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Abstract 
 
We consider a box of gas filled with different groups of matter that absorb photons 
primarily in different and mostly distinct frequency ranges.  As a group that absorbs 
primarily high frequency photons emits blackbody radiation, some photons with 
frequencies too low to be reabsorbed efficiently by that group are readily absorbed by a 
group that favours such low frequency photons.  This causes the high frequency group to 
cool and the low frequency group to heat up and the high frequency group to cool down as 
energy is transferred between the groups.  If an infinite ladder of such groups exists in an 
infinite box, then this process would cycle eternally with each group periodically cooling 
and reheating as a given group sheds low frequency photons to lower groups while cooling 
and higher energy groups dump photons into it, causing it to reheat.  A cosmology for this 
scenario is then explored and compared quantitatively to measured data. 
 
 
Heat Flow Between U-Groups 
 
Consider a box filled with gas made up of two types of particles.  The first type can only 
absorb a specific range of high frequency photons while the second type can only absorb a 
specific range of low frequency photons.  The particles in each group are distributed evenly 
throughout the box.  For simplicity, assume that the frequency ranges do not overlap, 
meaning that a given photon can only be absorbed by either type of particle, but not 
both.  Therefore, the gasses are effectively transparent to each other.  We will call these 
different groups of gas particles U-Groups. 
 
Now suppose that the system is prepared such that the high frequency U-Group particles 
have a high average momentum while the low frequency group particles have a very low 
average momentum (i.e. the high frequency group starts with a high temperature and the 
low frequency group has a low temperature).  If we now let the system evolve, the particles 
in both groups will emit photons with frequencies emitted according to the blackbody 
spectrum as they bounce around.  Over time, the high energy group will randomly emit 
low frequency photons that the gas in the high frequency group cannot reabsorb, and those 
photons will instead be absorbed by the low frequency group.  The low frequency group 
will also emit photons at energies too high to be absorbed by that group and will therefore 
be absorbed by the high energy group, but because of the skew of the blackbody spectrum, 
on average, more of the energy being emitted will be in the form of low frequency photons 
than high frequency.  The net effect of this is that there will be an overall heat (and therefore 
momentum) transfer from the high frequency U-Group particles to the low frequency U-
Group particles.  Therefore, over time, the high frequency U-Group will cool while the low 



frequency U-Group will heat up.  After sufficient time, the high frequency U-Group will 
become the low temperature group and the low frequency group will become the high 
temperature group.   
 
Now suppose the box is infinitely large with an infinite ladder of U-Groups.  Furthermore, 
assume that the initial temperatures of adjacent U-Groups alternate in temperature.  So if 
we randomly choose some U-Group 𝑈" and impose that it begins with a low temperature, 
then the adjacent high energy group 𝑈# and Low energy U-Group 𝑈"

#$
 will both start with 

high temperatures.  Letting this system evolve, 𝑈# will cool as it sheds photons to 𝑈" while 
at the same time, 𝑈"

#$
 will cool as it sheds photons to 𝑈"

%$
.  𝑈" and 𝑈"

%$
 will be reheated 

by 𝑈# and 𝑈"
#$
 as a result of this.  Because there is an infinite ladder of groups, this process 

will continue indefinitely.  Each U-Group will heat up as it absorbs photons from the 
adjacent high frequency group that is cooling and then cool down as it sheds photons to the 
adjacent low frequency group, heating up that lower group. 
 
In reality, however, these groups would not have precisely delineated lines between 
them.  Instead, the absorption spectrums of each group, which would be related to the type 
of matter in that group, would be loosely analogous to the blackbody spectrum where each 
group has a peak range of frequencies it is most likely to absorb and the probability of 
absorption of higher and lower frequencies falls off exponentially.  In our group, the 
majority of the matter available to absorb photons is in the form of molecular Hydrogen 
and Helium, so the absorption spectrum of our group would be primarily characterized by 
the spectrums of those molecules.  Thus, all groups can absorb any frequency, but for a 
given group, relatively low frequency photons will be more likely to be absorbed by the 
lower energy groups while higher frequency photons will be more likely absorbed by the 
higher groups.  The overall effect is a net heat flow from high energy groups to low energy 
groups as their temperatures oscillate and the total energy is conserved.  And again, 
because the ladder is infinite, there will always be heat available to flow from a 𝑈# to a 𝑈" 
group.  Globally, the net effect of this process is that the energy of a given amount of high 
frequency photons is broken up into an even greater number of low frequency photons.  
The energy is conserved, but the entropy of the entire Universe is increased due to the 
increased number of photons.  What we get is a chain of heat pumps moving energy from 
large scales to smaller scales, with more total entropy being generated each cycle. 
 
But what would be the differences in matter that would cause a difference in absorption 
spectrums in different groups?  It is possible that there are different types of matter that 
have never been detected that might give rise to this effect.  Alternatively, perhaps the 
fermions have ranges of properties within they’re ‘type’ (the electrons in the box might 
have a range of masses for example).  These ranges may be continuous or they may be 
discrete.  Three such generations of matter are already known to exist, so perhaps there is 
an infinite number of such generations that we are simply unable to detect due to their 
energy scales.  In this scenario, we can imagine that the bulk matter that gets produced 
(atoms, molecules, etc.) is made up of constituent particles with ‘compatible’ properties 
(atoms that we observe in nature are made of electrons and quarks with first generation 
properties).  The high energy matter, corresponding to high frequency U-Groups, would be 



more spread out than the matter in our U-Group since the matter exchanges higher 
momentum photons on average, making the individual particles/molecules/bulk matter 
spread much farther apart.  If each U-Group is less dense as one goes to higher and higher 
frequencies, then we would not necessarily detect their gravitational effects since the scale 
at which they distort spacetime would be so much larger than the scales we can currently 
measure.  These high frequency groups may be the source of cosmic rays observed to come 
from random locations in space.  Since the densities of the high frequency groups are so 
much lower than ours, we are not bathed in these rays, but there is still a non-zero chance 
that high energy photons produced regularly in higher U-Groups can randomly be absorbed 
by matter in our group, producing the cosmic rays.  Photons from other U-Groups may also 
appear as variations in the Cosmic Microwave Background since, from our perspective, 
these photons would be emitted in random directions throughout space. 
 
As for the lower energy groups, they would be perfect candidates for Cold Dark 
Matter.  Since these groups absorb at such a low frequency range, they would effectively 
only be detectable gravitationally.  Unlike the high energy groups, the low energy groups 
can be increasingly dense approaching infinite density in the limit of zero frequency.  This 
does not however cause a gravitational problem (i.e. black holes) because the energy would 
be reduced as the density increased, so the curvature of spacetime would not become 
infinite. 
 
We can make a useful analogy for this process by imagining a society with multiple 
economies.  Each person in the society participates in only one of the economies.  For one 
group of people, they can only buy products using paper bills, with the smallest bill being 
the one dollar bill.  When they purchase products, they have to in a minimum of one dollar 
increments.  But when the seller gives the buyer change, the seller will give that change as 
a mix of paper money but also with some of the money being returned as coins.  But those 
coins cannot be spent in this economy because sellers here only accept bills.  The coins 
become worthless to the buyers so they just toss out the coins.  But there is a second 
economy that sells cheaper, lower quality versions of the products sold in the first 
economy.  The people in this economy can purchase those products with coins.  So as 
transactions occur in the first economy, some money will be transferred from the first 
economy into the second in the form of coins being discarded from the first economy.  This 
can be expanded infinitely in both directions where there is a hierarchy of economies and 
the sellers in each economy only accept specific forms of money, but give change in many 
forms of money, some of which are not accepted in their economy, but are perfectly useful 
in one of the other economies.  The total money is conserved over all the economies, but 
some of the wealth or buying power in each economy is shifted between economies by 
chance when purchases are made. 
 

U-Group Cosmology 
 
It is observed in our Universe that as the temperature drops, space expands.  Based on that 
observation, we can conjecture that space at the scale of a particular U-Group will expand 
as the group sheds photons to lower groups and contracts when it is heated by a higher 
group.  There does exists a cosmological model that seems particularly fit to describe this 



process: the internal Schwarzschild solution.  So let us now examine the cosmology of a 
single U-Group. 
 
Consider a collection of particles distributed as a 2D sphere in space such that any local 
interactions between the particles is negligible and it is surrounded externally and internally 
by vacuum.  If this shell is made to uniformly expand or left to collapse, the particles will 
follow worldlines defined by the Schwarzschild metric.  We shall examine a similar 
scenario where the spherically symmetric ‘shell’ is the entire Universe at a given time.  
Observation has shown that the Universe is: 
 

• Spherically	symmetric	
• Homogenous	in	space	
• Inhomogeneous	across	time.				

 
We will also make one further assumption in this paper: 
 

• The	matter	in	a	U-Group	only	ever	occupies	a	single	instant	of	Cosmic	
time		and	moves	from	one	moment	of	cosmic	time	to	the	next	where	the	time	
measured	by	observers	between	cosmic	times	depends	on	their	respective	
motions.		In	other	words,	the	3D	spatial	distribution	of	energy	in	the	
Universe	is	physically	moving	through	the	time	dimension	from	the	past	into	
the	future,	and	matter	only	exists	in	the	present.		So	if	one	were	to	view	the	
Universe	on	a	spacetime	diagram,	they	would	only	see	the	Universe	at	one	
value	of	time	with	the	rest	of	the	diagram	empty.		A	worldline	in	this	scenario	
is	like	the	dot	of	a	laser	pointer	following	a	prescribed	path	as	opposed	to	a	
drawn	out	line	fixed	in	the	spacetime.	

 
This further assumption implies that the spherically symmetric U-Group is ‘surrounded’ 
by vacuum in the time dimension, analogously to how the aforementioned 2D shell was 
surrounded by a vacuum of space.  Since the only spherically symmetric vacuum solution 
in General Relativity is the Schwarzschild metric, this assumption implies that the metric 
of the U-Group is the black hole metric, which will be referred to as the ‘internal 
Schwarzschild metric’ in this paper. 
 
Next, consider the celestial spheres around an observer in the Universe.  When we look out 
to distant events, we can use the redshift from these events to determine their distance from 
us.  Events with the same distance from us can be thought of as residing on a celestial 
sphere, such that all these events are separated from us by the same magnitude of space 
and time.  We can classify these spheres into three types: 
 

1. Dynamic Spheres – These are the spheres that galaxies reside on.  Objects on these 
spheres maintain a constant coordinate distance from us and move forward in time.  
We are able to move toward or away from objects on these spheres by moving 
through space.  If we fix our sights on a particular galaxy, the light we see from 
that galaxy is being emitted later in time as we ourselves move through time.   
 



2. Static Spheres – These are spheres fixed in time.  The Cosmic Microwave 
Background is the most obvious example of these spheres.  Light from the CMB 
sphere is always emitted from the same cosmological time, but as we ourselves 
move through time, we see light from that time emitted from farther and farther 
away from us in space, giving the impression that the CMB sphere is growing.  We 
cannot move toward or away any objects on this sphere because it is frozen in time.  
Both metrics are able to capture this behaviour, but they do so in different ways. 

 
3. The Dark Sphere – The Dark Sphere would be where current cosmological models 

would place the Big Bang.  It is where the temperature of the U-Group becomes 
infinite.  But no U-Group will actually reach this point as each U-Group would 
reach a maximum temperature before it starts cooling again.   

 
These spheres are shown in terms of the internal Schwarzschild metric in Figure 1.  Figure 
1 shows the Schwarzschild coordinates of the internal metric plotted on the Kruskal-
Szekeres coordinate plane.  In these coordinates, space is the ‘t’ coordinate emanating from 
the center of the diagram (Big Bang) and time is the ‘r’ coordinate depicted as hyperbolas 
(time is flowing forward as r goes toward zero).  The upper right quadrant of this diagram 
represents a single fixed direction (𝜃 = 𝑐𝑜𝑛𝑠𝑡, 𝜙 = 𝑐𝑜𝑛𝑠𝑡).  So each bold line representing 
a sphere would be a point on each sphere over time.  Note that light on this diagram travels 
on 45-degree lines. 
 

 
Figure 1 – Celestial Sphere Types on Kruskal-Szekeres Coordinate Chart1 

 
Going forward, we will first examine the space time of the internal metric from the 
perspective of the inertial observer and compare results to experimental data.  We will then 
examine the angular part of the metric more closely.  Finally, we will tie the outgoing and 
incoming photons to and from outside U-Groups to the white and black hole singularities.  
 
                                                
1	Diagram	modified	from:	“Kruskal	diagram	of	Schwarzschild	chart"	by	Dr	Greg.	Licensed	under	CC	BY-SA	3.0	via	Wikimedia	
Commons	-	
http://commons.wikimedia.org/wiki/File:Kruskal_diagram_of_Schwarzschild_chart.svg#/media/File:Kruskal_diagram_of_Sch
warzschild_chart.svg	
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The Schwarzschild Metric 
 
The Schwarzschild metric is the simplest solution to Einstein’s field equations.  It is a 
vacuum solution for the spacetime around a spherically-symmetric distribution of energy.  
The general form of the metric can be expressed as: 
 
   𝑑𝜏# = 1

231
𝑑𝑟# − 231

1
𝑑𝑡# − 𝑟#𝑑Ω# (1) 

 
Depending on the ratio 2

1
, we get three distinct descriptions of spacetime: 

 
1. 𝑢 = 0: This gives us the flat Minkowski metric of Special Relativity. 
2. 2

1
< 1: This describes the metric for an eternally spherically-symmetric vacuum 

centered in space.  This metric is also used to describe the vacuum outside a 
spherically symmetric object occupying a finite amount of space (like a star or 
planet). 

3. 2
1
≥ 1: This describes the metric for a spherically symmetric vacuum centered on a 

point in time.  Analogous to the second case, this metric should also describe a 
vacuum of time outside a spherically-symmetric object spanning infinite space.  The 
center of the metric is everywhere in space, but at a single point in time (just like 
one could say that the vacuum described in the second case is centered at all times 
on a single point in space). 

 
An important observation is that the internal metric describes a vacuum solution to the field 
equations.  But the U-Group is clearly filled with energy, so how can this solution apply?  
In order to satisfy the requirements of the metric, the Universe must be “a spherically-
symmetric energy distribution occupying an infinite amount of space for a finite amount of 
time”.  For this metric to be a cosmological description, it must be that Universe only truly 
exists in the present and in a very real sense moves into the future.  The surrounding 
vacuum is the future and past.     
 
Time being the radial dimension of the metric combined with the fact that the solution is a 
vacuum solution gives a mathematical justification for our intuitive notions of past, present, 
and future.  The anisotropy along the radial direction gives us an arrow of time that 
distinguishes the ‘past’ and ‘future’ analogous to the way the external solution gives us an 
absolute distinction between ‘up’ and ‘down’.  And the vacuum as described above gives 
us a boundary between them, that boundary being the ‘present’ time.   
 
 
Freefall Through Time 
 
Let us take the center of our galaxy as the origin of an inertial reference frame.  We can 
draw a line through the center of the reference frame that extends infinitely in both 
directions radially outward.  This line will correspond to fixed angular coordinates (𝜃, 𝜙).  
There are infinitely many such lines, but since we have an isotropic, spherically symmetric 



U-Group, we only need to analyze this model along one of these lines, and the result will 
be the same for any line.  
 
The radial distance in this frame is kind of a compound dimension.  It is a distance in space 
as well as a distance in time.  The farther away a galaxy is from us, the farther back in time 
the light we currently receive from it was emitted.  Fortunately the 2

1
≥ 1 spacetime of the 

Schwarzschild solution plotted in Kruskal-Szekeres coordinates provides us with a method 
to understand this radial direction.  Figure 1 showed the 2

1
≥ 1  solution on a Kruskal-

Szekeres coordinate chart where, in this model, the hyperbolas of constant r represent 
spacelike slices of constant cosmological time and the rays of t represent spatial distances.  
We will not be considering differences in angles until a later section in the paper, so we 
only need to consider the two halves of Figure 1.  We will focus on the upper half where 
that half represents an observer pointed in a particular direction and the positive t’s 
represent the coordinate distance from the observer in that particular direction while the 
negative t’s represent coordinate distance in the opposite direction.   
 
We must first determine the paths of inertial observers in the spacetime.  For this we need 
the geodesic equations for the internal Schwarzschild metric [1] given in Equation 1.  In 
these equations u represents a time constant that in the external metric would be the 
Schwarzschild radius (in Figure 1, the value of u is 1).  The following equations are the 
geodesic equations for t and r (𝑟 ≤ 𝑢): 
 
  ?

@A
?B@

= 2
1(231)

?1
?B

?A
?B

 (2) 
 

  ?
@1
?B@

= 2
#1@

C231
1
D?A
?B
E
#
− 1

231
D?1
?B
E
#
F − (𝑢 − 𝑟) D?G

?B
E
#
 (3) 

 
In Equations 1, 2, and 3, we use units where 𝑐 = 1 and equations 2 and 3 assume no angular 
motion.  Looking at points 0 < 𝑟 < 𝑢, then by inspection of Equation 2 it is clear that an 
inertial observer at rest at t will remain at rest at t (?

@A
?B@

= 0 if ?A
?B
= 0).  Also, we see that if 

an observer is moving inertially with some initial ?A
?B

, then if ?1
?B
< 0, the coordinate speed 

of the observer will be reduced over time (the coordinates are expanding beneath her) and 
if ?1
?B
> 0, the coordinate speed will be increased over time (the coordinates are collapsing 

beneath her).   
 
Let us therefore examine Equation 3 for an observer with no angular motion. Combining 
Equations 1 and 3, equation 3 becomes: 

  ?
@1
?B@

= − 2
#1@

C1 + D?G
?B
E
#
F − (𝑢 − 𝑟) D?G

?B
E
#
 (4) 

 
For ?G

?B
= 0, notice that the observer’s acceleration through cosmological time is similar to 

the form of Newton’s law of gravity, where r (a time coordinate) varies from u to 0 (If the 
Schwarzschild constant was 2GM, as it would be in the external solution, Equation 4 would 



be Newton’s gravity).  Also, anyone moving inertially starting with non-zero ?A
?B

 will 

experience the same acceleration through time as someone with zero ?A
?B

 since 𝑑𝑡 does not 
appear in Equation 4.  
 
So we will first use Figure 1 to describe the freefall of the galaxies through the 
cosmological time dimension where galaxies (or galaxy clusters) follow lines of constant t 
(and any such observer can choose 𝑡 = 0 as their coordinate).  The U-Group cools and 
expands as it moves toward 𝑟 = 0. 
 
 
The Scale Factor  
 
Expressions for the proper time interval along lines of constant t and Ω and the proper 
distance interval along hyperbolas of constant r and Ω from Equation 1 are: 
 

  ?1
?B
= ±K231

1
= ±𝑎 (5) 

 

  ?M
?A
= ±K231

1
= ±𝑎 (6) 

 
Where a is the scale factor.  First we should notice that neither Equation 5 nor 6 depend on 
the t coordinate.  This is good because the t coordinate marks the position of other galaxies 
relative to ours.  Since all galaxies are freefalling in time inertially, the particular position 
of any one galaxy should not matter.  The proper velocity and proper distance only depends 
on the cosmological time r.   
 
What is notable here is that in Schwarzschild coordinates, the scale factor is equal to the 
velocity through the time dimension for an observer at rest D?A

?B
= ?G

?B
= 0E.  When 𝑟 = 𝑢, 

Equations 5 and 6 are both 0.  At this point, the proper velocity in time is zero.  When 
crossing this point, expansion becomes collapse/reheat and vice versa.  Crossing it has the 
same effect as reversing the direction of time. 
 
At 𝑟 = 0, both equations 5 and 6 are infinite.  So when the worldlines enter or exit one of 
the 𝑟 = 0 hyperbolas, they do so at infinite proper speed through the time dimension. If 
something is travelling through space at the speed of light, the proper distance between 
points in space is zero.  In this case, since we have infinite proper velocity in the time 
dimension, the proper distance between points in space will be infinite, because you would 
traverse an infinite amount of time in order to move through an infinitesimal amount of 
space.  What we see then is that at 𝑟 = 0 space will be infinitely expanded and thus the 
scale factor is infinite and the temperature will be zero.  But the U-Group matter will never 
reach this singularity because it will begin reheating (and therefore re-collapsing) before 
reaching this point.  A plot of the scale factor vs. r (with 𝑢 = 1) is given in Figure 2 below: 
 



 
Figure 2 – Scale Factor vs. r for 𝑢 = 1 

 
 

Cosmological Parameters 
 
In order to compare this model to cosmological data, we must solve for u and find our 
current position in time (𝑟N) in the model.  Reference [3] gives us a 95% confidence interval 

for the measured transition redshift at 𝑧A = 0.4263N.NTUVN.#W .  We can use the fact that K231
1

 is 

the scale factor and get the expression for cosmological redshift caused by the expansion 
[1] (note that this Equation was derived from the FRW metric in the reference, but the 
internal metric, when setting 𝑑Ω = 0, can be put in the same form as the FRW metric with 
a coordinate change, so the equation below is still valid for the internal metric): 
 

  𝑧 = K
1XYZ[

(231XYZ[)
K231

1
− 1 (7) 

 
We can see in Figure 2 that there is an inflection point that corresponds to the transition 
redshift in the model.  To find this inflection point, we need to derive the Hubble parameter 
and deceleration parameter equations using the scale factor.  The Hubble parameter is given 
by: 

  𝐻 = ]̇
]
= ?

?1
_K231

1
`K 1

231
= 2

#1(231)
 (8) 

 
And the deceleration parameter is given by: 
 
  𝑞 = ]]̈

]̇@
= c1

2
− 3 (9) 

 
The transition redshift occurs when 𝑞 = 0, giving us D1

2
E
A
= 0.75.  With this and 

Equation 7, we can find D2
1
E
N
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  𝑧A = 0.4263N.NTUVN.#W = K
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h.ij3"

KD21EN
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E
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E
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Giving: 
  D2

1
E
N
= 1.6783N.NT#VN.#T" (11) 

 
The current Hubble constant, as measured by the Planck mission was found to be 𝐻N =
67.8 ± 0.9	(km/s)/Mpc and from the Hubble Space telescope 𝐻N = 73.48 ±
1.66	(km/s)/Mpc.  With these and Equation 11, we can solve for limiting values of u 
and 𝑟N (after converting the units of 𝐻N so that u is measured in Gly): 
 

  𝐻N = D2
1
E
N
| "

#2D"3D}~Eh
E
� → 𝑢 = D2

1
E
N
| "

#�hD"3D
}
~Eh

E
� (12) 

 
Note that in Equation 12, 𝐻N is in units of (𝐺𝑦)3".  Before presenting the results, let us 
derive the expression for t vs. r along a null geodesic where the geodesic ends at the current 
time 𝑟N.  We can do this by setting 𝑑𝜏 = 𝑟𝑑Ω = 0 in Equation 1 and integrating: 
 
  𝑡 = ∫ 1

231
𝑑𝑟1

1h
= 𝑢ln D231h

231
E + (𝑟N − 𝑟) (13) 

 
Table 1 below gives the values of u, 𝑟N,	𝑎N,	𝑞N,	𝑟A (coordinate time at transition redshift), 
𝐻A  (Hubble constant at the transition redshift), and 𝑡A  (coordinate distance of transition 
redshift) given the measured bounds of 𝑧A and 𝐻N.  All times are in Gy, distances are in 
Gly, and 𝐻 are in (km/s)/Mpc. 
 

𝒛𝒕 𝑯𝟎 𝒖 𝒓𝟎 𝒖 − 𝒓𝟎 𝒂𝟎 𝑯𝒕 𝒓𝒕 𝒕𝒕 𝒓𝒕 − 𝒓𝟎 𝒒𝟎 
0.337 68.7 30.4 19.0 11.4 0.77 85.8 22.8 8.5 3.8 -0.5 
0.337 66.9 31.2 19.5 11.7 0.77 83.6 23.4 8.8 3.9 -0.5 
0.337 75.14 27.8 17.4 10.4 0.77 94.3 20.9 7.9 3.5 -0.5 
0.337 71.82 29.1 18.2 10.9 0.77 89.5 21.8 8.1 3.6 -0.5 
0.696 68.7 28.5 14.3 14.2 1.00 91.8 21.4 12.7 7.1 -1.0 
0.696 66.9 29.3 14.7 14.6 1.00 89.3 22.0 13.0 7.3 -1.0 
0.696 75.14 26.0 13.0 13.0 1.00 100.4 19.5 11.5 6.5 -1.0 
0.696 71.82 27.3 13.7 13.6 1.00 95.8 20.5 12.1 6.8 -1.0 

 
Table 1: Limiting Cosmological Parameter Values Based on 𝑧A and 𝐻N Measurement 

 
Note that these values cannot be calculated for the CMB because of lack of precision in 𝑧A 
and 𝐻N measurements (The CMB is too close to 𝑟 = 𝑢 to get meaningful values given the 
imprecise measurements).  Table 2 has the proper times from 𝑟 = 𝑢  to the transition 
redshift and current time for stationary, inertial observers (𝑑𝑡 = 𝑟𝑑Ω = 0) by integrating 
Equation 1 (there is not enough precision in the measurements to calculate this for the 
CMB).  The column 𝜏A�A	gives the time from 𝑟 = 𝑢 to 𝑟 = 0.  The expression for 𝜏A�A turns 
out to be quite simple2: 
                                                
2 Thinking of 𝜏A�A as a ‘Universal Period’ allows us to define a Universal constant 𝑈 = �

#
𝑢 for time and space.  Equation 14 is the 

maximum amount of time that can be measured between the Big Bang and 𝑟 = 0.  So if we set 𝑈 = �
#
𝑢 = 𝑐 = 1 then we are working 

in units where space and time have the same units and all measurable times will be between 0 and 1.  When working in these units, the 
constant in the interior Schwarzschild metric will be 𝑢 = #

�
. 



  𝜏A�A =
�
#
𝑢 (14) 

 
The column 𝜏1��]�� gives the time between 𝑟 = 𝑟N and 𝑟 = 0. 
 

𝒛𝒕 𝑯𝟎 𝝉𝟎 𝝉𝒕 𝝉𝒕𝒐𝒕 𝝉𝒓𝒆𝒎𝒂𝒊𝒏 
0.337 68.7 34.6 29.1 47.8 13.2 
0.337 66.9 35.7 30.1 49.2 13.5 
0.337 75.14 31.7 26.5 43.7 12.0 
0.337 71.82 33.3 27.9 45.7 12.4 
0.696 68.7 36.3 27.2 44.8 8.5 
0.696 66.9 37.4 28.0 46.0 8.6 
0.696 75.14 33.3 25.1 41.0 7.7 
0.696 71.82 34.8 26.2 42.9 8.1 

 
Table 2: Limiting Proper Times Based on 𝑧A and 𝐻N Measurements (Time is in Gy) 

 
Note that while the coordinate times for the current age of the U-Group (𝑢 − 𝑟N) are close 
to current estimates (for high 𝑧A ), the proper time 𝜏N  is actually much larger.  This is 
because at early times, observers are moving slower through the time dimension and 
therefore they accrue more proper time per unit coordinate time.  But the speed through the 
time dimension increases over time such that even though we are presently only about 
halfway through the “coordinate life” of the U-Group (according to Table 1), the amount 
of proper time remaining is actually much less than the amount of proper time that has 
already passed (according to Table 2). 
 
Next we would like to use the u and 𝑟N values found to create an envelope on a Hubble 
diagram to compare to measured supernova data.  First we need to find r as a function of 

redshift.  We can do this by solving for 𝑟���A in Equation 7 where 𝑎N ≡ K231
1

, the present 

value of the scale factor: 
  𝑟 = 𝑢 �@V#�V"

]h@V�@V#�V"
 (15) 

 
Next we substitute Equation 15 into Equation 13 to get coordinate distance in terms of 
redshift: 
  𝑡 = 𝑢 �ln D1h�]h

@V�@V#�V"�
2

E − �@V#�V"
]h@V�@V#�V"

� + 𝑟N (16) 
 
Finally, we convert Equation 16 to the distance modulus, μ, which is defined as: 
 
  𝜇 = 5	log"N D

A
"N
E (17) 

 
Where t in Equation 17 is in units of parsecs.  A plot of distance modulus vs. redshift is 
shown in Figure 3 below plotted over data obtained from the Supernova Cosmology Project 

                                                
	



[6].  Curves calculated from all combinations of u and 𝑟N in Table 1 are plotted, giving an 
envelope for the model’s prediction of the true Hubble diagram. 
 

 
Figure 3 – Distance Modulus vs. Redshift Plotted with Supernova Measurements 

 
Note that the lower curves correspond to the 𝑧A = 0.696 data, suggesting that, if this model 
is correct, the true transition redshift is closer to 0.696 than 0.337. 
 
In [7], the authors analyze a large sample of quasar data to obtain distance moduli at higher 
redshifts than is possible with supernova data.  Although not definitive, the results of this 
analysis suggests that the “Dark Energy” density may be increasing with time, which does 
not fit with the LCDM model.  However, the accelerated expansion predicted by the 
Schwarzschild solution is consistent with this type of expansion.  Figure 4 shows the same 
predicted envelope from Figure 3 for the Hubble diagram plotted out to higher redshifts 
with the quasar data from [7] also shown with error bars.  The black diamonds in the figure 
are the 18 high-luminosity XMM-Newton quasar points described in [7].   
 

 
Figure 4 – Distance Modulus vs. Redshift Plotted with Quasar Measurements 

 
 
The Angular Term of the Metric 
 
Given that the radius of the internal Schwarzschild metric is the time dimension instead of 
the space dimension, we need a way to calculate the circumference of circles in this metric.  
Suppose an inertial observer at 𝑡 = 0 and 𝑟 = 𝑅 wants to measure a circle at coordinate 



distance 𝑡 = 𝐷 away from them.  Since they will see this circle in the past, they will be 
measuring the circle as it was at some time 𝑟N in the past found from Equation 13.  To 
calculate the circumference of this circle using the metric, we first calculate the time 𝑟" at 
which an observer at 𝑟 = 0 and 𝑡 = 0 would see 𝐷 using Equation 13.  The circumference 
of this circle calculated from the metric will be 2𝜋𝑟".  We can then find the circumference 
for the observer at 𝑟 = 𝑅  by multiplying the circumference measured by the 𝑟 = 0 
observer by the ratio of the scale factors at 𝑟N and 𝑟".  The circumference measured by the 
observer at 𝑟 = 𝑅 is therefore 𝐶 = ]h

]g
2𝜋𝑟". 

 
 
The White Hole and Black Hole Singularities 
 
The singularities at the top and bottom of Figure 1 provide a useful tool for depicting the 
photons that enter the U-Group during reheating as well as the photons that are removed 
from the U-Group during the cooling.   
 
In that figure, let time move forward going from bottom to top.  If we start near the bottom 
singularity, the U-Group will be at the beginning of the reheating phase, which happens in 
the bottom half of the diagram.  During this phase, photons will appear randomly 
throughout space in all directions as the higher U-Group begins to cool, shedding photons 
into our group.  Observationally, this will appear as though radiation is emerging from the 
vacuum, heating up the group.  In Figure 1, this can be depicted as light coming out of the 
white hole singularity at the bottom of the diagram being absorbed by the U-Group as it 
moves up the diagram.   
 
Once the group has reached maximum temperature, it will start cooling.  In this phase, we 
are in the top half of the diagram with the matter continuing to move upwards.  Unabsorbed 
low frequency light will be lost from the group in this phase, as if it disappeared into the 
vacuum.  In Figure 1, this would be depicted as light entering the black hole singularity at 
the top of the figure. 
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