
www.SandV.com4 SOUND & VIBRATION/MARCH 2010

EDITORIAL

A Common Myth about Mechanical Resonance

Roman Vinokur, Contributing Editor

Generally speaking, myths are more leg-

end than fact, but if not pushed too far, they 

approximately describe the world behavior 

in practical terms. Ancient Mayans believed 

the skies were populated with cosmic ser-

pents and dragons serving as vehicles for 

deities. Based on this hypothesis, Mayan 

priests were actually able to predict solar 

and lunar eclipses. Certainly, such primitive 

science could not help people navigate to 

the Moon nor invent a thermonuclear reac-

tion by analyzing the burning of hydrogen 

in the Sun’s core.

When Apollo 8 mission astronaut Bill 

Anders said “I think Isaac Newton is doing 

most of the driving now,” he meant that 

spaceship movement was governed by Isaac 

Newton’s laws of mechanics. However, 

Newton was more vigilant in describing 

his own achievements: “To myself I am 

only a child playing on the beach, while 

vast oceans of truth lie undiscovered be-

fore me.” 

The best way to engineering success is 

to continue studying new things and ex-

amine common knowledge that may not fit 

present-day requirements. In this context, 

analysis of common “myths” can be very 

effective. Famous composer Igor Stravinsky 

said “I have learned . . . chiefly through my 

mistakes and pursuits of false assumptions, 

and not by my exposure to founts of wisdom 

and knowledge.”

Dual Condition for Resonance. In many 

handbooks, mechanical resonance is gener-

ally defined as: a large vibration caused by 
an oscillating force whose frequency coin-
cides with one of the natural frequencies 
of the resonating body. Strictly speaking, 

resonance occurs at a so-called resonant 

frequency that may differ from the natural 

frequency, but in most practical cases the 

difference is minor.

However, the coincidence of the excita-

tion and resonant frequencies is not even 

mentioned in the existing standard ANSI 

S2.1-2000/ISO 2041:1990: Vibration and 
Shock – Vocabulary. It states: Resonance 
of a system in forced oscillation exists 
when any change, however small, in the 
frequency of excitation causes a decrease 
in a response of the system. Why? Because 

the coincidence of the excitation and 

resonant frequencies is sufficient to create 

resonances only for a 1-DOF (one degree 

of freedom) mechanical system. For multi-

DOF mechanical systems, this condition 

is necessary but may not be sufficient. The 

spatial distribution and orientation of the 

oscillating forces is important as well. 

For example, consider the 2-DOF me-

chanical system of two similar lumped 

masses interconnected with a massless 

spring, shown in Figures 1a and 1b. (Note 

that a damper is not shown for simplicity.) 

The black arrows indicate displacement 

vectors, while the white arrows indicate 

force vectors. Such a system has two 

natural modes: “opposite-phase vibration” 

mode (1a; the masses oscillate in opposite 

directions around the spring center, which 

remains stationary) and “rigid-body” mode 

(1b; the two masses move in phase with no 

spring deformation). The natural frequency 

of the first mode is calculated as:

where k and m are the spring stiffness and 

mass, respectively. As noted previously, the 

resonant frequency is close to the natural 

frequency in most practical cases. On the 

other hand, the resonance cannot be excited 

by two similar “in-phase” oscillating forces 

(Figure 1b). Such forces will only vibrate 

the whole system back and forth as a rigid 

body at any frequency. Therefore, to excite 

the resonance in such a mechanical system, 

two coincidental conditions should take 

place simultaneously:

The oscillating frequency must be equal 
to the resonant frequency of the “oppo-

site-phase vibration” mode.

The oscillating forces must include a 
pair of “opposite-phase vibration” com-

ponents. 

Indeed, the second condition can be 

fulfilled in a multitude of practical situa-

tions. In particular, if the oscillating force 

F is applied to the second mass and no 

force acts upon the first mass (Figure 2a), 

such a spatial arrangement is equivalent 

to a combination of two pairs of oscillating 

forces with an amplitude of 0.5 F (Figure 

2b); the upper pair excites opposite-phase 

vibration, and the lower pair shows rigid-

body motion.

Spatial Force Distribution. The 2-DOF 

mechanical system shown in Figures 3a 

and 3b consists of two identical masses 

m supported by identical vertical springs 

with stiffness k and firmly attached to the 

ends of a perfectly rigid and massless rod. 

The rod length is 2L. Such a system has two 

natural modes:

“Piston” mode – in Figure 3a, both masses 
move “in phase” up and down with no 

rotation about the rod center, which is the 

system center of mass.

“Rocking” mode – in Figure 3b, the 
masses rotate around the center of mass, 

which remains in equilibrium.

The natural frequency of the piston mode 

calculates:
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Figure 1. Vibration modes of a two DOF mechani-
cal system with force vectors (white) and displace-
ment vectors (black).

Figure 2. Decomposing an arbitrary force into 
modal components.
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Figure 3. Vibration modes of a two DOF mechani-
cal system with differing force and displacement 
vectors.
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The coincidence of the excitation and resonant frequencies is sufficient to create resonances only for a 1-DOF (one degree of freedom) 

mechanical system. For multi-DOF mechanical systems, this condition is necessary but may not be sufficient. The spatial distribution and 

orientation of the oscillating forces is important as well. This is important for many practical applications and therefore should be taken into 

account by design engineers to avoid potential failures with new projects.



www.SandV.com SOUND & VIBRATION/MARCH 2010 5

but lack “hands on” experience with the 

machinery they model. This can severely 

handicap their ability to interpret the simu-

lation results obtained.

Design engineers can never be 100% 

certain of the structural reliability of their 

creations until a prototype or pre-produc-

tion sample is built to “speak for itself” 

during vibration fatigue and shock testing. 

Simulation test conditions must be close to 

real operation conditions to avoid wrong 

predictions. Occasionally, a new high-speed 

vehicle successfully passes all the simula-

tion and laboratory testing and promptly 

fails in real-world operation.

Since most structural failures occur at me-

chanical resonances, it is important to test 

the prototypes under real-life resonant con-

ditions. Measured acceleration of a system 

tested on a shaker may be high, and the reso-

nance frequency may be carefully explored 

and correlated to the design FE model. But 

the environment encountered in real life 

can present different loading patterns that 

excite untested vibration modes. A clear 

understanding of resonances in multi-DO 

F mechanical systems is an effective tool 

to predict and fix structural problems even 

before a vehicle is tested under real road or 

flight conditions. In combination with true 

experimental data, this should help create 

reliable products. 

The author can be reached at: rvinokr@aol.com.

The natural frequency of the rocking 

mode calculates:

where J = 2mL2 is the moment of inertia 

of the system. The natural frequencies for 

both modes coincide. However, the system 

vibrates in the piston mode if the two 

oscillating forces acting upon the masses 

are identical (Figure 3a) and in the rock-

ing mode if the oscillating forces have the 

same magnitude but opposite directions 

(Figure 3b).

Which Coincidence Condition? Reso-

nance of an ideal 1-DOF mechanical system 

is excited due to the coincidence of the 

oscillating forcing frequency and resonance 

frequency. In this case, the force is always 

applied along the system axis, and just one 

natural vibration mode exists. In an ideal-

ized thin plate of infinite span, where bend-

ing waves are excited by incident sound 

waves in air, a powerful resonance occurs 

if the wavelength of the “along-plate” com-

ponent of an incident sound wave coincides 

with that of a free bending (flexural) wave 

propagating in the plate (Figure 4). Here 

the frequencies of the incident and bending 

waves should coincide automatically as a 

consequence of the energy conservation 

law. Since in this case, the incident wave 

plays the role of the exciting force, the 

resonance is driven by a “force distribution 
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Figure 4. coincidence frequency of an acoustically-
excited structure.

coincidence.”

In real multi-DOF mechanical systems, 

both frequency and force distribution coin-

cidence effects are of practical importance. 

The frequency coincidence may become 

more important because of the input vi-

bration energy redistribution between the 

system degrees of freedom, in particular 

at high frequencies. But at relatively low 

frequencies, such a randomization is less 

significant.

Importance of Understanding Practi-

cal Mechanical Resonances. According 

to Albert Einstein, “intellectuals solve 

problems, geniuses predict them.” Many 

industrial products, particularly in automo-

tive and aerospace industries may exhibit 

significant structural reliability even under 

vibration fatigue and shock loading, so NVH 

engineers must be geniuses predicting and 

reducing the risks of structural failure. Even 

with extensive computer modeling, it is 

difficult to segregate all the discrepancies. 

Sometimes computer simulations do not 

predict actual performance characteristics. 

Many contemporary FEA specialists are 

extremely good at analytical computations 


