves

Maria Giannopoulou
Independent researcher, Athens - Greece.

Abstract

In this paper I study the applications of the   2f R R gravity in
gravitational waves. The choice of this action emerges naturally from the field
equations of a general action  f R in order to get a wave equation of the
scalar curvature R and the Ricci tensor Rμν.
The new field equations (NFE) seem to be applicable to non-conservative

systems (as a collapsing binary). They are derived from the action of
  2f R R assuming that the Lagrangian matter depends on g and x :

 ,mL g x . The radiated energy causes a non-static space-time.
In the case of gravitational waves these equations turn out to be more general

than the existing ones that are being produced from the action of  f R R .
They predict both the transverse as well as the longitudinal and time
oscillations.

Keywords: gravitational waves, f(R) theories, general relativity.

1. Introduction
In the 21st century  f R theories are being examined as alternative to
General Relativity in order to give an explanation to the accelerated expansion
of the universe and other solar-system observations. Further more in GR the
graviton has zero mass, while in  f R models it has a non-zero mass. The
LIGO observations gave a limit of 2 221.2 10gm c eV  [1]. In [2] J.F. Νash

had proved that the field equations of the action  2 42I g R R R d x
  

in 4 dimensions lead to the ; 0g R
  .

In this paper we are going to study the form of the gravitational waves that
are being produced by the action of   2f R R . With this choice the field
equations of a general action  f R become the wave equation of the scalar
curvature. For the non-homogeneous field equation we consider the
Lagrangian matter  ,mL g x since our system is non-conservative. While
the 00T component of the energy-momentum tensor is the source of the
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gravitational field, the ijT are the sources of the gravitational waves. The
produced waves are polarized in the transverse plane as well as in propagating
and time direction.
The application of the NFE to conservative systems such as a single mass

and a keplerian binary, indicates that they are not valid in these cases.
In paragraph 7 we study the case of a single mass located at the origin of the

coordinate system considering the Schwarzschild metric g as the
background.
In paragraph 8 we will see that in case of a Keplerian binary it must be

0R  which implies 0h  . This result was to be expected since the
system is conservative.

2. The production of Gravitational Waves
A general form of an action in empty space may be

  4

V

I g f R d x  (1)

The equations of motion of (1) are

       ; ;

1 ' ' ' 0
2
f R g f R R f R f R g g

   
     (2)

Note that the scalar curvature R is a function of the metric and its first and
second derivatives while the metric is a function of the coordinates x

 0,1,2,3  , so it is  R R x . Equations (2) can then be written in the
form

      
  

1 ' ''
2

''' 0

f R g f R R f R R R g g

f R R R R R g g


    


    

   

  

; ;

; ; ; ;

(3)

By taking the trace, eq. (3) becomes

       2 ' 3 '' 3 ''' 0f R f R R f R R g f R R R g 
      ; ; ; (4)

For   2f R R we finally get
0R g 

 ; (5)

In the case of a non-static space-time, eq. (5) is a wave equation of the Ricci
scalar. (For the metric we consider the sign (-, +, +, +)).
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Let us assume now small perturbations h of a spherical diagonal(1) static
metric g

 . This may be the flat or Schwarzschild(2) one. The total metric is
g g h    , where 0 1  . We also assume that h h  . The inverse

metric is  2g g h O      . In order to be g g 
  at first order

of ε, there must be 0g h h g h g g h    
         .

The Schwarzschild metric at sufficiently large distances is approximately
2g A  where g

 is flat,  (3) is the Newtonian potential and

00 11 1A A  and the rest components A are zero (in spherical coordinates).
So we have 2 ,g g A h       2g g A h       . Because it
is 0g A g A 

    we may consider the flat metric as the background and
use it to raise or lower indices: h g g h  

   . So we may assume the
perturbations h as being superimposed on the flat space in our next
calculations.

At large distances from the source the metric “behaves” like flat so the
Christoffel symbols, the Ricci tensor and the Ricci scalar are

 
   

   

, , ,

2
, , ,

2

,per per

h g g g

g h h h O

R R R R R R

  
       


     

  





     

   

   

   



 
(6)

The ,



,R


and R


denote the flat metric.   ,perR

 perR are the total
perturbed parts (including terms of all orders of ε). Because 0R 


eq. (5)

becomes

         , , , , 0per per per perg R g R g R g R O     
            

  (7)

1 We can always choose the coordinate system such as the metric becomes diagonal.
2 From the solution-set of the field equations of the action of   2f R R

 
, we choose the Schwarzschild

metric because it becomes flat at infinity and also has 0R 


and 0R 


like Minkowski.
3 According to Newton’s law a mass distribution  ,r t  within a volume V at large distances

generates a field of the form     3, total

V

r t M
r d r

r r r





 



   with totalM located at the central mass of

the system. Because we are too far we may ignore the higher terms of the Taylor expansion.
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We have to solve the

   
, , 0per perg R g R  
    

  (8)

In spherical coordinates eq.(8) is

     

     

2 2 2

2 2 2 2 2 2

2

2 2

1 1
sin

1 cot 2 0

per per per

per per per

R R R
r r r

R R Rr
r r t

  




  
 

  

   
       

(9)

If we approach the source so that the Newtonian potential becomes detectable,
we may still use the flat metric as background. But the wave equation (9)
needs the following additional terms:

 
       

 
2 2

2 2

22 2
per per per perR R R Rr r

r r r t r
 

             

This result comes from eq.(8) for g
 being the Schwarzschild metric and

taking the Taylor expansion for  r and  r .

3. The solution of the differential equation
The solution of eq.(9) at very long distances is

       
 

,

, , , ,
i r t

per m
lm l

l m

eR t r c Y c d
r



     
 



  (10)

where  ,lmc c   and  ,m
lY   the spherical harmonics. As can be seen

the energy propagates radially outward.

4. Discussion of the solution
We may now assume that our location relative to the source has constant radial
values, say  ,o o  . Then  

,
,m

lm l o o
l m
c Y C   , C . If we use

Minkowski coordinates and assume that r direction coincides with z we have
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     
 

     
 

 
 

*

,

,

i z t
per

i z t i z t
per

eR t z C c d
z

e eR t z;ω C c c
z z



 

 

 






  



 
  

 


(11)

where *,c c are conjugate complex constants. Let    , , ,x t x y z  so the
wave vector is

   ,0,0,k    (12)

x and k denote the components of the four-vectors  x and  k
respectively.

From eq.(6) the Ricci tensor and scalar become

   
   

,
, , , ,

, ,
, ,

2
per

per

R h h h h

R h h

   
        

   
   





   

 
(13)

5. The field equations
In order to get the non-homogeneous eq. (3) for the case where   2f R R
we consider the action

 2 4
m

V

I g R L d x   (14)

where mL is the Lagrangian matter-density while V is a volume that contains
the source.  is a coupling constant which has dimensions of 2m , still
undefined. As a binary system collapses it loses angular momentum. So it
must be  ,mL g x .

Since it is

2 m
m

LT g L
g

 




  


(15)

the non-homogeneous field equations are  1c G 

 21 12 2
2 2 mR g RR R R g g T g L

               
 

; ; (16)
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Since we have 0R R 
 

from now on for simplicity’s sake we are going to

use the symbols R and ,R instead of  perR and  perR . For the reasons
discussed in p.3 we are going to assume a flat background in spherical
coordinates.

Eq. (16) at first order of the perturbed terms of R and R become

1
2 2 mR R g g T g L

    
     
 

; ; (16a)

By taking the trace
1

2 2 mg R g R g g g T g L   
    

     
 

; ; (16b)

we may finally get the

  1
2 2 mg R g R T g L

   

     
 ;

(16c)

Let us set G R g R    . We have

;
;

1
2 2 mG T g L

   
    
 

 (17)

Since ; ; ,
; ;

1
2 4 mG g R g L  

    


   we may have

; ; ;
; ; ;

1 ,
2 2 2 2m mG T g L G T R L  

       
         
 

 (18)

where the Einstein tensor is 1
2

G R g R    . If we take the trace G


from (18) we get
;
; 2
R T 

 


  (19a)

;
;

1
2 2

R T g T 
    

    
 

(19b)

;
;

1
2 2

G T g T 
    

    
 

 (19c)
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Let us now assume the simplest model of two equal masses M at distance 2ro
orbiting around their common central mass at distances ro with angular
velocity ωo. The orbital level may be vertical to the  ,   direction. We
also assume that the process of convergence has just started. So the velocities
are small and for some cycles we may regard or being constant(4). For non
relativistic velocities and small accelerations we may assume that

3 20, ~ 0n
nr T d r r
   and 3 3

00T d r T d r
   
  . The solutions of (19a,b)

are
  300 ,

8
rT t r

R d r
r r











  (20a)

   3 300, ,1
8 2

r rT t r T t r
R d r n d r

r r r r


 



 
       

 
 

 
    (20b)

where r is the radius within the source, r r  and rt t r r   
  is the

retarded time. We now take the Fourier transform and then the Taylor series up
to second order of r . We are also going to use Minkowski coordinates where
the direction of r coincides with z  ˆ ˆr z

   

   

 

3 3

3 3
2

2
2 3

2 3

,
,

2

1
2 2

2 2
2 2

i z ri t
r

i z t i z t

i z t

T t r e ed r d T r d r
r r z r

e e id T d r d z T d r
z zz

ed i z T d r
z z z






 

 





 


 
 

 


 



 





 




  

  

     
 

 
     

 

  

   

 


    

  



(21)

In the following calculations it is useful to consider for 00T the above series
up to second order of r , for 0iT up to first order and for ijT only the first
term of zero order. We are also going to keep the terms that are proportional to
1 z . The term 1A z can be considered as constant because we are
sufficiently far away from the source. In vacuum the solution (20a) must
satisfy the ,

, 0R 
  so from (21) it must be

    3
33

2

,
8 2 o

i z tAR e T r d r

 

 
 





   
  (22)

4 The model considered here is extremely simple and it just outlines the application of f(R)= R2 in
gravitational waves. It is not being used in research.
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From equations (20b) combining them with (13) we have

   

   

3 3 ,
11 11 33 11,

3 3 ,
22 22 33 22,

1, ,
8 2 2

1, ,
8 2 2

r r

r r

AR T t r d r T t r d r h

AR T t r d r T t r d r h







 

 


        
 
        
 

 

 

   

   
(23a)

   

  
   

  

3 3
00 33 33

00,33 03,03 33,00 11 22 ,00

3 3
33 33 33

00,33 03,03 33,00 11 22 ,33

1, ,
8 2

2
2

1, ,
8 2

2
2

r r

r r

AR T t r d r T t r d r

h h h h h

AR T t r d r T t r d r

h h h h h











      
 

     

      
 

    

 

 

   

   
(23b)

From (23a) we get
 ,11 22 ,

0h h 


  (24)

If we set 03 00 330,h h h   eq. (22) then becomes

  3 ,
33 33,,

8 r
A T t r d r h 


 


   
  (25a)

From (23b) and (24) we also have

   3
33 11 22 ,00

,
4 rA T t r d r h h 


    
  (25b)

If the position vector on the orbiting plane is  cos , sin , 0o o r o rr t t  


the one relative to us is

cos cos cos sin sin
ˆcos sin cos cos sin

sin cos

o o o r o o r

o o o o o r o o r o o

o o r

t t
r r t t r r

t

    
    

 

 
    
  


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Note that it is
   

       

00

2 2 2
3 3 2

002 2 2

1 ˆ ˆ
2

o o

nm m n oo m o n o m o n

T M r r r r

T d r r r T d r M r r Mr r r
t t t

       
      
   

   

  
(26a)

So
      3 2 2, 4 cos2 sin 2mn r o o mn o mn oT t r d r Mr a z t b z t       
  (26b)

where coefficients ,mn mna b  depend from  ,   . For 1,2n  we have

     

     

3 30
0

2

3
0 0 ,33 3,03

2

,
,

8 8 2

,
28 2

o

o

i z tn r
n

i z t
n n n

T t r Ad r e T r d r
r r
i A e z T r d r h h



 



 

  
  

  
 










  



     

 

 


   

 
(27a)

If we differentiate by t and integrate by z we get

     3
3 0 ,30 3,00

2

,
28 2 o

i z t
n n n

A e T r d r h h

 

 
 





     
  (27b)

For 0 ,0 3,3n nh h we have
    3 ,

3 3,
2

0 ,0 3,3 0 3,3

,
28 2 o

i z t
n n

n n n n

A e T r d r h

h h h h t

 


 

 
 





   

   

 



 
(27c)

Synoptically we have
3 ,

,

3 ,
33 33,

03 0 3,3

, 3
8 2

8
0, , 1,2

nm nm

n n

A T d r h n m

A T d r h

h h h t n







 


 


   

  

   









 (27d)

From (26b), (27d) we have to solve the wave equations of the form

    , 2
, ~ 4 cos2 sin 2mn o mn o mn oh z t z t
        (28a)

where ,mn mn   depend from ,mn mna b .
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The solutions are
       

    

1 2~ c cos2 c sin 2

cos2 sin 2
mn mn o mn o

o mn o mn o

h z t z t

t z t z t

 

    

  

   
(28b)

where    1 2c ,cmn mn  .

For the functions 11 22,h h from (24) and (28b) it must be
22 11 22 11,       . From (25b) and (26b) we have

 

   

3
33

2 2 2
11 22

,00

,
4

sin cos2
2

r

o o o o

A T t r d r

AMr z t h h




    


  

    


 

(29)

So it must be      2 2 1
11 22 11c c c 0   and  1 2 2

22c sin / 2o oAMr    .

The perturbed matrix is then

 
 

33 13,3 23,3

13,3 11 12 13

2
2

23,3 12 11 23

13 23 33

0

sin cos2
2

0

o
o

h h t h t

h t h h h
h

AMrh t h h z t h

h h h




  



   
 
 
   

    
 
 
 

 




If we set all the rest coefficients    1 2c c 0nm nm  , for the case of 0  and
0  , matrix (30a) becomes

     
   

0 0 0 0
0 sin 2 cos2 0

2
0 cos2 sin 2 0
0 0 0 0

o o
o

o o

z t z t
h t

z t z t

 


 

 
    
    
 
 

 (30b)

For a direction  ,o o  the length between two points is

 
2

2 2

0
0

ss n h x x s s 
 




      





   


 (31a)

(30a)
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If the points are on the x-axis with a distance ox , as the wave passes through
them we have

   

   

2

2
2

1 3 cos2 cos2 sin 2
16

sin 8 cos sin 2 cos2
32

o o
x o o o o

o
o o o o o

AMr ts x z t

AMr t z t

    


     



   




   


(31b)

If the points are on the y-axis or on the z-axis we respectively have

   

   

2

2
2

1 3 cos2 cos2 sin 2
16

sin 8 cos sin 2 cos2
32

o o
y o o o o

o
o o o o o

AMr ts y z t

AMr t z t

    


     



   




   


(31c)

 
2

21 sin sin 2
8

o o
z o o o

AMr ts z z t   


 
   

 
(31d)

On the t-axis we get

   
2

2Im 1 sin sin 2
8

o o
t o o o

AMr ts t z t   


 
   

 
(31e)

where ot could be the duration of the time unit (second).

6. The radiated energy

The energy of the two-bodies system considered here is
2

2

2 o

GME M
r

 


where ˆor 
 is the position-vector on the orbital plane. Its energy-loss is

22
2
GME M M r
r 


   
    . In the equivalent one-body problem the centripetal

acceleration of the reduced mass is  22 2
2
GM r r
r   


   . So assuming ,o or 

as constants the rate of energy change is 24E Mr r    . The energy is
transmitted via R to h according to equations (27d). In SI units the

constant  is  4 2

16 G
c m

 , where the dimension 2m is denoted in parenthesis.
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We are going to rewrite (eq.27d) in SI  ij ijh h  :

           

2 2
, ,
, 33,3 32 24 2 4 2

4 2, 3: ,nmo m o n o o
GMA GMAn m r r h r r h

t tc m c m
 
 

 
    

 
(32)

Both sides have dimensions 2m because 2~mn
GMAh
c

(dimensionless). In

(26a) we considered or as constant but here we are going to use the relation

         

2 2
2

2 2 ˆ ˆoo m o n o m o nr r r t r r
t t
 


 

We will also set  cos coso o
zz t t
c

      
 

,  sin sino o
zz t t
c

      
 

where c is the speed of light while /o oc k  is the wave number.

At a fixed point z on the z-axis eq.32 become the equations of harmonic
oscillator:  , 2 2

,nm nm o nmh c h h
    . Remember that 1/A z so the

solutions(5) of eq.(32) (at a fixed point z) are of the form

 2 , , , , , , ,nm o o o o
GMh f t z r r r
c z        where function f is dimensionless. The

product 2
, ,

1F h h
z 

   

    has the dimension flux per unit mass

J
kgr m s 

and it is proportional to 2z . We assumed very slow variations

 ,o or constant  . The surface-integral
2 2

0 0
sinP z F d d

 

       of F at a

given distance z has dimension of power per unit mass 1 1J kgr s  . Its mean
value at time 2 / oT   is

 
2 2 2

2
4 4

26624
135

o
o o

G M rP r r
c m 

   (33)

P is related to the energy-loss of the system E :

 
2 2

4 4

6656
135

oG M rP E
c m


  (34)

5 In order to solve the wave equations (32) we may consider ro and its time derivatives as constants for
sufficiently small time-intervals, since all the variations are very small.
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7. Comments on the Newtonian Limit and the Einstein Field Equations
The most general form of a static spherical symmetric metric is

 
 

 
0

1
2

2 2

0 0 0
0 0 0
0 0 0
0 0 0 sin

f r
f r

g
r

r





 
 
 
 
 
 

(35)

Since we are interested in spaces which become flat at infinity -so they have a
physical meaning, it is easy to see that it must be 0R  . If we set

  0
r

R q r


  and solve the  R q r for  0f r and replace to R
 , the last

tensor is being separated into two parts:    a bR R R 
    . The first

corresponds to the case   0aR  while the second has      0 1
0 1 2
b b q r

R R 

and the rest components are zero. In order to be  R q r the solutions

   0 1,f r f r must satisfy the   0aR  . But in this case it is obvious that it is
also 0R  .[4]

There are two solutions which become flat at infinity    0 1, 1
r

f r f r
  

 
:

 
 

 

0
0 1 2 3
0 1 2 3

1

0

r cf r
ri R R R R
rf r

c r

      
 
 

(36a)

 
 

   

1 2
0 2

0 1 2 3 0 2
0 1 2 3 0 4

1
0

1
, 01

c cf r
r r cii R R R R R

rf r
f r

           
 


(36b)

Let us now assume a single (uncharged) mass M located at the origin of the
coordinate system. Our space is being described by the Schwarzschild(6)
metric (36a). At sufficiently large distances this becomes

         0 11 , 1 , 1cf r h r f r h r h r
r

      (37)

6 Since there is a mass generating the field, the Schwarzschild metric is the background. The flat space
is an ideal case where there are no sources at all.
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Remember that in the field equations (19) the computed R and R were the
perturbed parts of the background flat or Schwarzschild metric. The spacial
components of the energy- momentum tensor ijT act as a source for  perR

and  perR which then act as a source for the metric’ s perturbations h
( , 3

, ~ij ijh T d r
 

 , 00 33h h  and 0 3,3 , 1,2n nh h t n   ). But since in our
case it is 0ijT  , there are no perturbations.
In an unperturbed space the Ricci tensor and scalar are zero so they need no

source. According to the discussion on page 3, the term  h r on (37) looks
like a perturbation on the flat metric but it is just an approximation of the
background Schwarzschild metric. For this reason eq.(19) does not give
solutions for it.

For the metric (34) the Ricci scalar at first order approximation is

       2

2
2
h r h r h r

R h r
r r r

    
       

   
(38)

This must be also equal to zero. So does R . The homogeneous differential
equations 0G  (at first order approximation of h) have as a common
solution the /h c r . Eq.(38) then becomes

    2
2

2 1 0r rr

h r
r rh r

r r r
 

    
 

(39)

Generally for a  f r function it is      2 2
2

1 1
rr rf r rf r r f r

r r
    


. So

for   /h r c r eq.(39) may be written as

   2 4h r c r  
  (40)

By setting 2c M in eq. (40), we get

   2 8h r M r  
  (41)
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As it is known from the equations of motion 00 ,2

i
i ij

j
dp mm n h m
dt

      


,

it must be   2h r   where M
r

   . So from (41) we get the Newton’s

law
 2 4 M r   

  (42)

Εqs.(19) are also valid for the total R and R . From eq.(19a) we have

; ; ;
; ; ;

1,
2 2 2

R T R T g R T   
       

          
 

(43a)

Eq.(19c) takes the form(7)
;

;
3
2

G T
  


 (43b)

We finally have ;
; 2

G T
  


 . The NFE and the EFE

2
G T 


 can not

be transformed directly into each other because they are derived form different
actions. We set 16  .

As we will see below the NFE apply only in the case of a non-conservative

system. For that reason the Newtonian limit c
r

is not produced directly but it

is the solution of 0G  since in our special case we have 0R R  .

Note: For  ~T r   if we take the trace of
2

G T 


 , for 0r  -or

generally outside the region in which the source lies, we get 0R R  .
According to Birkhoff’s theorem the equations 0G  require the
Schwarzschild solution. So the EFE apply in static space.

8. The NFE for a Keplerian binary.
In page 14 we had discussed that eqs.(19) are not valid in the case of a single

mass located at the origin. What if we have two masses surrounding each other
in a Keplerian orbit? In the case of our previous model the distance ro of the
two equal masses is constant. According to equation (33) no radiation is
emitted from the source.

7 If we consider  mL g the field equations are ;
; ~G T

  
 .
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The system is conservative so it is  mL g and the field equations (17) are

;
; 2

G T
  


 . We set 23 , 16 m      in order to get eq.(43b). Far

away form the source we may set g n  .

We consider the ,
, 2

R T
  


  ( eq.(43a) ). For the non-diagonal elements

the solutions for nmh are given from eq.(27d)

3 ,
, 0 3,3, , , , 1,2

8 2nm nm n n
A T d r h n m h h t n m


 


       
 (44)

We also have

    
    
 

 

,3
33 00,33 03,30 33,00 11 22 ,

3
00 33 00,33 30,03 33,00 11 22 ,00

3 , 3 ,
11 11 11, 22 22 22,

3
33 33 00,33 03,30

2
8

2
8 2

,
8 2 2 2

2
8 2

Aa R T d r h h h h h

Ab R T d r h h h h h

Ac R T d r h R T d r h

Ad R T d r h h





 
 

 

 


   

 


     

       

        

   





 







 

   33,00 11 22 ,33
h h h  

(45)

From (45b,d) we have

   3
00 33 33 11 22 11 22,00 ,334 2 2

AR R T d r h h h h  


       
 (46a)

From (45c) since 0i
iT 

 , 3
11 22 11 22 33,2 8

AR R h h T d r



 


     
 (46b)

Form (46a,b) we get
   11 22 11 22,00 ,33

3h h h h   (46c)

Eq. 46c may be valid only if 11 22 0h h  or 11 22 0h h  .
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From (45b,d) is 00 33R R so 00 03 33 0h h h   (8). Equation (45a) suggests
3

33 0
8
AR T d r


 
 so (26a) lead us to 0  and hence

03 13 23 33 0T T T T    . From eq.(44) we get 23 13 02 01 0h h h h    and from
eq.(13) we have 00 01 02 03 13 23 33 0R R R R R R R       . (Remember that

 0 0 ,33 3,032n n nR h h
   for 1,2n  .) This “moved” us to a vertical direction

relative to the orbital plane which was not our initial position since we had
assumed 0  .

Because 01 02 0R R  from ,
, 2

R T
  


  we get 01 02 0T T  and

therefor 11 12 22 11 12 220 0T T T R R R       and from eq.(44)
11 12 22 0h h h   .
So in the case of a Keplerian binary it is 0R  and therefore no

gravitational waves are produced. The space is static.
Actually a good simulation of a Keplerian binary is a system of two masses

with low velocities (so it is 0ijT  ) in a large enough distance from other
gravitational sources so that it may be considered as isolated. The above result

0ijT  just means that the equations ;
; 2

G T
  


 are not valid in case of a

conservative system.

Note: For a metric     11 2 , 1 2tt rrg g        where

 2 2
2

3

3sin cos 12 o
o

r tM Mr
r r

 


 
  the Ricci tensor and scalar are of

order 5 5 3 3
00 11 22 33~ , ~ , ~ , ~R r R r R r R r    and 5~R r  . Sufficiently

far from the source we may consider them as zero.

9. Conclusions
For  ~T r   the Einstein Field Equations in vacuum require

0R R  and the Schwarzschild solution. That is to say that we have a
static space regardless of the passing of the wave. This holds either for a single
mass located at the origin of the coordinate system or for two masses orbiting
around each other. But with the passing of a gravitational wave why should the

8 If we set 03 00 330,h h h   from (45b,d) we get , 3 ,
33, 33 33,8

Ah T d r h 
 




  
 which implies

33 0h  and 3
33 0T d r  

 .
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Ricci tensor and scalar still remain invariable? The NFE (3) imply that the
action   2f R R produces a wave equation for R and R. If ijT is their
source then they may vary.
The T00 is the source of the gravitational field. According to the NFE the

spatial components of the energy-momentum tensor ijT act as a source for the
Ricci tensor and scalar which then act as a source for the metric’ s
perturbations  ,h t r . Since   3

33~perR T d r
 we finally obtain the set of the

non-homogeneous wave equations (28a). The perturbed metric is the (30a)
with the selection of the coefficients nmc as mentioned in the text. This
becomes in the vertical direction the metric of (30b) satisfying also the
transverse-traceless condition. The longitudinal and time oscillations appear to
be interconnected and are observable in non-vertical directions. The time
oscillations could result in a periodical red and blue-shift of a photon’s
frequency.
The amplitude given from the NFE’s waves is linear for time t while from

the EFE’s this is time-independent. This is due to the fact that the eq.(27d)
describe forced oscillations. But since the passing of the wave does not last for
too long there is not enough time for the amplitude to become infinitely large.
If we apply the NFE to a Keplerian binary we get 0R R  . So we have a

static space. This is the expected result since the system does not lose energy.
Furthermore eq.(33) indicates that no energy is radiated in case of a constant
r .
In the case of a single mass located at the origin we have 0R R   either

for the flat or the Schwarzschild metric. The Newtonian limit is not produced

directly by the NFE but the solution c
r

is acceptable because it satisfies the

equations 0G  . The term    2h r r at weak fields (  00 1g h r   ,
 11 1g h r  ) is not a perturbation on the background flat metric but an

approximation of the background Schwarzschild metric at large distances. This
is the difference between  h r and  ,h t r . For that reason eq.(19) does
not give solutions for the static case.
From the above analysis it follows that the NFE apply in the case of

non-conservative systems (by considering a Lagrangian matter  ,mL g x )
which cause a non-static space (via the emitted radiation) and therefore are
more suitable to describe gravitational waves.
Strictly speaking the Newtonian limit is not produced directly because these

equations are not valid for a static space. But the solution of 0G  is c
r
.
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