Einstein-Lorentzian SRT- transformation factor as solution of Planck-scaled oscillation equation

Holger Döring
IQ-Berlin
Germany
e-mail:haw-doering@t-online.de

Abstract

: Shown is the derivation of Lorentz-Einstein k-Factor in SRT as amplitude-term of an oscillationdifferential equation of second order with boundary conditions of Planck-scale. This case is shown for classical Lorentz-factor as solution of an equation for undamped oscillation and model of resonance. key-words: undamped oscillation; Planck scale; SRT; k-factor; differential-equation of second order; EinsteinLorentz; amplitude-analogy;

I. Lorentz-Einstein SRT k-factor as an amplitude solution of planck-scaled undamped oscillation equation

1.Introduction

It is obvious to remark the similiarity between the amplitude curves of an undamped oscillation and of k -factor of SRT given by Lorentz and Einstein for velocities which are smaller than light on the one hand [1.],[2.],[5.],[6.] and of Feinberg by FTL [3.] on the other, if both are described and drawed together [4.].Through this similarity there can be tried to get the lorentzian k-factor not only from pure kinematic examinations like in [1.],[2.] and [8.] but as an exact solution of an planck scaled oscillation-equation, as is demanded in [4.] and [9.].

If the oscillation-equation of second order is set in the following form with its Planck-boundaries,, there can be derived the lorentz-k-factor as an solution resp. an interpretation for amplitude of the oscillating system. This shows a deeper connection between quantum theory and classsical SRT.

2.Calculation:

There is the ansatz for the following differential-equation, which can be interpreted as an oscillation-equation for undamped states in case of resonance,

$$
\begin{equation*}
\ddot{\psi}+\omega^{2}{ }_{P l} \cdot \psi=\omega^{2}{ }_{P l} \cdot e^{i\left(\frac{r}{r_{P l}}\right)} \tag{1.}
\end{equation*}
$$

where r is an unknown distance and not a constant but a linear function of time t, which represents the x-coordinate of moving inertial frame:

$$
\begin{equation*}
r=r(t) \tag{2a.}
\end{equation*}
$$

$r_{P l}=\frac{1}{c^{2}} \cdot \sqrt{\frac{\hbar \cdot G}{c}} \approx 1,616255(18) \cdot 10^{-35} \mathrm{~m}$ is the Planck-length and $\omega_{P l}$ is the Planck-frequency of oscillating universe with

$$
\begin{equation*}
\omega_{P l}=c^{2} \cdot \sqrt{\frac{c}{\hbar \cdot G}} \approx 1,855 \cdot 10^{43} \mathrm{~Hz} \tag{2b.}
\end{equation*}
$$

Later v will be the velocity of a moving body or particle in local inertial frame of flat MinkoswkiSpace and cthe invariance-velocity by Lorentz-transformations, which occurs here in interpretation as the eigenfrequency-velocity of local space-time.

Also is set:

$$
\begin{equation*}
\psi(t)=A^{2} \cdot e^{i\left(\frac{r}{r_{r l}}-\theta\right)} \tag{3a.}
\end{equation*}
$$

as an ansatz for the solution of this equation.
Then there is derivated to second derivation:

$$
\begin{equation*}
\ddot{\psi}(t)=A^{2} \cdot\left(i \frac{\ddot{r}}{r_{P l}}-\frac{\dot{r}^{2}}{r^{2}{ }_{P l}}\right) \cdot e^{i\left(\frac{r}{r_{P l}}-\theta\right)} \tag{3b.}
\end{equation*}
$$

Since $\dot{r}=v=$ const. for the moving of a body in local inertial system, the first term in brackets vanishes.

If (3a.) and (3b.) are set into (1.), there follows the equation:

$$
\begin{equation*}
\left(\omega^{2}{ }_{P l}-\frac{\dot{r}^{2}}{r^{2}}\right) \cdot A^{2} \cdot e^{i\left(\frac{r}{r_{P l}}-\theta\right)}=\omega_{P l}^{2} \cdot e^{i\left(\frac{r}{r_{P l}}\right)} \tag{4.}
\end{equation*}
$$

which gives the following relation:

$$
\begin{equation*}
\left(\omega^{2}{ }_{P l}-\frac{\dot{r}^{2}}{r^{2}}\right) \cdot A^{2}=\omega_{P l}^{2} \cdot e^{i \theta} \tag{5.}
\end{equation*}
$$

If now the terms are separated seen as a realterm \mathfrak{R} and an imaginary term \mathfrak{J}, there is set:

$$
\begin{equation*}
\left(\omega^{2}{ }_{P l}-\frac{\dot{r}^{2}}{r_{P l}^{2}}\right) \cdot A^{2}=\Re=\omega^{2}{ }_{P l} \cdot \cos (\theta) \tag{6a.}
\end{equation*}
$$

and

$$
\begin{equation*}
0=\mathfrak{I}=\omega^{2}{ }_{P l} \cdot \sin (\theta) \tag{6b.}
\end{equation*}
$$

This last term means, that $\theta=0^{\circ}$.There is no phase shifting in angle of phase space in classical SRT-term, which leads to the barrier of invariance-velocity c for undamped local spacetime-states with resonance in Minkowski- tangent-space of Pseudo-Riemannian- manifold.

Therefore follows with theorem of Pythagoras $\sin (\theta)^{2}+\cos (\theta)^{2}=1$ the relation of:

$$
\begin{equation*}
A= \pm \pm i \sqrt{\frac{\omega^{2}{ }_{P l}}{\omega_{P l}^{2}-\frac{\dot{r}^{2}}{r^{2}}{ }_{P l}}} \tag{7a.}
\end{equation*}
$$

or

$$
\begin{equation*}
A= \pm \pm i \sqrt{\frac{\omega^{2}{ }_{P l}}{\frac{\dot{r}^{2}}{r^{2}}-\omega_{P l}{ }^{2}{ }_{P l}}} \tag{7b.}
\end{equation*}
$$

This relation leads finally to Einstein-Lorentzian-transformation factor [1.],[2.] or Feinberg-factor [3.] for FTL with its boundary conditions of:

$$
\dot{r}^{2}=v^{2}=\text { const } . \quad \text { and } \quad r^{2}{ }_{P l} \cdot \omega^{2}{ }_{P l}=c^{2} .
$$

3.Result:

If now is chosen the positive real sign-term and the boundary-conditions are set, there is finally following from (7a.):

$$
\begin{equation*}
A=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \tag{8a.}
\end{equation*}
$$

and from (7b.):

$$
\begin{equation*}
A=\frac{1}{\sqrt{\frac{v^{2}}{c^{2}}-1}} \tag{8b.}
\end{equation*}
$$

These are the classical Lorentz-Einstein-term and the Feinberg-term for moving bodies in local inertial-frames of flat space-time in classical SRT.

4.Discussion:

The similiarity between Einstein-Lorentz-Feinberg k-factors and the amplitudeterm of the model of an undamped oscillation in resonance with the given bounding conditions may be coincidentally of a mere pure mathematically analogy without any physical evidence.But this derivation may throw a new light into the interpretation of local space-time-conditions.Specially the role of the supposed constant length-term $r_{P l}$ has to be discussed further.It seems that there may be a deep connection between quantum-theory and SRT as a theory of local Spacetime which could be developed to GRT. Also the phase-angle θ must be discussed. For undamped state analogy this angle is equal to zero. Therefore can be concluded, that for phase angles with other values there can be derived a developed SRT-theory for enforced damped states as worked out in [4.], which may unify the broken symmetry of both Einsteinian and Feinberg k-terms.

5.Conclusion:

The classical lorentzian-transformation factor of SRT can be deduced as amplitude of a planckian -oscillation equation of second-order with model of resonance, not only by kinematic discussions in flat Minkowski-space between two light-clocks or two inertial systems moving with constant velocity.This may lead to a deeper sight in connection between local space-time and quantumtheory.In interpretation the basic oscillation-equation may be seen as a description for foundation of the local oscillating universe itself.This equation can be developed to analogy of damped resonance as is described in [4.].

6. References:

[1.] Einstein, A.,Zur Elektrodynamik bewegter Körper,Annalen der Physik ,322, 10,1905; https://doi.org/10.1002/andp.19053221004.
[2.] Lorentz, H.A., Elektromagnetische Erscheinungen in einem System, das sich mit beliebiger, die des Lichtes nicht erreichender Geschwindigkeit bewegt.In: Das Relativitätsprinzip - Eine Sammlung von Abhandlungen, Seiten 6-25. Wissenschaftliche Buchgesellschaft, Darmstadt, 6.Auflage 1958.
[3.] Feinberg, G,, Possibility of Faster-Than-Light-Particles, Phys.Rev.159,1089, (1967).
[4.] Döring, H. SRT as a Fourth-order-theory with Analogy-model of Damped Resonance. Preprints 2021, 2021040433 (doi:10.20944/preprints 2021104.0433.v1.)
(https://www.preprints.org/manuscript/202104.0433/v1).
[5.] Einstein,A., über die spezielle und allgemeine Relativitätstheorie, Vieweg Braunschweig , WTB Nr. 59,21.Auflage,(1979).
[6.] Einstein,A., Grundzüge der Relativitätstheorie, Vieweg Braunschweig, WTB Nr.58,5.Auflage, (1979).
[7.] Planck, M.: Über Irreversible Strahlungsvorgänge. In: Sitzungsbericht der Königlich Preußischen Akademie der Wissenschaften, 1899, erster Halbband S.479-480.
[8.] Lorentz, H.A., Versl. K. Ak. Amsterdam10, 793 (1902); Collected Papers, Vol. 5, .Proc. K. Ak. Amsterdam 6, 809 (1904); Collected Papers, Vol. 5.
[9.] Döring, H. Lorentzian SRT-Transformation Factors as Solutions of Oscillation-Equations. Preprints 2021, 2021050242 (doi:10.20944/preprints 2021105.0242.v2).
(https://www.preprints.org/manuscript/202105.0242/v2).

