Teaching the AC-Method Using a TI-84

Timothy W. Jones
October 16, 2021

Abstract

Using programs written in TI-Basic increasingly challenging quadrat-
ics are factored.

1 Introduction

Students learn to factor quadratics of the form 22 + 5z + 6 using the idea of
looking for two number such that when multiplied gives 6 and when added
gives 5. We notice that a for loop always can find two such numbers, if they
exist. Consider 22 + bx + ¢ and

For(X,1,C), if (X+X/C=B), then the two numbers are X and X/C. (1)

This plus-plus case is easiest. There are three others: x?—bx+c, x?+br—c,
and 22 — bz — c. Call the four cases PP, MP, PM, and MM as suggested
by the (P)lus and (M)inus operations between terms. We will develop a
program that can factor these quadratics.

The EASY-FACTORS cases given above have a more complicated cousin.
Consider 1022+ 29x+21. With EASY-FACTORS the leading coefficient is 1;
here it’s not one. The idea for factoring is to multiply the a and ¢ coefficient
in az? + bz + ¢ and then as before look for two numbers, say d and e such
that d-e = ac and d+ e = b. The EASY-CASE really uses the same strategy
— a is just one, giving just c¢. With just a slight modification of (1) these
HARD-FACTORS have a strategy:

For(X,1,AC), if (X+AC/X=B), then the two numbers are X and AC/X,
(2)

where A and C' are the first and last coefficients of the quadratic. As with
EASY-FACTORS, HARD-FACTORS have four cases.

This strategy for solving HARD-FACTORS is called, by some textbooks
and teachers, the AC-Method. The method finds the two numbers mentioned
and then uses them to express the bx term. The procedure continues; 1022 +
29z + 21 is re-expressed using d and e:

102% + 152 + 142 + 21,

where d = 15 and e = 14. That is, using the algorithm (2), d = X = 14 and
e = AC/X = 210/14 = 15. The final steps in the procedure are to group
the first and last two terms, pull out the GCF for 5z(2z + 3) + 7(2x + 3)
and then pull out another binomial GCF for (2 + 3)(5z + 7), the desired
factored form.

The EASY-FACTORS cases provide a good training ground for the HARD-
FACTORS cases. The progression shows students problem solving with tech-
nology as well as how to parse out cases and look for repeating patterns, not
to mention how to look for calculator functions and use them. They are
rewarded, I suggest, with good understanding of factoring using the AC-
method as well as an ability to do problems easily, accurately, and quickly
using technology they made: a program in a calculator.

Details follow.

The core

The core of EASY-FACTORS and HARD-FACTORS is finding d and e such
that d-e = a-cand d4+e = b. The code to accomplish this is given in Figure
1.

VAR NAME: | ACCORE

oe Prompt A,B.,C
a2 AC-D

For (X,1,abs(D)], 1)

If ((X+D/X=B) or (-X-DiX=B) or (X-D/X=B) or (-X+D/X=B))

Figure 1: Core code for both hard and easy factors.

This program allows students to immediately get such ds and es and
adjust the signs to fit the middle term. For large coefficients this is the main
difficulty in factoring. Try factoring 90z2 — 23z — 15, for example. With the
AC-method one has to multiply out, then factor 90-15 = 1350 and then find
the d and e that works. Running the program gives such d and e; one still
has to figure out the right signs, not hard: see Figure 2.

A=790
B=7-23
C=7-15
27
-50
50
27

Figure 2: A difficult factoring problem made much easier.

This ACCORE program is a workhorse; it immediately solves EASYFAC-
TORS and gives the hardest step for HARDFACTORS. To continue to get
the calculator to give the complete factors is more work. That’s the rest of
this paper. For those not wanting to get into these weeds, you might want to
use the example quadratics that occur below as test beds for the ACCORE
program’s accuracy.

EASY-FACTORS

A few added lines gives the PP case for EASYFACTORS, see Figure 3. This

@31 Prompt B,C

g@gz2 If ((B>@) and (C>8))

@93 Then

@94 For(X,1,C,1)

a5 If (X+C/X=B)

@96 Then

@97 ClrHome

@8 " (x+"+toString(X)+")"-Str1
@Ag " (x+"+toString(C/X)+")"+8tr2
@19 Output(1,1,Str1+Str2)

@11 Stop

@12 End

%13 End

@14 End

Figure 3: Code for EASYFACTORS PP case.

1 x*2+11 %430
2 X 2+11x+18
3 M 2+13 %430
4 x 2+10x+00
SR 2+14x+48
0 x"2+13x+2
T 2+14x+48

Figure 4: Testing examples for EASYFACTORS PP case.

code can be tested with quadratic examples given in Figure 4. Code for the
EASYFACTORS MP case, the next hardest, is given in Figure 5 with test

examples given in Figure 6.

@15
@16
17
218
219
@29
@21
@22
@23
@24
@25
926
27

X+ X5
X+2 ¥+9
*+10 X3
¥+ ¥+10
X+6 X5
¥+HG X7
X+ X0

If ((B<@) and (C>H))

Then

For(X,1,C,1)

If (-X-C/X=B)

Then

ClrHome
"(x-"+toString(X)+")"-+5tr1
"(x-"+toString(C/X)+") "+5tr2
Output(1,1,Str1+5tr2)

Stop

End

End

End

Figure 5: Code for EASYFACTORS MP case.

B xM2-12x4+36 x-B %-6

9 xM2-13x+30 ®-10 ¥-3
10 x"2-12%+32 %-B ¥-4
11/ xM2-15x+54 *-9 X-6
12 x"2-15%+56 %-B x-7
13 x"2-15x+56 %*-8 ¥-7
14 x"2-9%+14 ®-2 x-7

Figure 6: Testing examples for EASYFACTORS MP case.

And so on: Figure 7 gives the code for the remaining PM and MM EASY-
FACTORS cases and Figure 8 gives more test examples.

A28 If ((B>@) and (C<@))
A28 Then

For(X,1,abs(C},1)

If (X-abs(C)/X=B)

Then

ClrHome

" (x+"+toString (X)+") "=5tr1
"(x-"+toString(abs(C)/X)+") "+5tr2
Output(1,1,5tri1+5tr2)

Stop

End

End

End

If ((B<@) and (C<@))

Then

For(X,1,abs(C},1)

If (-X+abs(C)/X=B)

Then

ClrHome
"(x-"+toString (X)+") "=5tr1

" (x+"+toString (abs(C)/X)+") "+5tr2
Output(1,1,5tri1+5tr2)

Stop

End

End

End

(3%}

Figure 7: Code for EASYFACTORS PM and MM cases.

These screen captures for the code used TI's Connect free software that
works with the latest TI-84 calculators. The great advantage of using this
software is the full range of editing functions available; you can copy and
paste the parts of the code that repeats in each of the cases (a lot). You
also get a help system for the commands and a way to find the commands
available in a systematic way. Finally, with a ctrl-e your code is ported to

15 xA2-2x-24 %-0 x+d

16 x°2-30 X-6 Faai]
17 xA2-2x-35 x-7 H+5
18 x~2-49 H-7 w7
19 xA2+4x-32 x-d ®+3
20 kM 2+8x-20 X-2 X+10
21 xM2+2x-63 x-7 x+9
22 yh24+2%-48 X+3 ¥-0
23 xM2+BN-20 X+10 ®-2
24 wh24+3%-54 X+3 ¥-0
25 xA2+4%-00 X+10 %-0
20 ®"2-Bx-20 X+2 ¥-10
27 xn2-5x-30 K+d ®-9
28 x"2-p4 X+3 ®-8

Figure 8: Testing examples for EASYFACTORS PM and MM cases.

your physical calculator. There it can be tested.

HARD-FACTORS Structure

Things get a little bit more complicated when coding the HARD-FACTOR
cases. With EASY-FACTORS the two numbers X and C/X directly give the
dand ein (rtd)(z+d); d=X and e = C/X. With HARD-FACTORS, as
was anticipated in the introduction, there are more steps. You need to pull
out GCDs. The puzzling out of what works can be a bit of a trail and error
ordeal, but I think that is a good character building aspect of this way of
teaching.

This trial and error aspect of building the code is greatly speeded up by
having a menu system that allows the different cases to be tried one after the
other. Figure 9 gives the screen shot of the code for such systematic testing
with pre-loaded quadratics. The code allowing such case studies is given in
Figure 10. General input of arbitrary quadratics is given with the OTHER
menu option; the code is given in 11.

ACFACT
FHPLUSPLUS
2:MINUSPLUS
3:MINUSMINUS
4:PLUSMINUS
5:0THER

Figure 9: Home page screen shot of menu idea.

Menu("ACFACT", "PLUSPLUS" U, "MINUSPLUS" S, "MINUSMINUS", T, "PLUSMINUS" \V, "OTHER" ,W)
LbT U

B4

22-B

15-C

prgmMYPP

Lb1 S

B4

ggs -22-8
#18 15-C

#11 prgmMYMP
#12; bl T
#13 8-A

@14 -2-B

@15 15-C

@16 prgmMYMM
@17 Lbl V
g1e 8-A

#19 2-B

828 -15-C
#21 prgmiYPM

Figure 10: Code for menu program ACFACT; pre-loaded test cases speed
debugging.

Lbl W

Prompt A,B,C

If ((AC=@) and (B=8))
Then

prgmMYPP

End

If ({AC=@) and (B=8))
Then

prgmMYMP

End

If ((AC<@) and (B=8))
Then

prgmMYPM

End

IT ({AC<@#) and (B=@))
Then

prgmMyYMM

End

Stop

Figure 11: Code continuation for ACFACT. This allows for general inputs.

HARD-FACTORS Cases

Connect allows several separate files to be available with a mouse click. This
makes copy and pasting especially easy. The code for the HARDFACTORS
PP case is given in Figure 12; MP Figure 13; PM Figure 14; and MM Figure
15.

MYACMENU.8xp MYPP.8xp X MYMP.8xp

VAR NAME: = MYPP

abs(A)=D

abs(B)-E

abs(C)-F

For(X,1,DF,1)

If (DF/X+X=B)

Then

DF/X=M

KN

Pisp M,N

Disp gcd(D,DF/X) ,ged(X,F)

Disp D/gecd(D,DF/X),F/ged(X,F}

Pause

C1rHome
"({"+toString(ged(D,DF/X) }+"X+"+toString (ged(X,F) }+") "=5trl
"("+toString(D/gcd(D,DF/X))+" X+ "+toString (F/god (X, F))+") "=Str2
Qutput(1,1,Str1+5tr2)

Stop

End

End

Figure 12: Code for HARDFACTORS PP case.

MYACMENU,8xp = MYPP.8Bxp = MYMP.8xp X MYPM.8xp MYMM.8xp

VAR NAME: MYMP

TR R T)
(= RN = P S U R

Lo R e o R R o e B Lo
=

(5]

ot~ |

=
M =

213

L B R
£

@1
@1
a1

L e RN P S Y =

abs (A)-=D

abs(B)-E

abs(C)-F

For (X, 1;DF;1)

If (-DF/X-X=B)

Then

-DF/X=H

-X=N

Disp M;N

Disp gcd(D,DF/X) ;ged(X,F)

Disp Dfgcd(D,DF/X),F/gcd(X,F)

Pause

ClrHome
"("+toString(gcd (D, DF/X) }+"X-"+toString (god (X, F)) +") "=5tr1
"("+toString(D/gcd(D,DF/X)) +"X-"+toString (F/ged (X,F))+") "=5tr2
Qutput (1,1,5tr1+5tr2)

Stop

End

End

Figure 13: Code for HARDFACTORS MP case.

MYACMENU.8xp = MYPP.8xp MYMP.8xp = MYPM.8xp X MYMM.8Xp

VAR MAME: MYPM

—

abs (A)-D

abs(B)-E

abs(C)-F

For(X,1,DF,1)

If (-DF/X+X=B)

Then

-DF/X-H

XN

Disp M,N

Disp gcd(D,DFE/X) ,ged (X, F)

Disp B/ged(D,DF/X) ,Flged(X,F)

Pause

C1rHome

"("+toString(gcd(D,DF/X))+"X+"+toString (ged (X, F))+") "=Str1
"("+toString(D/gcd(D,DF/X) 3 +"X-"+toString (F/ged (X,F))+") "+5tr2
Output(1,1,5tr1+5tr2)

Stop

End

End

R G B R

[RS R s TS ST R~ T R N e R P

pr

EEEEEERERE =R
o=

e e

Figure 14: Code for HARDFACTORS PM case.

MYACMENU.8xp = MYPP.8xp = MYMP.8xp = MYPMSxp MYMM.8xp X
VAR NAME: MYMM

abs(A)-=D

abs(B)-E

abs(C)-F

For(X,1,DF,1)

If (DF/X-X=B)

Then

BE/X=H

-K=N

Bisp M,N

Disp ged(D,DF/X) ,ged(X,F)

Disp D/ged(D,DF/X),F/ged (X, F}

Pause

C1rHome

"({"+toString {(ged(D,DF/X) }+"X-"+toString (ged (X, F) }+") "=5trl
"({"+toString (D/gcd (D,DF/X))+" X+ "+toString (F/ged (X,F) }+") "=Str2
Output(1,1,5tr1+5tr2)

Stop

End

End

Figure 15: Code for HARDFACTORS MM case.

10

1 9x"2+12x%+4 Iu+d 3H+2

23502432045 Sl | TxdS

3 1 Z+3x+2 In+2 Ix+l
& BrA2+15x+7 B+l | 1xtl
2. BN 2+hH+]1 2x+l 3x+l

6 12x"2+47x+15) o S b 5
7 21x"2+53x+30 3xtd Tx+0
8 32xM2+84x+27 Ax+9 Bx+3

5 Bx"2+30x+7 2u+yl Ax+l
10 14x"2+29%+12 28+3 Tx+d
11 9x"2-30x+16 3x-8 3x-2
12 25x"2-55K+18 ox-2° |5x-9
13 3xn2-Tx+d Ix-1 3x-4
14 Ix"2-8x+15 Ix-5° 1x-3
15 9x"2-43x+28 Ix-4 9x-7
16 18x"2-33x+14 3x-2° bx-7
17 32x"2-ToxX+35 Ax-7 Bx-5
18 12x"2-17x+0 4x-3 3x-2
19 3xn2-5x+2 3x-2 | 1x-1
200 10x"2-41x+21 -3 | 2x-7
21 9xn2-14x-8 -2 9x+d
22 Bxn2-Bx-5 ax-5 2x+l
23 3xh2-1x-4 3x-4 | Ix+l
24 20x"2+44x-15 10x-3 2x+5
20 A0 "2-29%-56 ox-8 Bt/
20 4xn20x-1 2x=1 | Zxtl
27 32xNh2-12%-27 Bx-9 dx+3
28 pxM2-5x-4 dx-4 Zxtl
20/ 14x"2-3%-5 Tu-5 2x+l
30 24x"2+5x-36 Bx-9 3x+d

Figure 16: Test examples for HARDFACTORS.

11

Conclusion

Notice how the ACCORE if statement with its three ors parses into both
EASYFACTORS and HARDFACTORS program solutions.

We can demonstrate the nice features of Connect by answering the reader’s
request to see the program in action. Choosing other from the menu and in-
putting the twenty-first example quadratic, we can capture the screen from
the attached calculator using Connect. This feature is shown in Figure 17.
The result of the calculator screen capture is shown in Figure 18.

|
CONNECTED CALC... (1)
Take screen captures of all connected calculators

T84 Plus... -2C77 |
5 ok @

Figure 17: Connect allows screen captures of attached calculators.

CONNECTED CALC... (1)

*Capture 1 x

Hoo |

05561
(1X-2)(IX+4) . BRODE
R

Figure 18: Output for example 21 quadratic with roots added.

After creating these programs in Connect and porting them to an at-
tached physical calculator, there is the question of uploading the program to
Smartview’s emulator calculator. After saving the program file in Connect,
open Smartview and navigate as shown in Figure 19. We’ve uploaded the
code for the MM case; Figure 20 shows the added code for giving the roots,
as demoed with the 21st example quadratic. Note that this code is cut off;

12

the tiny screens of the emulator can’t show more than a few lines. We go
back to Connect and see all the code well captured in Figure 21. Connect,
unlike Smartview, has larger, adjustable screens.

The ideal, sombebody tell TI, is to connect Connect with Smartview, so
you don’t have to upload files to it as a separate step. Still using a doc
cam one can create code in Connect, hit the ctrl4+e to port to an attached
physical calculator, and show that physical calculator running the program,
albeit with a necessary switch from computer to doc cam mode for the white
board.

g:"i T-SmartView™ CE for the TI-24 Plus Family —

File Edit View |Actions Help

Add Files From Computer...

Import Data (.cev) to Lists/Matrix..

[Za] 1m: Capture Screen Ctrl+T

Figure 19: Open Smartview, go to the bottom icon on the left, use the menu
to load a file from the computer (from Connect).

13

T e ——— TI-84 Plus CE

|HBEAAL FLORT AUTO REAL RADIAN HMP [‘I
|[EDIT HENU: [elphal [£5] |

PROGRAM: MYMM
t"R="235tpr3
rtoString(oacd(x.F))+5tr4

ttoStrina{oacd(D.DF~ X})+Str
S
:0utput (2, 1.5t r345t 4+ " "+
Str5)

ME="284r3

toStringl -Frocd(X.F)})+5tr
4

Figure 20: Code added to the MM case to show roots.

#17 "R="+5tr3

g18 teString(gcd(X,F))-+5trd

g1% teString(gcd({D,DF/X))=5trb
#2808 QOutput(2,1,5tr345trd+" /"+5trb)

"5="+5tr3
tostring(-Flged(X,F))=5trd
tostring(D/gcd (D, DF/X))=5trb
OQutput (3,1,5tr3+5trd+" /" 45t r5)
Qutput(4,1,"")

[

el

[Bl o O e B o]
S e I T e Y e Y e R
L

L

Figure 21: Connect allows for better classroom displays of line numbered
code in adjustable sizes.

14

