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Abstract

Our aim is of studying the efficiency of two typical arithmetic calculations [T. Nakamura and
K. Nagata, Int. J. Theor. Phys. 60, 70 (2021)] using the principle of quantum mechanics. We
demonstrate some evaluations of three two-variable functions which are elements of a boolean algebra
composed of the four-atom set utilizing the Bernstein—Vazirani algorithm. This is faster than a
classical apparatus, which would require 212 = 4096 evaluations. Finally, using the three two-
variable functions evaluated here, we demonstrate two typical arithmetic calculations in the binary
system. Hence, our calculations are faster than a classical apparatus, which would require 212 = 4096
evaluations.
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I. INTRODUCTION

Between the articles of research for constructing theoretical quantum algorithms [1] it may be mentioned as follows:
In 1985, the Deutsch algorithm was introduced and constructed for the function property problem [2—4]. In 1993, the
Bernstein—Vazirani algorithm was proposed for identifying linear functions [5, 6]. In 1994, Simon’s algorithm [7] and
Shor’s algorithm [8] were discussed for period finding of periodic functions. In 1996, Grover [9] provided an algorithm
for unordered object finding and the motivation for exploring the computational possibilities offered by quantum
mechanics.
A simple algorithm for complete factorization of an N -partite pure quantum state is proposed by Mehendale and

Joag [10]. Fujikawa, Oh, and Umetsu discuss a classical limit of Grover’s algorithm induced by dephasing: coherence
versus entanglement [11]. Quantum dialogue protocol based on Grover’s search algorithms is presented by Yin,
He, and Fan [12]. Some relations between a boolean algebra and quantum computing are discussed and proposed
by Nagata and Nakamura. They show all the boolean functions are set into the quantum computer just like the
electronic computer. This fact means that all performances in logic of computing and control of itself are available
even in quantum computers. Therefore, we could design any quantum-gated computer using the traditional design
ways in logic of existing electronic computers [13].
Further they prove that the quantum computer can operate just like the electronic computer fundamentally through

the operation of addition of two n-digit numbers. Therefore, the quantum computer can solve all the four basic
operations of arithmetic, addition, subtraction, multiplication, and division. Further it can be said that this quantum
computer naturally operates not only arithmetic but also logic in terms of boolean logic [14]. As a result, the theory
proposed by Refs. [13, 14] can build a very true quantum-gated computer that is driven and operated by all software
(all programs) used on existing electronic computers. A quantum algorithm for a FULL adder operation based on
registers of the CPU in a quantum-gated computer is disscussed [15]. Here, we point out how the argumentations are
efficient when we compare our quantum computer with a classical apparatus.
A specific example is more understandable than the abstract structure when we study quantum computing theory.

We investigate the concrete and specific example of the argumentations in Ref. [14]. Surprisingly, the concrete and
specific calculation is faster than that of a classical apparatus, which would require 212 = 4096 evaluations when we
introduce the full adder operation [16]. Another concrete and specific calculation is faster than that of a classical
apparatus, which would require 28 = 256 evaluations when we introduce only the half adder operation [16].
In this article, we study an efficiency for operating a full adder/half adder by quantum-gated computing. Fortu-

nately, we have two typical arithmetic calculations in Ref. [14]. We demonstrate some evaluations of three two-variable
functions which are elements of a boolean algebra composed of the four-atom set utilizing the Bernstein—Vazirani algo-
rithm. This is faster than that of a classical apparatus, which would require 212 = 4096 evaluations. Using the three
two-variable functions evaluated here, we demonstrate a typical arithmetic calculation in the binary system using
the full adder operation. Surprisingly, the typical arithmetic calculation is faster than that of a classical apparatus,
which would require 212 = 4096 evaluations when we introduce the full adder operation. Another typical arithmetic
calculation is faster than that of a classical apparatus, which would require at least 28 = 256 evaluations when we
introduce only the half adder operation. The quantum advantage increases when two numbers we treat become very
large.

II. REVIEW OF THE BERNSTEIN—VAZIRANI ALGORITHM

Suppose that

f : {0, 1}N → {0, 1} (1)

is a function with an N -bit domain and a 1-bit range. We assume the following case:

f(x) = a · x =

N�

i=1

aixi(mod 2) = a1x1 ⊕ a2x2 ⊕ a3x3 ⊕ · · · ⊕ aNxN , (2)

where a ∈ {0, 1}N . The goal is of determining f(x). Here, the number of functions is 2N . The Bernstein—Vazirani
algorithm determines what function is true by one step. Thus, the efficiency of the Bernstein—Vazirani algorithm is
2N . Let us follow the quantum states through the Bernstein—Vazirani algorithm. The input state is

|ψ0� = |0�⊗N |1�. (3)
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After the componentwise Hadamard transformations on the input state, we have

|ψ1� =
�

x∈{0,1}N

|x�√
2N

|0� − |1�√
2

. (4)

Next, the function f is evaluated using

Uf |x, y� = |x, y ⊕ f(x)� (5)

in giving, by the phase kickback formation,

|ψ2� = ±
�

x

(−1)f(x)|x�√
2N

|0� − |1�√
2

. (6)

Here y ⊕ f(x) is the bitwise XOR (exclusive OR) of y and f(x).
We have

H⊗N |x� =
�

z(−1)x·z |z�√
2N

, (7)

where x · z is the bitwise inner product of x and z, modulo 2.
Using (7) and (6), we can now evaluate |ψ3�

|ψ3� = ±
�

z

�

x

(−1)x·z+f(x)|z�
2N

|0� − |1�√
2

. (8)

Thus, we have

|ψ3� = ±
�

z

�

x

(−1)x·z+a·x|z�
2N

|0� − |1�√
2

. (9)

Notice that
�

x

(−1)x·z+a·x = 2Nδa,z . (10)

Thus, we have

|ψ3� = ±
�

z

�

x

(−1)x·z+a·x|z�
2N

|0� − |1�√
2

= ±
�

z

2Nδa,z|z�
2N

|0� − |1�√
2

= ±|a� |0� − |1�√
2

= ±|a1a2a3 · · · aN �
|0� − |1�√

2
. (11)

Alice now observes |a1a2a3 · · · aN �. In summary, if Alice measures |a1a2a3 · · · aN �, then the function is

f(x1, x2, ..., xN ) = a1x1 ⊕ a2x2 ⊕ a3x3 ⊕ · · · ⊕ aNxN . (12)

This shows that the quantum algorithm is superior to its classical counterpart by a factor of 2N .

III. QUANTUM ALGORITHM FOR STORING SIMULTANEOUSLY ALL THE MAPPINGS OF

THREE LOGICAL FUNCTIONS

We introduce the following three logical functions [16]:

f1(x, y) = A ∧B,
f6(x, y) = Exclusive OR(A,B),

f7(x, y) = A ∨B, (13)
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for all x and y, that is,

f1(0, 0) = 0, f1(0, 1) = 0, f1(1, 0) = 0, f1(1, 1) = 1,

f6(0, 0) = 0, f6(0, 1) = 1, f6(1, 0) = 1, f6(1, 1) = 0,

f7(0, 0) = 0, f7(0, 1) = 1, f7(1, 0) = 1, f7(1, 1) = 1. (14)

We can construct a FULL adder operation using these three logical functions.
Suppose that

f : {0, 1}12 → {0, 1} (15)

is a function with a 12-bit domain and a 1-bit range. We assume the following function:

f(x) = a · x =

12�

i=1

aixi(mod 2)

= f1(0, 0)x1 ⊕ f1(0, 1)x2 ⊕ f1(1, 0)x3 ⊕ f1(1, 1)x4
⊕f6(0, 0)x5 ⊕ f6(0, 1)x6 ⊕ f6(1, 0)x7 ⊕ f6(1, 1)x8
⊕f7(0, 0)x9 ⊕ f7(0, 1)x10 ⊕ f7(1, 0)x11 ⊕ f7(1, 1)x12, (16)

where ai ∈ {0, 1}, xi ∈ {0, 1}, x = x1x2...x12 ∈ {0, 1}12, and

a = a1a2...a12

= f1(0, 0)f1(0, 1)f1(1, 0)f1(1, 1)f6(0, 0)f6(0, 1)f6(1, 0)f6(1, 1)f7(0, 0)f7(0, 1)f7(1, 0)f7(1, 1) ∈ {0, 1}12. (17)

The string

a1, a2, a3, a4 (18)

corresponds to

f1(0, 0), f1(0, 1), f1(1, 0), f1(1, 1), (19)

respectively. The string

a5, a6, a7, a8 (20)

corresponds to

f6(0, 0), f6(0, 1), f6(1, 0), f6(1, 1), (21)

respectively. The string

a9, a10, a11, a12 (22)

corresponds to

f7(0, 0), f7(0, 1), f7(1, 0), f7(1, 1), (23)

respectively. Here, x ⊕ y is the bitwise XOR (exclusive OR) of x and y. Also, a · x is the bitwise inner product of a
and x, modulo 2. The goal is of storing the logical functions f1(x, y), f6(x, y), and f7(x, y) in a boolean algebra for
all x and y into an output quantum state as the coefficients of f(x). Let us follow the quantum states through the
Bernstein—Vazirani algorithm.
The input state is

|ψ0� = |0�⊗12|1�. (24)

After the componentwise Hadamard transformations on the state (24), we have

|ψ1� =
�

x∈{0,1}12

|x�√
212

|0� − |1�√
2

. (25)

Next, the function f is stored into a quantum state using

Uf |x, y� = |x, y ⊕ f(x)� (26)
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in giving, by the phase kickback formation,

|ψ2� = ±
�

x∈{0,1}12

(−1)f(x)|x�√
212

|0� − |1�√
2

. (27)

After the componentwise Hadamard transformations on the first 12 qubits in the state |ψ2�, we can now evaluate |ψ3�

|ψ3� = ±
�

z∈{0,1}12

�

x∈{0,1}12

(−1)x·z+f(x)|z�
212

|0� − |1�√
2

, (28)

where zi ∈ {0, 1} and z = z1z2...z12 ∈ {0, 1}12. Using f(x) = a · x, we have

|ψ3� = ±
�

z∈{0,1}12

�

x∈{0,1}12

(−1)x·z+a·x|z�
212

|0� − |1�√
12

. (29)

Notice that
�

x∈{0,1}12

(−1)x·z+a·x = 212δa,z . (30)

Thus, we have

|ψ3� = ±
�

z∈{0,1}12

�

x∈{0,1}12

(−1)x·z+a·x|z�
212

|0� − |1�√
2

= ±
�

z∈{0,1}12

212δa,z|z�
212

|0� − |1�√
2

= ±|a1...a12�
|0� − |1�√

2

= ±|f1(0, 0)f1(0, 1)f1(1, 0)f1(1, 1)� ⊗ |f6(0, 0)f6(0, 1)f6(1, 0)f6(1, 1)�

⊗ |f7(0, 0)f7(0, 1)f7(1, 0)f7(1, 1)�
|0� − |1�√

2
. (31)

Thus, in summary, we store f1, f6, and f7 into a single quantum state as

|f1(0, 0)f1(0, 1)f1(1, 0)f1(1, 1)� ⊗ |f6(0, 0)f6(0, 1)f6(1, 0)f6(1, 1)� ⊗ |f7(0, 0)f7(0, 1)f7(1, 0)f7(1, 1)� (32)

and the results of measurements are

f1(0, 0) = 0, f1(0, 1) = 0, f1(1, 0) = 0, f1(1, 1) = 1,

f6(0, 0) = 0, f6(0, 1) = 1, f6(1, 0) = 1, f6(1, 1) = 0,

f7(0, 0) = 0, f7(0, 1) = 1, f7(1, 0) = 1, f7(1, 1) = 1. (33)

According to the first supposition, we are succeeding to store correctly them.
In classical case we require 212 = 4096 steps. In quantum case here we require just only one step.

IV. TYPICAL ARITHMETIC CALCULATIONS

We have used the Bernstein—Vazirani algorithm with the usual phase kickback formation to develop the overbridging
between usual quantum mechanics (and then quantum computing) and a boolean algebra. In this, we have confirmed
that usual quantum operations are useful, beyond the quantum computing only for quantum mechanics operations,
for mathematical evaluations just like an arithmetic operation. We demonstrate two typical arithmetic calculations
in the binary system.
As an example of a simple addition 1 + 1 in the binary system, we are going to develop the process of how to

calculate this:
To solve it, fortunately we have a formula here

f6(x, y) = Exclusive OR(A,B). (34)

f1(x, y) = A ∧B. (35)
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1 + 1 =?? (36)

Sum = Exclusive OR(1, 1) = 0. (37)

Carry = 1 ∧ 1 = 1. (38)

Hence we have very clearly

1 + 1 = 10 (39)

according to the algorithm for addition in the binary system. The concrete and specific calculation (1+1) is faster than
that of a classical apparatus, which would require 28 = 256 steps when we introduce only the half adder operation.
In more details, we must use the rule of a half adder that is composed of by using some formulae in the boolean

algebra [16]. In the half adder, the function of it is the SUM and a Carry to the next digit position. The circuit
consists of two boolean functions (37) and (38).
Further, we could mention a little bit complicated example. It is 2 + 3 in the decimal system.
In addition of the half adder operation, we need one more operation the full adder [16]. As for the full adder, it is

by the two half adders and the “OR” operation A ∨ B (A,B ∈ {0, 1}) in the boolean algebra to take out the result
from the previous digit. The operation is left here because it is obvious mathematically. Anyhow we can obtain the
result 5 in the decimal system.
To solve it, fortunately we have a formula here

f6(x, y) = Exclusive OR(A,B). (40)

f1(x, y) = A ∧B. (41)

f7(x, y) = A ∨B. (42)

10 + 11 =??? (43)

Sum = Exclusive OR(0, 1) = 1. (44)

Carry = 0 ∧ 1 = 0. (45)

Thus we have

10 + 11 =??1. (46)

Also we see

Carry Ci = 0. (47)

Our second aim is of calculating 1 + 1 considering Carry Ci = 0 by using a full adder. The first half adder says

Exclusive OR(1, 1) = 0. (48)

Carry = 1 ∧ 1 = 1. (49)

The second half adder says

Sum = Exclusive OR(Carry Ci,Exclusive OR(1, 1)) = 0. (50)

Carry = Carry Ci ∧ Exclusive OR(1, 1) = 0. (51)

Thus we see 10 + 11 =?01. We have finally the carry Carry C0 as follows: (This is (49) ∨ (51)).

Carry C0 = 0 ∨ 1 = 1. (52)

Hence we have very clearly

10 + 11 = 101 (53)

according to the algorithm for addition in the binary system. The concrete and specific calculation (2 + 3) is faster
than that of a classical apparatus, which would require 212 = 4096 steps when we introduce the full adder operation.
The quantum advantage increases when two numbers we treat become very large. Toward practical quantum-gated
computers, experimental demonstrations of our argumentations are going to be interested.
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V. CONCLUSIONS AND DISCUSSIONS

In conclusion, we have studied an efficiency for operating a full adder/half adder by quantum-gated computing.
Fortunately, we have had two typical arithmetic calculations in Ref. [14]. We have demonstrated some evaluations
of three two-variable functions which are elements of a boolean algebra composed of the four-atom set utilizing the
Bernstein-Vazirani algorithm. This has been faster than that of a classical apparatus, which would require 212 =
4096 evaluations. Using the three two-variable functions evaluated here, we have demonstrated a typical arithmetic
calculation in the binary system using the full adder operation. Surprisingly, the typical arithmetic calculation has
been faster than that of a classical apparatus, which would require 212 = 4096 evaluations when we introduce the full
adder operation. Another typical arithmetic calculation has been faster than that of a classical apparatus, which would
require at least 28 = 256 evaluations when we introduce only the half adder operation. The quantum advantage has
increased when two numbers we treat become very large. Toward practical quantum-gated computers, experimental
demonstrations of our argumentations have been going to be interested.
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