
#### Abstract

We present a method which modifies a magic square of even order $n$ and then adds two outer rows and two outer columns to produce a magic square of order $n+2$. The modification of the original square will change half of its numbers and will preserve the equality of sums of the rows, columns, and main diagonals. This modified square will be centrally embedded in the magic square of order $n+2$.


## Definitions

For the purposes of this paper, a magic square of order $n$ shall mean an $n \times n$ arrangement of the integers 1 through $n^{2}$ such that the sums of each row, each column and both main diagonals all equal the magic sum $S=\frac{n^{2}\left(n^{2}+1\right)}{2 n}=\frac{n}{2}\left(n^{2}+1\right)$. An embedded square of order $n$ shall mean an $n \times n$ arrangement of distinct positive integers such that each row, each column and both main diagonals have the same sum. For reasons which shall become obvious, the construction method presented here applies only to squares of even order. We will say that a magic square of even order $n$ is balanced if each row, each column and each main diagonal contains exactly $\frac{n}{2}$ numbers which are greater than $\frac{n^{2}}{2}$. Figure 1 shows a balanced magic square of order 6 , with a centrally embedded square of order 4 .

| 9 | 15 | 17 | 19 | 26 | 25 | 9 | 15 | 17 | 47 | 54 | 53 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 27 | 4 | 35 | 34 | 1 | 10 | 55 | 4 | 63 | 62 | 1 | 10 |
| 24 | 29 | 6 | 7 | 32 | 13 | 52 | 57 | 6 | 7 | 60 | 13 |
| 23 | 5 | 30 | 31 | 8 | 14 | 51 | 5 | 58 | 59 | 8 | 14 |
| 16 | 36 | 3 | 2 | 33 | 21 | 16 | 64 | 3 | 2 | 61 | 49 |
| 12 | 22 | 20 | 18 | 11 | 28 | 12 | 50 | 48 | 18 | 11 | 56 |

Figure 1
Figure 2

## Construction Method

Our method may be carried out with the aid of a calculator for the necessary arithmetic and a spreadsheet to check the results. Each stage of our construction starts with a magic square of even order $n$, modifies it and then surrounds it with two new rows and two new columns to arrive at a magic square of order $n+2$. The original square will become an embedded square at the center of the larger one. We will signal those steps of this process which involve trial-anderror experimentation. One example will serve to illustrate our process.

Our example begins with the order-6 square shown in Figure 1, which will become the centrally embedded square within a magic square of order 8 . The new square will contain integers 1
through 64. For this reason, we add 28 to each entry in the range 19 through 36 so that they become 47 through 64. The columns, rows and diagonals of this array (Figure 2) all sum to 195. The numbers in the two new rows and columns will be integers 19 through 46. They form 14 pairs, each summing to 65, as listed in Figure 3. So when any such pair is added at the ends of an existing row, column or diagonal, the new row, column or diagonal will consist of eight integers whose sum is 260 . If the two new rows and two new columns also sum to 260 , we will have a magic square of order 8 .

| pair |  | difference |  |
| :--- | ---: | ---: | ---: |
| 19 | 46 | 27 | $x$ |
| 20 | 45 | 25 | $x$ |
| 21 | 44 | 23 | $x$ |
| 22 | 43 | 21 | $x$ |
| 23 | 42 | 19 |  |
| 24 | 41 | 17 | $x$ |
| 25 | 40 | 15 | $x$ |
| 26 | 39 | 13 |  |
| 27 | 38 | 11 |  |
| 28 | 37 | 9 | $x$ |
| 29 | 36 | 7 | $x$ |
| 30 | 35 | 5 |  |
| 31 | 34 | 3 |  |
| 32 | 33 | 1 |  |

Figure 3
Here is where our trial and error experimentation begins. We first choose two of our 14 pairs to occupy the corners of our new order- 8 square as shown in Figure 4. We illustrate by choosing the pairs $(20,45)$ and $(25,40)$.

| 20 |  |  |  |  |  | 40 |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 9 | 15 | 17 | 47 | 54 | 53 |  |
|  | 55 | 4 | 63 | 62 | 1 | 10 |  |
|  | 52 | 57 | 6 | 7 | 60 | 13 |  |
|  | 51 | 5 | 58 | 59 | 8 | 14 |  |
|  | 16 | 64 | 3 | 2 | 61 | 49 |  |
|  | 12 | 50 | 48 | 18 | 11 | 56 |  |
| 25 |  |  |  |  |  |  | 45 |

Figure 4

The magic sum for an order- 8 magic square is 260 . Thus, we determine that the remaining six numbers in our top row must sum to 200 and the remaining numbers in the rightmost column must sum to 175 . One choice for completion of the rightmost column is
$175=44+37+19+22+24+29$
Note that this choice keeps our square balanced.
At this point, 8 of our 14 pairs have been used. They are marked in Figure 3. Our attempt will succeed if we can achieve the needed sum of 200 for the remaining entries of the top row with the remaining pairs. If we add the larger numbers from each of these pairs, we have 221 . We need numbers whose sum is 200 and $221-200=21$. We have succeeded if we can find three numbers in the difference column of the remaining six pairs whose sum is 21 . Indeed, we find $13+5+3=21$, indicating that we should choose the smaller values of these pairs associated with these differences. Thus, we have $200=42+26+38+30+31+33$. We have completed our order- 8 magic square as shown in Figure 5. This magic square is in fact balanced so that it can be used as the starting point to repeat our process and create a $10 \times 10$ magic square.

| 20 | 42 | 26 | 38 | 30 | 31 | 33 | 40 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 21 | 9 | 15 | 17 | 47 | 54 | 53 | 44 |
| 28 | 55 | 4 | 63 | 62 | 1 | 10 | 37 |
| 46 | 52 | 57 | 6 | 7 | 60 | 13 | 19 |
| 43 | 51 | 5 | 58 | 59 | 8 | 14 | 22 |
| 41 | 16 | 64 | 3 | 2 | 61 | 49 | 24 |
| 36 | 12 | 50 | 48 | 18 | 11 | 56 | 29 |
| 25 | 23 | 39 | 27 | 35 | 34 | 32 | 45 |

Figure 5

## Observations and Suggestions for Further Investigation

The first choice in our example above was to pick two pairs to occupy the corners of the enlarged square. We now offer an example to illustrate what can go wrong with a bad choice at this initial stage. If we choose the pairs 20-45 and 24-41, then we have the following.

20

| 9 | 15 | 17 | 47 | 54 | 53 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 55 | 4 | 63 | 62 | 1 | 10 |
| 52 | 57 | 6 | 7 | 60 | 13 |
| 51 | 5 | 58 | 59 | 8 | 14 |
| 16 | 64 | 3 | 2 | 61 | 49 |
| 12 | 50 | 48 | 18 | 11 | 56 |

24
53

13
14
49 56

41

Figure 6

Now to complete the rightmost column we need six numbers totaling $260-86=174$. To maintain the balance of our square, exactly two of these six must be the larger number of their pairs. We may choose, for example, $174=42+37+19+22+25+29$. At this point the following six pairs remain available to complete the top and bottom row:
pair difference
$\begin{array}{lll}21 & 44 & 23\end{array}$
$26 \quad 39 \quad 13$
$27 \quad 38 \quad 11$
$\begin{array}{lll}30 & 35 & 5\end{array}$
$\begin{array}{lll}31 & 34 & 3\end{array}$
$32 \quad 33 \quad 1$

Figure 7
The sum of the six number to complete the top row must be $260-61=199$. To maintain balance, three of them must be from the first column (smaller numbers of their pairs) and three from the second column. The sum of the six numbers in the second column is 223 and we see that will need three numbers from the difference column whose total is $223-199=24$. This is impossible since all numbers in the difference column are odd.

The problem hinges on parity. If the numbers in the two left corners have the same parity then so do the two in the two right corners. This means that the sum $S_{1}$ of the remaining numbers to be placed in the rightmost column must be even and exactly two must be the larger number of their pairs. Finally, the sum $S_{2}$ of the remaining numbers to complete the top row must be odd and exactly half of them must be the larger number of their pairs. This is not achievable as shown in our example.

The above analysis applies when the embedded square has order $4 n+2$ and the completed magic square has order $4 n$. In the opposite case (enlarging from order $4 n$ to order $4 n+2$ ), the magic sum of the square under construction is odd. The parities in the above argument must be adjusted accordingly but the contradiction is the same. We have the following general result:

Theorem: When an order $2 n$ balanced square is embedded in an order $2 n+2$ balanced magic square by the method presented in this paper, the smaller numbers of the two pairs occupying the four corners will be at opposite ends of one side (left or right) of the magic square and will be of opposite parity.

We choose not to provide a formal proof of this theorem as it is rather tedious and hardly more instructive than a well-chosen example. Moreover, it applies only to squares constructed by this method and therefore is of limited theoretical interest. Its value is primarily practical. That being said, a more elegant proof, not based so directly on details of our construction process, would be of interest and could possibly lead to further insights.

The balanced square concept can be used in another way. We begin with the order-6 magic square and embedded order-4 square shown in Figure 8. Now each number larger than 32 is increased by 288 , resulting in the square shown in Figure 9. The largest number in this square is $324=18^{2}$. This is one of nine squares which will be arranged to form an order-18 magic square. If we increase the 32 smaller numbers in this square by 36 and decrease each larger number by 36, we arrive at the square shown in Figure 10. Repeating this process of increasing the smaller entries by 36 and decreasing the larger entries by 36 produces seven more squares, the last of which is shown in Figure 11. Now we have nine $6 \times 6$ squares with magic sum 975, each of which has an embedded $4 \times 4$ square with magic sum 650 . These can be used to produce an order-18 magic square as shown in Figure 12. We leave it in this form in order to illustrate the construction method as clearly as possible. In fact, a very large number of variations are possible since the nine order- 6 squares are interchangeable as are their embedded, order-4 subsquares. These interchanges, along with the eight symmetries of a square (rotations and reflections), could change the square in Figure 12 in ways which would make the details of our construction method much less discernable.

| 33 | 12 | 13 | 2 | 30 | 31 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 36 | 11 | 28 | 27 | 8 | 1 |
| 18 | 20 | 15 | 16 | 23 | 19 |
| 5 | 14 | 21 | 22 | 17 | 32 |
| 13 | 29 | 10 | 9 | 26 | 24 |
| 6 | 25 | 34 | 35 | 7 | 4 |

Figure 8

| 285 | 48 | 39 | 38 | 282 | 283 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 288 | 47 | 280 | 279 | 44 | 37 |
| 54 | 272 | 51 | 52 | 275 | 271 |
| 257 | 50 | 273 | 274 | 53 | 68 |
| 49 | 281 | 46 | 45 | 278 | 276 |
| 42 | 277 | 286 | 287 | 43 | 40 |

Figure 10

| 321 | 12 | 3 | 2 | 318 | 319 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 324 | 11 | 316 | 315 | 8 | 1 |
| 18 | 308 | 15 | 16 | 311 | 307 |
| 293 | 14 | 309 | 310 | 17 | 32 |
| 13 | 317 | 10 | 9 | 314 | 312 |
| 6 | 313 | 322 | 323 | 7 | 4 |

Figure 9

| 33 | 300 | 291 | 290 | 30 | 31 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 36 | 299 | 28 | 27 | 296 | 289 |
| 306 | 20 | 303 | 304 | 23 | 19 |
| 5 | 302 | 21 | 22 | 305 | 320 |
| 301 | 29 | 298 | 297 | 26 | 24 |
| 294 | 25 | 34 | 35 | 295 | 292 |

Figure 11

| 321 | 12 | 3 | 2 | 318 | 319 | 285 | 48 | 39 | 38 | 282 | 283 | 249 | 84 | 75 | 74 | 246 | 247 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 324 | 11 | 316 | 315 | 8 | 1 | 288 | 47 | 280 | 279 | 44 | 37 | 252 | 83 | 244 | 243 | 80 | 73 |
| 18 | 308 | 15 | 16 | 311 | 307 | 54 | 272 | 51 | 52 | 275 | 271 | 90 | 236 | 87 | 88 | 239 | 235 |
| 293 | 14 | 309 | 310 | 17 | 32 | 257 | 50 | 273 | 274 | 53 | 68 | 221 | 86 | 237 | 238 | 89 | 104 |
| 13 | 317 | 10 | 9 | 314 | 312 | 49 | 281 | 46 | 45 | 278 | 276 | 85 | 245 | 82 | 81 | 242 | 240 |
| 6 | 313 | 322 | 323 | 7 | 4 | 42 | 277 | 286 | 287 | 43 | 40 | 78 | 241 | 250 | 251 | 79 | 76 |
| 213 | 120 | 111 | 110 | 210 | 211 | 177 | 156 | 147 | 146 | 174 | 175 | 141 | 192 | 183 | 182 | 138 | 139 |
| 216 | 119 | 208 | 207 | 116 | 109 | 180 | 155 | 172 | 171 | 152 | 145 | 144 | 191 | 136 | 135 | 188 | 181 |
| 126 | 200 | 123 | 124 | 203 | 199 | 162 | 164 | 159 | 160 | 167 | 163 | 198 | 128 | 195 | 196 | 131 | 127 |
| 185 | 122 | 201 | 202 | 125 | 140 | 149 | 158 | 165 | 166 | 161 | 176 | 113 | 194 | 129 | 130 | 197 | 212 |
| 121 | 209 | 118 | 117 | 206 | 204 | 157 | 173 | 154 | 153 | 170 | 168 | 193 | 137 | 190 | 189 | 134 | 132 |
| 114 | 205 | 214 | 215 | 115 | 112 | 150 | 169 | 178 | 179 | 151 | 148 | 186 | 133 | 142 | 143 | 187 | 184 |
| 105 | 228 | 219 | 218 | 102 | 103 | 69 | 264 | 255 | 254 | 66 | 67 | 33 | 300 | 291 | 290 | 30 | 31 |
| 108 | 227 | 100 | 99 | 224 | 217 | 72 | 263 | 64 | 63 | 260 | 253 | 36 | 299 | 28 | 27 | 296 | 289 |
| 234 | 92 | 231 | 232 | 95 | 91 | 270 | 56 | 267 | 268 | 59 | 55 | 306 | 20 | 303 | 304 | 23 | 19 |
| 77 | 230 | 93 | 94 | 233 | 248 | 41 | 266 | 57 | 58 | 269 | 284 | 5 | 302 | 21 | 22 | 305 | 320 |
| 229 | 101 | 226 | 225 | 98 | 96 | 265 | 65 | 262 | 261 | 62 | 60 | 301 | 29 | 298 | 297 | 26 | 24 |
| 222 | 97 | 106 | 107 | 223 | 220 | 258 | 61 | 70 | 71 | 259 | 256 | 294 | 25 | 34 | 35 | 295 | 292 |

Figure 12
About the authors:
Mr. Clarence Gipbsin is a student of divine mathematics who resides in California.
Dr. Lamarr Widmer is Emeritus Professor of Mathematics at Messiah University in Pennsylvania. He may be contacted at widmer@messiah.edu .

