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Abstract 

 

      In the present paper we use the flat Friedmann-Lemaitre-Robertson-Walker metric describing a spatially homogeneous 

and isotropic universe to derive the cosmological redshift distance in a way which differs from that which can be found in the 

astrophysical literature. 

      We use the co-moving coordinate re (the subscript e indicates emission) for the place of a galaxy which is emitting 

photons and ra (the subscript a indicates absorption) for the place of an observer within a different galaxy on which the 

photons - which were traveling thru the universe - are absorbed. Therefore the real physical distance - the way of light - is 

calculated by D = a(t0) ra - a(te) re. Here means a(t0) the today’s (t0) scale parameter and a(te) the scale parameter at the time of 

emission (te) of the photons. Nobody can doubt this real travel way of light: The photons are emitted on the co-moving 

coordinate place re and are than traveling to the co-moving coordinate place ra. During this traveling the time is moving from 

te to t0 (te ≤ t0) and therefore the scale parameter is changing in the meantime from a(te) to a(t0). 

      Using this right way of light we calculate some relevant classical cosmological equations (effects) and compare these 

theoretical results with some measurements of astrophysics. As one result we get e.g. the today’s Hubble parameter H0a ≈ 

62.34 km/(s Mpc). This value is smaller than the Hubble parameter H0,Planck ≈ 67.66 km/(s Mpc) resulting from Planck 2018 

data [12] which is discussed in the literature. 
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1. Introduction 

 

      The current cosmological standard model assumes the correctness of Einstein's field equations (EFE) 

containing the cosmological term Λ 
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and solves this with the help of the Friedmann-Lemaitre-Robertson-Walker metric (FLRWM) 
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which is suitable for the description of a homogeneous and isotropic universe evolving over time. 

 

      The solutions found by solving the EFE are the Friedmann equations (FE) 
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(3) 

 

Gμν is the Einstein tensor, G the gravitational constant, Tμν the energy-momentum tensor and Λ the cosmological 

constant that Einstein added to his original field equations, but later discarded. With ε = 0, +1 or -1 the constant 

of curvature was introduced and r, ϑ and φ are spherical polar coordinates. The time-dependent scale parameter 

was designated with a(t) and its time derivatives with points above. P is the pressure of matter and ρ is its 

density. 

 

      Both FE together lead to the law of conservation of energy 
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which for pressure less matter then turns into a law of conservation of mass because of P = 0: 
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(5) 

 

This mass M contains all matter that is gravitationally effective in the universe. 

In practice, due to the existence of the conservation law, only the first of the two Friedmann equations (3) is 

usually used. 
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1.1 Simplifying assumptions 

 

      The application of the theoretical standard cosmology to the measured data of the observational cosmology 

shows that the universe is flat. For this reason, the curvature constant ε is negligible. We agree with this finding, 

whereby the FLRWM and the FE simplify to 
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(3a) 

 

respectively. 

 

      The standard cosmology uses the following density parameters Ω0, i (i = M, R, Λ) for the different types of 

matter that may exist in the universe 
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(6) 

 

and determines their values using measurement data from observing cosmology. With ρ0, M today's density (first 

index 0) of the non-relativistic matter was introduced and ρ0, R describes the today's density of the relativistic 

matter, e.g. radiation (index R). A today's density ρ0,Λ is assigned to the cosmological constant Λ and the today's 

so-called critical density is defined with ρ0, c, which - neglecting the cosmological constant - corresponds to an 

equilibrium between kinetic energy (da/dt ≠ 0) and potential energy of gravitation. H0 is today's Hubble 

parameter. The dimensionless parameter h scales the Hubble parameter. 

 

      The evaluation of the measurement data using standard cosmology shows that today's quotient of ρ0,R/ρ0,M 

being 
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is very small, which is why today's radiation density ρ0,R can be neglected compared to today's non-relativistic 

matter density ρ0,M. We make use of this knowledge when deriving the redshift distance. 

 

      In the following, we also neglect the mathematical possible cosmological constant Λ. The comparison of the 

redshift distance derived here with measurement results shows in retrospect that this additional parameter is not 

required. As a result, the EFE are returned to their historically original form and the FE takes on the simpler 

form 
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2 Derivation of cosmological relevant relations 

 

2.1 Previews 

 

      From the requirement of homogeneity it follows that all extra-galactic objects remain at their coordinate 

location r in the course of the temporal development of the universe, i.e. the coordinate distance between 

randomly selected galaxies does not change over time, the galaxies rest in this coordinate system. For this 

reason, dr/dt = 0 applies to them. 

 

      This does not apply to the freely moving photons in the universe: They detach themselves from a galaxy at a 

certain point in time at a certain coordinate location, and are then later absorbed at a completely different 

coordinate location. In addition, the time-dependent scale parameter a(t) changes between the two points in time 

which stretches all real physical distances if a cosmic expansion exists. 

 

      Here we introduce the designation re (the subscript e indicates emission of light) for the coordinate location 

of the light-emitting galaxy and name the coordinate location of the galaxy in which the observer resides ra (the 

subscript a indicates absorption of light). In the Euclidean space ( = 0) considered here, both variables mark the 

coordinate distance from a coordinate origin r = 0. The constant coordinate distance between the two galaxies is 

therefore calculated to be ra - re if we assume that the galaxy of the observer is more depart from the coordinate 

origin as the light-emitting galaxy. The light should therefore move from the inside to the outside within a 

spherical assumed mass distribution (outgoing photons), which serves as a simple model for the universe (using 

the FLRWM, it is quite easy to arrange that all directions are of a radial kind). 

 

      Due to the measurable expansion of the universe we know that in the course of cosmic evolution all physical 

distances over the time-dependent scale parameter a(t) being stretched according to the FE (3b). 

 

      Then the conservation law for the product of the density of matter ρ(t) and the cube of the scale parameter 

a(t) 
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also applies. This means that A is a constant which essentially corresponds to the mass of the visible part of the 

universe (here called the Friedmann sphere). Because of A = constant Eq. (7) can also be written as 

 

 ,)()()()(
33

00

3

0

3

0 eeee aatattatA    
(8) 

 

where e and 0 denote the densities of the universe and ae and a0 are the scale parameters at two different times 

te (time point of emission) and t0 (today’s time point of absorption), respectively. Using Eq. (7) the FE (3b) 

yields 

 

 

 .
3

8
2

a

B

a

AG

dt

da








 
 

(9) 

 

With B another constant was introduced which just summarizes other constants. Using the law of mass 

conservation (7) means also that the mass of the universe which is inside a Friedmann sphere with the current 

"radius" a(t) is responsible for the expansion. This applies to all points of time. "Radius" (in quoted marks) was 

written here because a(t) does not have the meaning of a real physical radius. Only the product of the co-moving 

radial coordinate r and the scale parameter a(t) has this significance, as we shall see immediately.  

 

      For a galaxy resting in the coordinate system of the FLRWM, the real physical distance from the coordinate 

origin becomes calculated to 
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if  = 0 is considered. The co-moving coordinate r does not depend on time for galaxies. 

 

      The physical distance of the light-emitting galaxy from the coordinate origin at time te is therefore 

 

 ,)()( eeeeee rartatR   (11) 

 

while for the analog distance of the galaxy containing the observer at the same time 
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applies. The physical distance of both galaxies at the time te is therefore 
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   .)( eaeeeaeee rrararaDtD   (13) 

 

For the distance between both cosmic objects at a later time - means today‘s time here - t0 > te then applies 
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However, both distances mentioned above are worthless for the computation of cosmological relevant relations, 

since the emitted photons make their way to the observer which has to be calculated in accordance with 

 

 .0 eea raraD   (15) 

 

To see this, imagine a photon that detaches itself at the time te < t0 from the emitting galaxy at the coordinate re, 

where the scale parameter at this time has the value ae. After the photon has moved freely through the universe, it 

will arrive at the coordinate point ra, the place of the observer within another galaxy, at time t0, with the scale 

parameter at that time being a0. Thus, the photon does not travel the path described by Eq. (13) nor by Eq. (14). 

The real distance traveled by the photon is always greater than any one of these distances. This must be taken 

into account when deriving the redshift distance. 

 

      The real physical light path is illustrated by the green line in Figure 1: 

 

 

 

Figure 1. Real physical light path. 

 

      These remarks may be sufficient as a preliminary to the now following derivation of the redshift distance. 
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2.2 The redshift distance 

 

      We now want to investigate which equation results for the redshift distance (corresponding to the photon 

path), which depends on the redshift z, if the integral 
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is used. This integral results for  = 0 when the line element ds is set equal to zero in the FLRWM (2a) and radial 

(ϑ = φ = 0) outgoing photons are considered. Eq. (16) describes the motion of photons in the universe traveling 

from the coordinate re to the coordinate ra. 

 

      During the travel time of the photons, the scale parameter changes from ae to a0. If the time differential is 

replaced using the FE (9), follows from Eq. (16) 
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After the execution of the integral we get 

 

 

 
  .

2
0 eea aa

B

c
rr   

(18) 

 

Here we multiply both sides with a0 and at the same time we extract the root of a0 from the parenthesis: 
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On the left side of Eq. (19) is not yet the real path traveled by the photon, but the today’s physical distance of the 

two galaxies involved. 

 

      We now introduce the redshift. To this end, we recall the simple relation between the scale parameters at two 

different times te and t0 and the redshift z 
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and also 
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If Eq. (20b) is inserted into Eq. (19), the result is 
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Next, all unknown variables have to be eliminated from Eq. (21). First, we use the conservation law (8) in 

connection with Eq. (9) to eliminate a0 on the right side of Eq. (21). The result is 
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where 0 describes today's mass density of the universe. 

 

      For further derivation of the redshift distance, we now take into consideration the Eq. (20c) 
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to use then the light path D introduced by Eq. (15) 
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to get 
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The further calculation results from suitable step-wise putting outside the brackets and summarization 
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and 
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respectively. 
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Now we put a0ra outside the brackets on the right side of Eq. (27), which results in 
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We introduce R0a = a0ra as an abbreviation for the present physical location of the observer and solve Eq. (28) for 

D 
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As a further abbreviation we use 
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resulting in 
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The redshift distance D is therefore a function of z and the two parameters R0a and β0, which both can be 

determined by fitting the equation to the astrophysical measurements. 

 

      The name β0 was chosen for the second parameter because it is a today’s quotient of two velocities, where 

the denominator is the speed of light named c. 

 

      The literature does not know the parameter 0. It results from the non-zeroing of ra for the observer or of re ≠ 

0 for the observed galaxy. 

 

      For β0 = 1, the simpler equation results 
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      The expansion of Eq. (31) for small redshifts z leads to 
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If this equation is solved for z and then multiplied by c, the result is 
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That is how we find today's Hubble parameter 
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The Hubble parameter also depends on the speed quotient β0 introduced above and is in this form valid only for 

small redshifts because of the series expansion. This means that this H0a is only valid locally. 

 

      For parameter β0 = 1, we get 
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The reciprocal of this is the Hubble time for β0 = 1: 
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We now give another expression for 1/β0 
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which results from the Eq. (7) and Eq. (8) 
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With RS = 2MG / c
2
, the Schwarzschild radius of mass M of the Friedmann sphere was introduced for pure 

formal reason. It does not play the same role here as it does within the Schwarzschild metric. 

 

      For β0 = 1/2 we get R0a = RS. In this case we could believe that every observer is on the surface of a black 

hole (corresponds to the Friedmann sphere) and that he always looks into a black hole while observing. For a 

galaxy located in the center of the Friedmann sphere, an observer would measure an infinitely large redshift. 

Overall, that could be logical. 

 

      For β0 = 1, R0a = RS / 4 would result and the speed V0 would be exactly identical to the speed of light c. 

 

      The mass M contains all gravitational effective components of the visible universe: M = ∑ Mi. These can 

also be different energy components Ei, to which, according to Einstein's energy-mass relationship Mi = Ei/c
2
, 

masses Mi can be assigned. In addition, with M as the total mass, mass components that are invisible to us 

(perhaps only so far) are taken in to consideration. 

 

      With the help of Eq. (35) the Eq. (31) can be rewritten as 
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If the comparison with the measurement data shows β0 = 1, we would get 
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In this case, we immediately see that the total mass M of the Friedmann sphere goes directly into the equation in 

the form of the formally introduced Schwarzschild radius RS. Therefore, it can be used as a scale of cosmological 

distances. 

 

      Figure 2 shows the redshift distance (31) normalized to the distance R0a for various values of the parameter 

β0. 
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Figure 2. Redshift distance for different values of the parameter β0.  

 

      The curvature of the curves is a direct consequence of the Friedmann equation. 

 

      For β0 = 1, the distance D = R0a is achieved for z = ∞. 

 

      As a reminder: R0a is today's distance of the observer from the origin of the coordinate system, who is placed 

on the surface of "his" Friedmann sphere. 

      The comparison of Eq. (31b) with a Hubble diagram thus determines the current radius R0a = a0ra of the 

Friedmann sphere (today's physical location of the observer) and its Schwarzschild radius RS. 

 

      Overall, each observer is located on the surface of all imaginable Friedmann spheres around him (for each 

viewing direction a Friedmann sphere with the radius R0a belongs). The extragalactic objects (placed on r = re) 

observed by him then all lie according to their redshift z on a radial line somewhere between the observer 

(placed on r = ra) and the center of the Friedmann sphere (r = 0). 

 

      The physical radius R0a of the Friedmann sphere changes with time and forms a limit of visibility. Outside of 

every imaginable Friedmann sphere there is also mass, which, however, does not contribute to the gravitational 

events within the Friedmann sphere. 

 

      It should be mentioned that the conceivable Friedmann spheres naturally at least partially overlap. 

 

      An increasing limit distance R0a decreases with time the velocity V0 introduced above, because RS is a 

constant. 

Because Eq. (31) describes the physical behavior of photons in the universe, the velocity V0 in Eq. (30) could be 

interpreted as an effective speed of light c0* 
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This velocity changes according to R0a or 0 over the time and has for us as today's observers - because of very 

probable β0 = 1 - just the value of the vacuum velocity c that we can measure today. 

 

      If this interpretation is correct, the effective speed of light c0* was infinitely large at the beginning of the 

expansion of the universe, because at that time the Friedmann sphere was infinitely small and respectively its 

matter density was infinitely large. There is therefore no problem with speeds, which are apparently greater than 

today's speed of light, when looking into the universe 
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      If we consider today's Hubble parameter (34) obtained above for small redshifts as a definition, we can write 

the redshift distance via 
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also like this 
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The quotient c/H0a is called the Hubble radius RH in the literature. For this distance, the escape speed by 

definition reaches the speed of light if it is assumed that a linear Hubble law is valid for all distances, which is - 

of course - an approximation. The Eq. (31d) is therefore only valid for small redshifts how Eq. (34a). 

 

 

2.3 The magnitude-redshift relation 

 

      The magnitude-redshift relation is given by the definition of the apparent magnitude m 
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Here an apparent limit magnitude m0a was introduced for R0a, which also changes with time. Substituting Eq. 

(31) into Eq. (37) then provides the sought magnitude-redshift relation 
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The two free parameters m0a and 0 can be determined by direct comparison with a magnitude-redshift diagram. 

 

      For 0 = 1, the following simple equation results 
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For comparison, reference is made here to Eq. (51) from Chapter 4.2, which is known from the literature. 
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2.4 The angular size-redshift relation 

 

      This relation results in for large distances over 
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In this equation  means the measurable angular size and  the linear size of the observed extra-galactic object. 

 

      Using 0 = 1 we get 
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In logarithmic form Eq. (40) becomes to 
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With 0 = 1 we get the simplified equation 
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For comparison, reference is made to Eq. (52) from Chapter 4.2, which is known from the literature. 

 

 

2.5 The number-redshift relation 

 

      In flat Euclidean space the equation for the light-path sphere becomes to 
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If we introduce the redshift distance via Eq. (31) 
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we get for the number-redshift relation 
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where N0a means the expected number of objects in the light-path sphere V0a and besides 
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applies. With  the number density was named. In logarithmic form results 
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If we here also set 0 = 1, we get 
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For comparison, reference is made to Eq. (53) from Chapter 4.2, which is known from the literature. 

 

3 Comparison with measurement data of astrophysics 

 

      The present paper presents a theoretical derivation of the redshift distance, which is done without 

approximations for e.g. small redshifts z and is, therefore, mainly of theoretical nature. The essay is therefore a 

theoretical offer to the observing cosmologists. 
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      Nevertheless, in this chapter, we will apply the theory presented here in detail to some measurement results 

of observational cosmology, whereby we only demonstrate the principle of evaluating the measurement data. For 

this reason, no more detailed error analyzes are carried out. We leave that to the experts of observational 

cosmology. 

 

      The cosmological relevant parameters R0a, H0, m0a, MFS and mean values of absolute magnitudes <M> (for 

quasars and radio galaxies) given here are, therefore, only to be considered as first approximations. 

 

      In data analysis, we use data that are currently available and that are partly a bit older. Every cosmological 

theory also has to explain these older data because they represent actual measurement results and of course do 

not lose their validity over time. 

 

      Of course, we are also aware that a larger number of measured values leads to more precise results for the 

parameters contained in the theory. 

 

      The modern ΛCDM cosmology - as the current standard model - must of course also confirm exactly these 

measurement results. 

 

      In our comparison between theory and measurement results of observational cosmology, we consider the 

three well known and above calculated classical effects of cosmology which by A. R. Sandage et al. (1995) [14] 

are described: magnitude-redshift relation, angular size-redshift relation and the number-redshift relation. 

 

 

3.1 Magnitude-redshift diagram 

 

      The goal of any astrophysical theory is to match the measurement results of the astrophysicists as well as 

possible. We now want to check the magnitude of the parameters R0a and 0 introduced here. For this purpose, 

the magnitude-redshift diagram according to J. Huchra et al. (1983) [1] can be used as a first step, as Figure 3 

shows: 
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Figure 3. Magnitude-redshift diagram for 2,260 galaxies according to J. Huchra et al. (1983) [1]. 

Parameter: 0 = 1.0, m0a ≈ 22.62 with a standard deviation σ = 0.53717 

The black circles are mean values within 52 intervals ∆m of equal size of the apparent 

magnitude, to which the 52 mean values of the associated redshift intervals ∆z have been 

assigned. 

 

      The mean values used for Figure 3 are listed in Table 2. in Chapter 4.4.   

 

      With this magnitude-redshift diagram, today's apparent limit magnitude m0a ≈ 22.62 is found for β0 = 1.0. 

 

      Of course, other parameter combinations are possible. Which value pairs really correspond to reality must be 

determined by the evaluation of all astrophysical relations derived here. Here it is only a matter of explaining the 

principle of the evaluation. 

 

      If we succeed in finding the value of R0a using m0a (Eq. 37), statements can be made about the actual size of 

the Friedmann sphere (FS), its constant mass MFS, and consequently its current matter density ρ0. 

 

      In addition, we can then immediately deduce from the measured redshifts the associated absolute magnitudes 

of the objects if the cosmological redshift is considered as the only possible component of the redshift of 

extragalactic objects. 
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      The prerequisite for the determination of the parameters mentioned is to find at least one extra-galactic object 

which is located exactly on the theoretical curve with the parameter pair 0 = 1.0 and m0a = 22.62 and whose 

absolute magnitude M is known. For this purpose, the literature was reviewed and the following objects were 

found: 

 

object cz [km/s] log10(cz) m M reference 

M100 = NGC 4321 1560 3.1931 10.26 -20.9 [2] 

M96 = NGC 3368 899 2.9538 10.32 -20 [3] 

NGC 4571 343 2.5353 12.09 -18.82 [4] 

IC 4182 339 2.5302 9.55 -19.92 [5] 

mean value object 785.3 2.8950 10.56 -19.91  

 

Table 1.  Some galaxies with known absolute magnitude 

 

      Measurements not found in the cited literature were taken from the articles by J. Huchra et al. (1983) [1], R. 

C. Kraan-Korteweg et al. (1979) [6] and A. Sandage et al. (1975) [7]. 

 

      Unfortunately, all of these galaxies are not lying on the theoretical curve using the pair of parameters used 

above. But averaging results fortunately in an object that is at least very close to the curve, as shown in Figure 4: 
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Figure 4. Magnitude-redshift diagram for the galaxies NGC 4321, NGC 4571, NGC 3368 and IC 4182. 

Parameter: 0 = 1.0, m0a ≈ 22.62 with a standard deviation σ = 0.02909 

 

      The absolute magnitude of the mean value object yields R0a ≈ 3,206 Mpc when the equation 
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is used. This result provides today’s Hubble parameter H0a ≈ 62.34 km/(s Mpc) and the associated current 

Hubble time t0a ≈ 15.7 x 10
9
 years, which fits well with the age of the oldest globular star clusters. With 0 = 1 

the Schwarzschild radius RS = 4∙R0a ≈ 12,824 Mpc results and from this the mass of the Friedmann sphere to MFS 

≈ 2.67 x 10
56

 g. 

 

      If we consider R0a as the radius of the Friedmann sphere, its current mass density results in ρ0FS = ρ0M ≈ 6.57 

x 10
-29

 g/cm
3
. This density is actually much higher than today's radiation density with ρ0R ≈ 7.80 x 10

-34
 g/cm

3
. 

This actually justifies neglecting the radiation density when deriving the redshift distance afterwards. 

 

      Now a few words to the curvature of the theoretical curve for large redshifts follow. One of the original goals 

in finding the right Hubble law was the poor consistency of the textbook theory with the magnitude-redshift 

diagrams of quasars. Figure 5 shows such a diagram for the quasar data according to Véron-Cetty (2003) [8] and 

the radio galaxy data of A. Sandage (1972) [9]. 
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Figure 5. Magnitude-redshift diagram for the mean values of quasars (Véron-Cetty 2003) [8] and radio 

galaxies (Sandage 1972) [9] in comparison with the textbook theory (blue curve) and the 

theory presented here (green curve). 

Parameter: 0 = 1.0, <MQ> ≈ -22.29 with a standard deviation σ = 0.19415, m0aQ ≈ 20.24 and 

R0a ≈ 3,206 Mpc 

 

      Because the cosmological redshift z generally only depends on the distance (the light path traveled by the 

photons) of the observed cosmic objects [Eq. (31)] but the apparent magnitude m depends on the light path and 

on the absolute magnitude M of the objects, the redshift in averaging for large data sets is generally to be 

regarded as primary. For this reason, we first formed 45 redshift intervals ∆zi for the total number of 48,690 

quasars, each with an equal number of quasars (n = 1082). This procedure ensures good statistics even for the 

smallest and largest redshifts. 

 

      Corresponding intervals of the apparent magnitude ∆mi belong to these redshift intervals ∆zi (1 ≤ i ≤ 45). We 

calculated the mean values <zi> and <mi> in both intervals. These mean values are shown in Figure 5 as yellow 

squares. The list of mean values can be found as Table 3. in Section 4.4. 

 

      The curved solid line (green) corresponds to the magnitude-redshift relation derived here, which has been 

adjusted within in the curved area with <MQ> ≈ -22.29 to the interval mean values of the quasars (yellow 

squares). The straight line drawn (blue) corresponds to the textbook theory. It was adapted to the radio galaxies 

(black triangles). The straight dotted line (black) is the best curve through the radio galaxies. The other dotted 

curved line (red) is a best-fit curve only by the averages of the quasars, whose equation is also shown in the 

figure above. 

 

      The quasars with about <MQ> ≈ -22.29 on average are slightly fainter than the radio galaxies used here for 

comparison, for which <MRG> ≈ -22.8 is found. The quasars are therefore less absolute bright than previously 

thought. 

 

      It turns out that the average value pairs of 48,690 quasars can be described best with 0 = 1. This is also the 

deeper reason why for the determination of m0a using the magnitude-redshift diagram according to J. Huchra 

(1993) [1] 0 = 1 has been chosen. 

 

      If 0 = 1 is accepted as correct, it follows that the current effective speed of light V0 = c0* [Eq. (30a)] is 

exactly equal to the speed of light c0 which is measurable today! This result would be immediately obvious. 

 

      The theory presented here is able to explain correctly the average locations of the quasars in the magnitude-

redshift diagram and to eliminate their previously assumed magnitude problem. 
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3.2 Angular size-redshift diagram 

 

      We use further the parameter choice 0 = 1 and m0a ≈ 22.62 and consider the angular size-redshift diagram 

according to K. Nilsson (1993) [10], which is shown in Figure 6: 

 

 

 

 

Figure 6. Angular size-redshift diagram according to K. Nilsson et al. (1993) [10]. 

Parameter: 0 = 1.0, (δ/R0a) ≈ 6.14 x 10
-5

 with a standard deviation σ = 0.00378 within the 

linear part of the curve, R0a ≈ 3,206 Mpc and δ ≈ 0.197 Mpc 

No mean values were formed making this diagram. 

 

      The result for the quotient /R0a ≈ 6.14 x 10
-5

. This means an average linear size of the objects of  ≈ 0.197 

Mpc if R0a ≈ 3,206 Mpc is assumed. 

 

      The picture shows that the textbook theory for the flat Euclidean space [Eq. (52)], the upper curved curve 

(blue), fits less well with the measured values than the theory presented here (green). 

 

 

3.3 Number-redshift diagram 

 

      Again we choose 0 = 1 and m0a ≈ 22.62 to evaluate the following number-redshift diagram. 

-1 

-0,5 

0 

0,5 

1 

1,5 

2 

2,5 

3 

3,5 

4 

2,5 3 3,5 4 4,5 5 5,5 6 6,5 

lo
g 1

0(
 L

A
S 

) 
  [

 a
rc

se
c 

] 

log10( cz ) 



 24 

 

 

 

Figure 7. Number-redshift diagram for 48,690 quasars according to M.-P. Veron-Cetty (2003) [8]. 

Parameter: 0 = 1.0 with a standard deviation σ = 0.14564 and N0a = 48,690 

 

      The measuring points shown in Figure 7 correspond to the summation of the number of quasars within 64 

redshift intervals of equal size. In chapter 4.4 (mean value tables) the details are given. 

 

      For the sake of simplicity, N0a = 48,690 has been chosen in this figure, which is exactly the number of 

quasars in the catalog of Véron-Cetty (2003) [8] for which the redshift is given there. 

 

      The upper curve (blue) again corresponds to the theory for the flat Euclidean space from the literature [Eq. 

(53)], while the lower solid curve (green) represents the number-redshift relation derived here. The dotted curve 

(red) is a best-fit curve whose formula is also shown within the diagram. 

 

      The theory from the literature expects almost 10 times the number of quasars for large redshifts compared to 

the theory presented here. That is certainly wrong. 

 

      The fact that the theory and the measurement data do not agree exactly may be due to the fact that 

developmental effects could play a role (e.g. the existence or nonexistence of temporally first quasars for large 

redshifts and temporally last quasars for small redshifts), but such effects have not been considered in the 

derivation of Eq. (46) given here. 

 

log10( N ) = -0.8827 log10
2 (cz ) + 11.21 log10( cz ) - 30.841 

1,5 

2 

2,5 

3 

3,5 

4 

4,5 

5 

5,5 

4 4,5 5 5,5 6 6,5 

lo
g

1
0
( 

N
 )

 

log10( cz ) 



 25 

      In addition, it must be assumed that the measurement data are incomplete: The measurements probably do 

not extend far enough into the redshift space and some of them certainly do not take into account existing 

quasars in different directions, this means in summery they do not cover the whole space. 

 

4 Additions 

 

4.1 About the mass of Friedmann sphere 

 

      The cause of the expansion of the universe visible to us as observers is its constant mass M or the time-

varying density ρM(t), respectively. It ensures that the scale parameter changes over time. To check this 

statement, simply set the matter density in the Friedmann equation to zero. 

 

      Every cosmologist, therefore, has to ask himself where exactly this mass is located in the universe. He can 

gain an answer for this by borrowing the appropriate ideas from classical non-relativistic Newtonian cosmology. 

There he has to imagine a mass sphere whose radius changes over time (e.g., grows). This means that the mass in 

question is completely within this sphere, and it is evenly distributed and remains there according to the 

cosmological principle. In relativistic cosmology, the time depend product of scale parameter and coordinate 

distance R(t) = a(t) r takes over the role of the physical radius of the mass sphere, and it holds that the entire 

mass to be considered is inside this sphere (Friedmann sphere named here).  

 

      Incidentally, the Friedmann equation of the flat universe looks strangely exactly as the equation of the non-

relativistic Newtonian cosmology. There is no relativity seen in the equation e.g., in the sense of limiting the rate 

of change da/dt of the scale parameter to the speed of light. 

 

      The Figure 8 shows the projection of a Friedmann sphere in to the plane at time t0 (today) in which examples 

of possible places for an observer and galaxy observed are drawn. 
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Figure 8. Friedmann sphere with examples of physical locations of an observer and a galaxy. 

 

      Because of the law of conservation of mass  
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which is used here we see that R0a is today's radius of the Friedmann sphere with today's mass density ρ0. 

 

      An observable galaxy can minimally have the co-moving coordinate with re = 0. If a galaxy is placed there, 

we observe an infinitely large redshift for such a galaxy according to our redshift distance. For all other locations 

re ≠ 0 of an observed galaxy, a smaller redshift is always measured. 

 

      Because an infinitely large redshift is always observed for the light path D = R0a, it can be assumed that in 

the physical radius R0a = a0 ra of a Friedmann sphere, the co-moving coordinate ra has the maximum possible 

value r = 1 according to the complete FLRWM. R0a, therefore, describes the maximum size of the Friedmann 

sphere, which of course is time-dependent. This maximum value of the co-moving and dimensionless radial 

coordinate r follows from the FLRWM with positive curvature ε = 1 and, from our point of view, can 

theoretically not simply be neglected despite the flat space-time assumed for today's universe. 
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      Of course, each observer can also, e.g., look in exactly the opposite direction to the direction shown (green 

arrow). In this case, he looks again into a Friedmann sphere, which belongs to this direction. For D = R0a there is 

also an infinite redshift in this direction. The observer can of course also look in any other directions. The 

observer always looks into Friedmann spheres, which of course partially overlap. 

 

      Overall, there is a part of the universe with a spherical radius R0a, that is visible to any observer. A universe 

thought to be spherical corresponds to at least one sphere with the radius 2∙R0a, since beyond R0a there is always 

also mass. Every observer sits on the surface of Friedmann spheres. Nevertheless, he can believe that his place is 

also in a center of such a Friedmann sphere. 

 

      If we would put the position of an observer a little outside the Friedmann sphere shown in Figure 8, he would 

find the same situation as described above, if the universe would be actually much larger than a sphere with the 

radius 2∙R0a or even infinitely large. 

 

 

4.2 About the derivation of the redshift distance in the literature 

 

      In the literature, the observer is usually placed in the coordinate origin ra = 0 (see Figure 9). Because of re ≥ ra 

= 0, this results in the light path simply as Dliterature = a0 re. This depends only on the co-moving coordinate 

location re of the observed galaxy and on the today’s value of the scale parameter a0. An earlier scale parameter 

such as ae does not play a role in this approach, which we consider as a strong limitation of the generality.  

 

      In this case, the photons run inside a mass sphere from the outside to the inside, i.e. always towards the 

origin ra = 0 (incoming photons). Any other way of defining Dliterature would be physically nonsense. 
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Figure 9. Observer generally placed on the center of the co-moving coordinate system (ra = 0). 

 

      The calculation analogous to our derivation of the redshift distance (see chapter 2.2) results first in 
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(48) 

 

      We have denoted the index of the maximum distance for which z = ∞ is reached with 0, because the 

calculation based on Dliterature, i = a0 re, i generally gives the today’s distance between any galaxy i and any 

observer. 

 

      In the literature, the magnitude distance is indicated with 
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whereby with the help of factor (1 + z) an overall thinning of the number of photons due to the enlargement of 

the spherical area on which the radiation hits after its way through the universe and the energy loss due to the 

redshift is taken into consideration. 

 

      So it results first in 
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Here, too, the prefactor is a distance parameter for which can be introduced an apparent magnitude. 

 

      If, in a case which is also possible, the observed galaxy (each one because there are many; see Figure 10) 

each placed to its own coordinate origin (outgoing photons), the result of calculation - for obvious reasons of 

symmetry - is of course the same redshift distance as above. This can easily be checked by means of an 

elementary calculation. 
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Figure 10. Observed galaxies (i = 1, 2) each in their own coordinate origin (rei = 0). 

 

      Therefore, this results for the magnitude-redshift relation in 
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For the angular size-redshift relation we find 
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For the number-redshift relation we get accordingly 
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All three equations also result from the well-known Mattig equation (1958), if the delay parameter q0 = 1/2 is set 

there, whereby this equation describes a flat universe (see, e.g. A. R. Sandage et al. [11]). 

 

      We have used Eq. (51), Eq. (52) and Eq. (53) in the measured value diagrams for comparison with the theory 

presented here. 
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4.3 Consideration of the radiation density in the early days of cosmological expansion 

 

      When deriving the redshift distance in Chapter 2.2, we neglected the relativistic radiation density ρR that was 

originally dominant in the early days of the universe. The reason for this is that today, actually for several billion 

years, this density no longer plays a role in the further development of the universe over time due to its small 

value compared to the non-relativistic mass density ρM. 

 

      If this radiation density is taken into account from the start when deriving the redshift distance according to 

the scheme in chapter 2.2 the result is a more complex redshift distance because it then also dependent on a 

further parameter: 
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(54) 

 

      Here the current density quotient Ω0,RM is included as a further parameter, which takes into account the very 

early radiation era. For today's radiation density, the designation ρ0,R was introduced again and today's non-

relativistic mass density was named ρ0,M. The parameter β0,RM corresponds to our parameter β0 in Eq. (31). 

 

      With the numerical values for today's density quotient Ω0,RM mentioned in chapter 1, it can be seen 

immediately that ρ0,R or Ω0,RM can actually be neglected. 

 

      In addition, when comparing Eq. (54) with the measured values (e.g., magnitude-redshift diagram of the 

quasars), there is no longer any effect fitting the measurement curve for a density quotient smaller then Ω0,RM ≈ 

0.01. 

 

      If we set Ω0,RM = 0 in Eq. (54) - this corresponds to our neglect of today's radiation density ρ0,R - we get Eq. 

(31) again. Accordingly, this Eq. (31) is actually valid as today's redshift distance, containing the parameters R0a 

and β0,RM =  β0 only. 

 

 

4.4 Mean value tables 
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      We also state here the data sets (mean value formation) used by us for the evaluation of cosmological 

relevant measurement data in order to offer a verification option. 

 

(I) Data set from J. Huchra et al. (1983) [1] 

 

      This data set is limited to m = 14.5 with regard to the apparent magnitude. Therefore, we have formed 52 

equal intervals of the apparent magnitudes and calculated the mean values <m>. Than we assigned the mean 

values <z> of the redshift to these mean values. The result is shown in Table 2. 

 

interval < z > < m > interval < z > < m > interval < z > < m > interval < z > < m > 

1 0.02011 14.500 14 0.00792 13.214 27 0.00415 11.945 40 0.00321 10.650 

2 0.01891 14.401 15 0.00878 13.127 28 0.00459 11.835 41 0.00414 10.536 

3 0.01669 14.301 16 0.00771 13.023 29 0.00323 11.744 42 0.00431 10.450 

4 0.01613 14.202 17 0.00739 12.932 30 0.00386 11.636 43 0.00296 10.325 

5 0.01500 14.102 18 0.00619 12.845 31 0.00429 11.548 44 0.00372 10.262 

6 0.01577 14.001 19 0.00700 12.730 32 0.00437 11.432 45 0.00164 10.063 

7 0.01453 13.901 20 0.00671 12.630 33 0.00246 11.321 46 0.00306 9.840 

8 0.01290 13.805 21 0.00612 12.544 34 0.00307 11.241 47 0.00161 9.630 

9 0.01277 13.704 22 0.00590 12.445 35 0.00224 11.145 48 0.00082 9.570 

10 0.01086 13.606 23 0.00518 12.345 36 0.00191 11.065 49 0.00150 9.190 

11 0.01122 13.509 24 0.00454 12.243 37 0.00272 10.926 50 0.00158 9.030 

12 0.01042 13.410 25 0.00519 12.133 38 0.00296 10.840 51 0.00102 8.910 

13 0.00936 13.311 26 0.00384 12.038 39 0.00383 10.735 52 0.00077 8.580 

 

Table 2.  Averaging for the data set of J. Huchra et al. (1983) [1] 

 

These data were used making Figure 3. 

 

 

(II) Data set of  M.-P. Véron-Cetty and  P. Véron (2003) [8] 

 

(IIa) Magnitude-redshift diagram 

 

      Because of the large number of quasars within this data set we first formed 45 redshift intervals with 1,082 

quasars each (a total number of 48,690 quasars) and calculated the corresponding redshift mean values <z>. We 

then calculated the associated mean values <m> of the apparent magnitude. The result is shown in Table 3. 

 

interval < z > < m > interval < z > < m > interval < z > < m > 

1 0.22781 16.655 16 1.26497 19.629 31 1.88573 19.671 
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2 0.42411 18.131 17 1.30822 19.604 32 1.92566 19.703 

3 0.54586 18.61 18 1.35045 19.624 33 1.96734 19.557 

4 0.63882 18.856 19 1.39277 19.587 34 2.01270 19.656 

5 0.71446 19.132 20 1.43575 19.686 35 2.06101 19.702 

6 0.77836 19.321 21 1.47938 19.658 36 2.10707 19.678 

7 0.83364 19.463 22 1.51873 19.682 37 2.15417 19.716 

8 0.88507 19.456 23 1.55518 19.687 38 2.20282 19.638 

9 0.93860 19.486 24 1.59433 19.718 39 2.25829 19.678 

10 0.99056 19.515 25 1.63636 19.723 40 2.32477 19.604 

11 1.04083 19.491 26 1.67718 19.76 41 2.40868 19.669 

12 1.08687 19.533 27 1.71901 19.669 42 2.51872 19.741 

13 1.13313 19.564 28 1.76149 19.792 43 2.67596 19.708 

14 1.17863 19.581 29 1.80252 19.715 44 2.95107 19.488 

15 1.22118 19.626 30 1.84408 19.764 45 3.85371 20.147 

 

Table 3.  Averaging the data set by M.-P. Véron-Cetty and P. Véron (2003) [8] 

 

These data were used making Figure 5. 

 

(IIb) Number-redshift diagram 

 

      To create this diagram, we first formed 64 redshift intervals of equal size and then calculated the associated 

numbers of quasars within these z intervals. The result is shown in Table 4. 

 

z-interval 

upper limit N 

z-interval 

upper limit N 

z-interval 

upper limit N 

z-interval 

upper limit N 

0.1 88 1.7 2,612 3.3 150 4.9 15 

0.2 295 1.8 2,565 3.4 81 5 10 

0.3 388 1.9 2,589 3.5 45 5.1 4 

0.4 623 2 2,620 3.6 44 5.2 3 

0.5 805 2.1 2,283 3.7 91 5.3 1 

0.6 1,031 2.2 2,276 3.8 87 5.4 0 

0.7 1,340 2.3 1,883 3.9 78 5.5 1 

0.8 1,666 2.4 1,379 4 57 5.6 1 

0.9 2,063 2.5 1,076 4.1 76 5.7 0 

1 2,065 2.6 774 4.2 72 5.8 1 

1.1 2,271 2.7 626 4.3 65 5.9 1 

1.2 2,376 2.8 454 4.4 56 6 1 

1.3 2,491 2.9 365 4.5 50 6.1 1 
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1.4 2,556 3 271 4.6 21 6.2 0 

1.5 2,542 3.1 249 4.7 18 6.3 2 

1.6 2,834 3.2 187 4.8 14 6.4 1 

 

Table 4. Number N of quasars within redshift intervals of equal size in the data set of  M.-P. Véron-

Cetty & P. Véron (2003) [8] 

 

These data were used making Figure 7. 
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