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We consider the nontrivial existence, dynamics and indications of the flows when all eigenvalues of
the velocity gradients are real, thus ‘lone’, i.e., without forming the complex conjugate pairs which
are associated to the swirls. A generic prototype is the ‘lone Schur flow (LSF)’ whose velocity gradi-
ent tensor is uniformly of Schur form but free of complex eigenvalues. A (partial) integral-differential
equation governing such LSF is established, and a semi-analytical algorithm is accordingly designed
for computation. Simulated evolutions of example LSFs in 2- and 3-spaces show rich dynamics
and vortical structures, but no obvious swirls (nor even the homoclinic loops in whatever distorted
forms) could be found. We discovered the flux loop scenario and the anisotropic analogy of the
incompressible turbulence at or close to the critical dimension Dc = 4/3 decimated from 2-space.

A simple planar Couette flow is vortical but with no
swirls, and a point vortex flow or, more generally, flows
with singular curves present swirls (as the Bose-Einstein
condensates modeled by the Gross-Pitaevskii equation
[1] with phase defects in 3-space): such are text-book
examples but not the generic viscous flows, in the latter
of which the genesis and control of swirls are important
and difficult problems. For example, swirling motions of
fluids, ranging from (ultra-)cold atoms, to classical flows
in our daily lives or industries, and to controlled fusion
and asstrophysical plasmas, are ubiquitous and intriguing
phenomena. The genesis and sustainance of such ‘vor-
texes’ as the well-known Great Red Spot or the recently
photographed octagonal and pentagonal cyclone clusters
encircling, respectively, the northern and southern poles
of Jupiter [2], remains mysterious in some sense.

The velocity gradient tensor (VGT) plays a central role
in solvable and physical models of turbulence fundamen-
tals and phenomenologies (e.g., [3–5]). While on the very
basic side, people have been puzzled by the issue of the
identification of vortex and have resorted to the phase
portraits of dynamical systems defined by VGT (e.g.,
Ref. [6] in which the authors express the opinion that
“it is unlikely that any definition of a vortex will win
universal acceptance.”) And, it appears to us that the
pure kinematic identification without specifying the def-
inite hydrodynamics is fundamentally incomplete, which
underlies the real difficulty of the problem. For instance,
complex eigenvalues of the VGT are associated to foci or
centers, thus spirals or rotations, and have been consid-
ered by various authors in identifying swirling vortexes
(e.g., [6]), but with unsatisfying features [7] (c.f., foot-
note 6 of a parallel communication [8]). However, in our
opinion, neither the proposal nor the objection makes
complete sense without referring to the specific dynam-
ics.

Since a matrix can always be transformed into the real
Schur form [9], a ‘real Schur flow (RSF)’ uniformly of
such VGT matrix could play a role in fundamental hy-
drodynamics and turbulence resembling that of special
relative in general relativity, in the author’s belief [10–
12]: in somewhat more mathematical language, the RSF

solutions may form a kind of ‘generating subspace’ of
NSF, with the generating rule, serving as the physical
‘equivalence principle’, thus other possible physics sep-
arately embedded in the (real) Schur transformations.
Now, the dynamical framework and tool are established
to directly attack some of the problems, and the first key
results are reported here: the basic idea is to analyze
the “‘lone’ Schur flow (LSF)” whose VGT is of the Schur
form (‘real’ or not) uniformly over space and time, but
with the VGT eigenvalues being all real, thus ‘lone’, i.e.,
without forming a complex conjugate pair.

For the velocity vector u := {u1, u2, u3}, with the in-
dex ‘,i’ ↔ ‘∂xi ’, the matrix representation of ∇u in the
‘Schur frame’ (with appropriate coordinate transforma-
tion when necessary [9]),λ1 γ1 γ2

0 λ2 γ3
0 0 λ3

 or

u1,1 u2,1 u3,1

��u1,2 u2,2 u3,2

u1,3//// u2,3//// u3,3

 . (0L,0R)

Associated to the RSF, u1,2 in (0R) does not necessarily
vanish (while u1,3 = u2,3 ≡ 0), with a conjugate ‘pair’ of
complex eigenvalues λ1 = λ∗

2 besides the real one λ3 in
(0L) where γ1, γ2 and γ3 are real, but when all eigenval-
ues are real, λ1 = u1,1, λ2 = u2,2, λ3 = u3,3 and u1,2 = 0
as indicated by the slash for LSF. It is trivial to reduce to
the 2-space LSF by considering only the upper-left 2× 2
(sub)matrix or letting u3,3 = λ3 ≡ 0.

Other issues about the RSF with VGT allowing com-
plex eigenvalues are discussed in Ref. [8] where the ‘flux
loop’ scenario as in two-dimensional (2D) turbulence with
stratification [13] or compressibility [14] are found to be
responsible for sustaining nonuniversal large-scale vortex.
Related 2D arguments can be traced back to Onsager [15]
and Kraichnan [16] (K67), among others, but a system-
atic understanding is still not available. The current LSF
results, as those of RSF [8], show that the largest scales
of the system driven at small scales depend on the forc-
ing/acceleration schemes. And, the dynamical behavior
of LSF is reminiscent of the critical dimension, argued
to be Dc = 4/3 where the generalized K67 absolute-
equilibrium and Kolmogorov 1941 k−5/3-cascade spec-
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tra meet [17], and of the decimation [18]: LSF will also
be shown to be of some ‘critical’ behaviors, anisotropic
though.

Incidentally, concerning the dynamics of VGT and the
connections with turbulence physics, misinterpretation
of the “processes relate to the turbulent energy cascade”
can easily arise and be dynamically misleading, as em-
phasized by Carbone and Bragg [19] who avoid the claim
of ‘physical mechanism’ which would ‘require an expla-
nation for why’ the associated properties are such and
such. The lesson applies to flows in both 2- and 3-spaces.
Thus, though it is presumably informative (see also Ref.
[20] and references therein) to compare such VGT rele-
vant properties of RSF, LSF and NSF, we resist rushing
immediately into such measurements and making quick
claims before careful systematic analysis which is being
initiated. Also promising are the comparative studies in
such systems the combustion, dynamo and aeroacoustics,
as partly indicated in Ref. [11]. Vieillefosse [21] found
the finite-time singularity of the restricted Euler equa-
tion model proposed there by working in the principle
frame of the shear rate matrix where some of Cantwell’s
[22] exact results are presented as well (see also Carbone
and Bragg [23] for the local reduction of dimensional re-
suction of the pressure Hessian, and references therein
for others), and some possibility of similar fashion was
speculated in footnote 6 of Ref. [10], deserving further
consideration.

Although some of the results are applicable also for
more general gases as those of RSF [12], here we restrict
to the barotropic case for simplicity; and, for the same
reason, appropriate viscosity and acceleration won’t af-
fect the following analysis, thus are neglected for the time
being. That is, we start from the Euler equation

∂tρ+∇ · (ρu) = 0, (1)
∂tu+ u · ∇u = −ρ−1∇p. (2)

For the barotropic case, we can introduce the spe-
cific enthalpy Π (up to a constant), ∇Π := (∇p)/ρ,
and the isothermal (constant-temperature) relation
p = c2ρ results in ∇Π = c2∇ ln ρ, or, up to irrelevant
constant, simply Π = c2 ln ρ, where c is the sound speed.

Now, consider the LSF with

u1,2 = u1,3 = u2,3 ≡ 0. (3)

We have one-dimensonal u1(x1), two-dimensional
u2(x1, x2) and three-dimensional u3(x1, x2, x3), a
‘1D2D3D’ flow. Fourier representation can be applied
for periodic solutions, and an example field u(t0) is a1 sin( 1k1x1)

a2 cos( 2k1x1) sin( 2k2x2)
a3 cos( 3k1x1) cos( 3k2x2) sin( 3k3x3)

 , (4)

or the (random) superpositions of such ansatz or others,
which can be used as the initial and/or the acceleration

fields in the simulations and where a• and •k• are spa-
tially uniform real coefficients. Fig. 1 presents an ex-
ample initial field, with a• = •k• = 1 in Eq. (4), and
the decay from it (starting from time t0, according to
the LSF dynamics with viscosity to be established be-
low) at the time when small scales are well excited. We
see well-structured vorticity (∇×u) isosurface patterns,
but, as checked also from various other orientation views
(Supplementary Materials), no swirling structures, large
‘(anti)cyclones’ or small ‘eddies’, can be observed from
the velocity streamlines. The decay from the same field
of RSF and NSF, in both 2- and 3-spaces, however obvi-
ously generate swirls (not shown), as should be expected.
The absence of swirls in LSFs will be further examined
dynamically.

FIG. 1. Isosurfaces of vorticity amplitudes and velocity
streamtraces of LSF given by Eqs. (4) as the initial field (left)
and decaying to a state with developed multi-scale excitations
(right).

The establishment of the governing equations and the
computational algorithm for LSF can be concisely de-
scribed as follows, while that for those of RSF in similar
fashion can be found in Refs. [12] and [8] which offer
more details for comparison.

First, it is not hard to see that Eq. (3) requires
Π = P3(x3, t) + P2(x2, t) + P1(x1, t). (5)

We then consider the LSF in a box of dimension Lz ×
L2 × L3, cyclic in each direction. Introducing

⟨•⟩123 :=

∫ ∫ ∫
•d3x

L1L2L3
and ⟨•⟩ij :=

∫ ∫
•dxidxj

LiLj
, (6)

with i, j = 1, 2 and 3, we have
Π = ⟨Π⟩23 + ⟨Π⟩13 + ⟨Π⟩12 − 2⟨Π⟩123. (7)

Taking ϱ = u·∇ ln ρ+∇·u we obtain further from Eqs. (1
and 2) for the isothermal flow, or even the nonbarotropic
ideal gas with p = ρRT with accompanying structures
of T , as for RSF [12], the (partial) integral differential
equation

∂t ln ρ = 2⟨ϱ⟩123 − ⟨ϱ⟩23 − ⟨ϱ⟩13 − ⟨ϱ⟩12. (8a)
∂tu1 + u1u1,1 = −c2(ln ρ),1, (8b)

∂tu2 + u1u2,1 + u2u2,2 = −c2(ln ρ),2, (8c)
∂tu3 + u · ∇u3 = −c2(ln ρ),3. (8d)
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The above derivation works also for the case with appro-
priate external acceleration and internal viscosity, and
the results may be used in designing the algorithm for
computation: the latter is assured by the observation
that, given the initial LSF, the above system evolves still
to an LSF at a later time.

Our computational algorithm for LSF, integrating di-
rectly Eqs. (8a,8b,8c and 8d) with the replacement

u1 = ⟨u1⟩23 and u2 = ⟨u2⟩3, (9)

is semi-analytical in the sense that the relations (5) [or
(7)] and (3) are satisfied “precisely” (up to the computer
round off errors, independent of the numerical errors
from whatever methods). And, high-order finite differ-
ence schemes are used for spatial discretization (with 128
homogeneous grids in each direction) and time march-
ing was made with third order Runge-Kutta method (see
Ref. [8] for such same details). All variables are nondi-
mensionalized with appropriate normalization and the
Reynolds number for all cases to be presented is set to
be Re = 350. Scuh a Reynolds number is not high but
the acceleration are added with randomness (in time) in
the coefficients, reaching a quasi-steady state, thus the
numerical results with developed multi-scale excitations
may well be regarded as ‘turbulence’ in the common sense
(though we do not have a consensus on the definition
yet).

To prepare for the discussions of the computational re-
sults, we should address the structure of the dynamical
equations. First of all, on the one hand, the horizontal
vortical mode of LSF is 2D (with the presure terms elim-
inated by curling the uh = {u1, u2} equations to obtain
the vertical vorticity equation), thus in principle such a
system can support a ‘flux loop’ as discovered in 2D com-
pressible flows [14], resembling that in 2D stratified tur-
bulence [13], with additional 3D transfer channels now,
just as the general RSF studied in Refs. [8, 12]; on the
other hand, the vertical vorticity equation is ‘lamed’ now,
with u1,2 = 0 and with no contribution from Eq. (8b),
thus the intrinsic mechanism driving the inverse transfer
of 2D solenoidal excitations and that for the flux loop
may not be as efficient as that of general RSFs; also, the
coupling of the uh and u3 dynamics through the pres-
sure/density gradients is presumably weaker, due to less
quadratic interactions in Eq. (8a): in ⟨ϱ⟩1 we now won’t
have the quadratic interacton ⟨u1(ln ρ),1⟩1 which however
survives in a general RSF.

Numerical tests of the above remarks were performed
with both decaying and driven cases and more analytical
arguments on the statistical dynamic ‘mechanism’ fol-
low. Just as the analysis for the incompressible RSF in
3-space [10], it is shown that solutions strictly periodic
in x2 is not allowed for incompressible LSF in 2-space
with uniformly vanishing u1,2, but it is helpful to still
use finite Fourier modes for approximation and formally

adapt Kraichnan’s [16] (K67) argument with the statis-
tical absolute equilibria for the inverse energy cascade
of incompressible 2D flows. We consider the constant of
motion, C = cEE+cWW where cE and cW are the ‘tem-
perature’ parameters and where the kinetic energy and
enstrophy are, respectively,

E =
1

2

∑
k

|û1(k)|2δ0,k2
+ |û2(k)|2 (10)

W =
1

2

∑
k

(k21 + k22)[|û1(k)|2δ0,k2
+ |û2(k)|2]. (11)

The Kronecker delta δ0,k2
then also characterizes the

canonical ensemble for the presumed absolute equilib-
rium spectra [16]

U1(k) := ⟨|û1|2⟩/2 = δ0,k2/(cE + cW k2), (12)
U2(k) := ⟨|û2|2⟩/2 = 1/(cE + cW k2). (13)

Such anisotropic statistical absolute equilibria (with ‘neg-
ative temperature’ parameter cE) do still indicate the
possibility of sustaining large-scale concentration of the
kinetic energy. Now, the fact that only U2 concentrates
at small k for k2 ̸= 0 also indicates weaker effects of con-
densation. We then expect that the mode interactions
leading to the inverse transfer of LSF are much weaker
than the complete NSF.

FIG. 2. Left: Power spectra of velocities in the (statisti-
cal) steady states of three simulations starting from different
initial fields, accelerated at k ≈ 10 (Ma = 0.1: upper row);
right: Isosurfaces of vorticity amplitudes and velocity stream-
traces, accelerated at k ≈ 5 (Ma = 1: lower row) .

The upper-left panel of Fig. 2 presents the power spec-
tra E1, E2 and E3 of, respectively, u1, u2 and u3 of
a chosen snapshot in the (statistical) steady state with
E = E1 + E2 + E3 close to the time average: the accel-
eration obeys Eq. (4), with k ≈ 10 ( 1k1 = 10, 2k1 = 6,
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2k2 = 8, 3k1 = 6, 3k2 = 6 and 3k3 = 6) and with random
(in time) a1, a2 and a3 being of identical independent dis-
tribution uniformly over (0.5, 1.5], and the Mach number
is 0.1. As for the general RSF [8], the viscosity model is
chosen to be Re−1∇2u. The initial field also obey Eq.
(4) with •k• = 1 and now a1 = a2 = a3 = 10−1. It is
seen that the excitations at the lowest modes can be sus-
tained, with the establishment of the other excitations
in between and resembling the dual-cascade scenario of
2D incompressible turbulence, as also found in compress-
ible and stratified 2D turbulence with flux loops [13, 14].
The conclusion is further supported by the Ma = 1.0
case [k ≈ 5 ( 1k1 = 5, 2k1 = 3, 2k2 = 4, 3k1 = 3,
3k2 = 3 and 3k3 = 3) and the rest of the setup be-
ing the same] shown in the lower row, with quantitative
differences though. The strong piling up of E2 at the
driven wavenumbers for both cases is by itself a clear
indication that the injected E2 is transferred out inef-
ficiently in either direction. Many other details can be
understood better by checking the power spectra of pres-
sure gradients and the parallel and perperdicular com-
ponents, among others as the more comprehensive anal-
ysis for RSF in Ref. [8], which, together with other is-
sues such as the helicity effects, is far beyond the scope
of this note and will be communicated elsewhere. Ac-
tually, we have also tried various acceleration schemes
with vanishing or ‘very small’ (purely emperical so far,
but intuitively understood to be relative to the strength
of the accelerations) initial fields at large scales where
we never saw the establishment of velocity power spectra
to a level comparable to those around the driven wave
numbers (respectively 10 and 5 for the two cases) in 3-
space (in general more than 4 orders of magnitude lower
in our setups); but in 2-space, we generally did see the
establishment of largest-scale excitations to a level even
higher than those around the driven wavenumver. Since
the dynamics (thus the spectra) are highly anisotropic
with each component of velocity being also distinct, and,
because of the largest-scale nonuniversality with respect
to the acceleration scheme as in RSF [8], even a sum-
mary of the comprehensive results is not possible here.
But, the clear and important message for this note is the
following: the LSF inverse transfer mechanism is weaker
than RSF in 3-space to the ‘critical’ level in some sense
analogous to that of fractal dimension Dc = 4/3 deci-
mated from 2-space isotropically [18]).

Also importantly, neither any swirl pattern nor closed
velocity streamlines (not even in whatever distorted way
as the homoclinic loops, say) are observable in the right
panels of Fig. 2 of the fields, which is also confirmed
with other orientation views (Supplementary Materials).
From the knowledge of dynamical systems, the absence
of local swirls or closed streamlines is obvious for lack
of foci or centers in LSF, but, for large-scale or global
behavior in 3-space, the above observation appears non-
trivial, constituting the other major result besides the

above claimed ‘critical’ behavior concerning the inverse
transfer to form the flux loop.

Finally, let us emphasize that LSF is by definition
anisotropic, even in the x1-x2 plane. The quadratic inter-
action terms in Eq. (8c) for u2 shows that the dynamics
of u2 is also intrinsically anisotropic. Thus, also due to
the weak fluxes (presumably vanishing for the ‘critical’
system), the quantification of various spectral transfers
for the large-scale flux loop scenario is difficult. Resort-
ing to some closure theory, as in Frisch et al. [18], may
help, but by itself is still highly nontrivial due to the
anisotropy. More detailed analysis of such an issue and
the comparisons with general RSF and 2D compressible
flows will be presented in another communication [24].
As for the dynamics of VGT, checking each terms, coarse-
grained/filtered [25] or not [19], for consistent scenario
and extra information of our LSF may also shed light
on the issue modeling (for large-eddy simulations, say).
And we conclude with the expetation that the theoreti-
cal framework and computation tool of LSF established
here can also be soon applied to fundamental physical
problems such as (linear/kinematic) dynamo, aeroacous-
tics and combustion, among other nonlinear mathemat-
ics, the comparisons of which with those associated to
RSF and NSF should be very illuminating, while the ex-
tensions to quantum flows mentioned in the beginning of
the introductory discussions may be more nontrivial due
to the fact that the phase defects can make the space
multiply connected.
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